Phytochemical Constituents, Therapeutic Applications and Toxicological Profile of *Cymbopogon citratus* Stapf (DC) Leaf Extract.

Christopher E. Ekpenyong, Ernest E. Akpan, Nyebuk E. Daniel

ABSTRACT

The medicinal value of herbs and natural plant products depends on their phytochemical constituents that elicit definite physiological or pathological effects in the human body. *C. citratus* has been extensively consumed globally for its medicinal, cosmetic, and nutritional benefits. Studies on its phytoconstituents have documented the presence of tannins, saponins, flavonoids, phenols, anthraquinones, alkaloids, deoxysugars, and various essential oil constituents in the herb. Secondary active metabolites of a number of components have also been implicated in the varied pharmacological effects of this plant, including its toxic profile. Contrary to the widely held belief that *C. citratus* is relatively safe for consumption at any dose, recent evidence suggest that factors such as the variation in bioactive constituents and dose/duration of administration could influence its toxicological profile. Although it has a wide range of therapeutic effects, *C. citratus* should be used with caution by individuals with kidney and liver diseases, pregnant or lactating women, patients on antiplatelet medication or clotting disorders, and in combination with drugs that depend on the cytochrome P450 enzyme system for their metabolism. High doses and prolonged usage of *C. citratus* tea or decoctions should be discouraged, and more research on dose consistency is warranted.

Keywords: *Cymbopogon citratus* Stapf, toxicological profile, phytoconstituents, therapeutic applications.

1. Introduction

Herbal medicine and various types of plant-based therapeutic/prophylactic products have been available for centuries and applied in the treatments of diseases throughout history. Worldwide, phytomedicine and herbal medicine are culturally accepted and ubiquitously practiced. Empirical evidence links the phytochemistry of herbs and their toxicological profile. Currently, many herbs consumed by humans have been subjected to research by modern methods in order to substantiate their putative phytochemical and toxicological profiles. The importance of these studies for guiding future herbal medicine cannot be overstated, since most herbs consumed may have some toxic effects, and scientific reports of potential long term toxicity of some commonly consumed herbs are emerging in the literature. The toxicological profile of any herb is dependent on its phytochemistry and the prevailing micro-environmental physical or chemical stressors. The present review focuses on the phytochemistry and toxicological profile of a widely consumed herb *C. citratus*.

C. citratus is an economically important aromatic perennial plant of the Poaceae family that has been used to extract essential oils. It is grown around the world and has a century-long record of extensive therapeutic applications in traditional and Ayurvedic medicine in a number of countries [1-2]. It is used in herbal medicine for a wide range of applications based on its antibacterial [3], antifungal [4], antiprotozoal [5], anti-carcinogenic [6], anti-inflammatory [7], antioxidant [8], cardioprotective [9], antitussive, antiseptic, and anti-rheumatic activities. It has also been used to inhibit platelet aggregation [10], treat diabetes [11], dyslipidemia, gastrointestinal disturbances [12], anxiety [13], malaria [14], flu, fever, and pneumonia [15], as well as in aromatherapy. In addition to its therapeutic uses, *C. citratus* is also consumed as a tea, added to non-alcoholic beverages and baked food, and used as a flavoring and preservative in confections and cuisines. In cosmetics, its essential oils are used as fragrance in the manufacture of perfumes, soaps, detergents, and creams [16,17].

Based on the claims of numerous health benefits derived from this plant, a number of studies were being conducted to investigate its actions, identify its phyto-constituents, and elucidate its toxicological profile in both human and animals, with new chemotypes currently being...
developed. Several reviews have already appeared in literature on *C. citratus*, describing its phytochemistry and is uses as a medicinal plant [35, 18]. These reviews provide a general overview of its applications in therapeutics, agriculture, cosmetics, and in food products. However, in light of recently published findings on the phytochemistry and toxicological profile of *C. citratus*, the present review summarizes and updates the findings.

2. Phytochemistry of *C. citratus*

Most of the biological effects ascribed to *C. citratus* extracts have been attributed to its primary bioactive constituents, derived from its leaves, stem, and roots, and their secondary metabolites. To date, a large number of empirical studies have been carried out aiming to expand our understanding of *C. citratus* phytochemistry - [19], including a number of recently conducted studies. These investigations have shown that the chemical composition of *C. citratus* extracts varies according to the geographical origin, genetic differences, part of the plant used, method of extraction, age/stage of maturity, and season of harvest [20-22]. Despite these differences, a number of classes of compounds are reproducibly found, including tannins, saponins, flavonoids, alkaloid phenols, and anthraquinones. Citral (1), myrcene (2), geraniol (3), limonene (4), 1,8-cineole (5), pinene (6), citronellol (7), nerol (8), neral (9), linalool (10), elemicin (11), caffeic acid (12), apigenin, luteolin (13), kaempferol, quercetin (14), chlorogenic acid (15), and geranyl acetate (16) are found in the essential oil, along with many compounds yet to be identified [23] (Figures 1 and 2). Additionally, isolation of fumosol, fufural, isopulegol, isovaleranolic aldehyde, L-linalool, methylheptenone, n-decyclic aldehyde, terpineone, p-coumaric acid, valeric esters, and other compounds have been reported [15, 24, 25]. Cheel et al. [24] also reported the presence of isosocoparin, swertiajaponin, and orientin in *C. citratus*. A summary of the phytochemicals reported to be present in *C. citratus* is presented in Table 1. Irrespective of its geographical origin, *C. citratus* contains a high percentage (about 80%) of citral, which is a mixture of terpenoids neral and geranial. This high citral content justifies the large scale commercial cultivation of *C. citratus* in several countries [27], and it is responsible for the lemony smell that characterizes the species [15, 28]. A variation in the myrcene constitution (12-15%) in West Indian *C. citratus*, in comparison to the East Indian type has been reported [24, 29]. However, as an exception, the essential oil from the Ethiopian *C. citratus* was found to contain geranial (40%) as its main compound, followed by citral (13%) and α-oxobisabolene (12%) [30].

A survey by Harborne and Williams [31] presented the occurrence of tricin and flavone C-glycosides in five Cymbopogon species, luteolofen in two species, while sulfated flavonoids and apigiforol were found in only one species. The plant material used for this survey included Australian and Asian Cymbopogon varieties. While both flavones, flavonoids C- and O-glycoside, were reported to be present in the Peruvian variant of *C. citratus* by De Matouschek and Stahl-Biskup [32], the herb variant found in Chile contained only C-glycosyl flavonoids in detectable amounts. Species differences arise from genetic variations that may directly or indirectly influence the chemical composition. For example, a particular species of *C. citratus* could be rich in a given chemical constituent over the other species because the genetic information it bears encodes for these differences in the formation of that particular chemical. These differences can be exploited using modern biotechnology by genetically engineering certain plant species to produce desirable traits, such as pest resistance, selected chemical constituents, and increased yield at harvest. For example, two *C. citratus* varieties, code named RRL-16 and CKP-25, were developed at the Regional Research laboratory, Jammu, India. These varieties contained 0.28 and 0.50% of essential oil, respectively. RRL-16 variant was also reported to contain 79-85% citral, while CKP-25 had 82-85% citral [33]. A number of *C. citratus* variants plants are developed by genetic engineering techniques to increase the yield of plants with desirable traits. These include variants called Krishnan Neema, [30], Sugandhi (OD 19), Pragati, Praman, Juma Rosa, OD-408, and Kaveri [24].

Aside from species differences, the method of extraction/preparation of the infusions or decoctions, and the technique used in drying the leaves may also influence the derived bioactive constituents of *C. citratus* and their yield [14, 35]. The extraction methods employed in the processing of *C. citratus* include hydrodistillation, pressurized liquid extraction, gas chromatography/mass spectrometry (GC/MS), microwave-assisted hydrodistillation (MAHD), and the Soxhlet extraction method using water, n-hexane, chloroform, and methanol/ethanol mixture as extraction solvents [21]. Other techniques include steam and water distillation, maceration, empyreumatic distillation, and expression [35].

For example, the phytochemical analyses of *C. citratus* leaves and roots performed by Ewansha et al. [22] detected flavonoids and volatile oil in the hexane extract, while tannins, flavonoids, phenol, carbohydrates, and volatile oil were present in the chloroform extract. In the same study, tannins, flavonoids, and carbohydrates were found in the methanol extract of leaf material, while only tannins and carbohydrates were present in the methanol extract of the roots. Similarly, Schanberg & Khan [36] reported that a larger relative citral component (86.83%) was obtained by the extraction of the essential oil with hexane, when compared with the extraction using other solvents. Agro-climatic factors such as soil salinity and water contents could also influence the growth, quality and yield of oil from *C. citratus* [28]. Experiments that took into consideration the environmental conditions in the Philippines observed that a better yield of the oil and higher citral content was obtained from *C. citratus* harvested during the drought season (March to June) [37], as compared to the rest of the year. Tajdin et al. [38] found that early or delayed harvest of *C. citratus* affected the essential oils and citral contents of the plant, with a significantly higher oil content found in plants harvested at 5.5 and 6.5 months growth, as compared to those harvested at 7.5 months. Citral contents appeared to reach peak levels 6.7±0.3 months after planting. In that particular study, a total of 65 compounds were detected in plant material analyzed at all stages of maturity, of which 13 were present at all stages and 7 compounds (β-myrcene, 3-undecyne, neral, geranial, nerol, geranyl acetate, and juniper camphor) had concentrations greater than 1%. Based on these findings, it was recommended that *C. citratus* should be harvested at the appropriate level of maturity to maximize the quality of the essential oils and reduce production costs. Nutritionally, *C. citratus* contains variable amounts of
electrolytes and minerals (Na⁺, K⁺, Ca²⁺, Cu²⁺, Mg²⁺, Mn, Se, P, Fe²⁺, and Zn²⁺), vitamins (folate, niacin, pyridoxine, riboflavin, and vitamins A, C, and E), and macronutrients (carbohydrates, proteins, and a small amounts of fat), as reported by Aftab et al. [1]. C. citratus was also proposed to be a rich nutritional source of Zn²⁺ [39].

Figure 1
Table 1: Phytochemicals reported in C. citratus

<table>
<thead>
<tr>
<th>Phytonutrients</th>
<th>Mineral contents</th>
<th>Essential oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannins</td>
<td>Sodium</td>
<td>Citral</td>
</tr>
<tr>
<td>Saponins</td>
<td>Potassium</td>
<td>α-terpineol</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Calcium</td>
<td>β-Mycene</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>Iron</td>
<td>β-O-Cimene</td>
</tr>
<tr>
<td>Steroids</td>
<td>Magnesium</td>
<td>t-Murolol</td>
</tr>
<tr>
<td>Essential oils</td>
<td>Phosphorus</td>
<td>1-Octyn-3-ol</td>
</tr>
<tr>
<td>Phenols</td>
<td>Essential oils</td>
<td>trans-Chrysanthemal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-Undecyne 3-carvomenthenone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Citronellal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-(-)-Carveol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-(-)-Carveol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geranial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nerol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Citronellol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methyl-n-nonyl-ketone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dextro-carvone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geranic-acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-Bergamotene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isolongifolene-4S-9-10-dehydro Levo-β-lemene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ-Murolene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-Gurjunene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-Murolene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-Amorphone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-Sesquiphellandrene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-Farnesene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-Elemol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d-Cadinene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Germacrene-D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valencene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viridiflorol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-Selinene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humulene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-Guaiene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t-Cadinol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-Eudesmol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(E,E)-Farnesal pimelyl dihydrazide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di-n-octylphthalate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geranyl-acetate</td>
</tr>
</tbody>
</table>

* Phytoconstituents documented hitherto from an extract of C. citratus plant leaf [23, 24, 71]
3. Toxicological profile of *C. citratus*

3.1 Neurotoxicity

Leite *et al.* [40] studied the toxic, hypnotic, and anxiolytic effects of *C. citratus* in fifty healthy volunteers who ingested an infusion of the leaves. In comparing the effects with those in placebo-treated participants under double blind condition, the authors observed no neurotoxic effect.

3.2 Dermatotoxicity

Recent animal studies have shown that citral, a major component of the *C. citratus* oil, can induce skin irritation. Similar skin reactions have been reported in humans. In a study by Motoyoshi *et al.* [41], fifty male volunteers were dermally exposed to 32% citral mixed with acetone for 48 hours. Positive skin reactions, including the presence of erythema, edema, papules, and bullous reaction, were observed. Lemon-scented detergent was also implicated in an outbreak of eczema [42, 43].

3.3 Teratogenicity

Formingoni *et al.* [44] studied the pharmacological effect of *C. citratus* administered daily for 2 months in male and female rats, and in offspring exposed in utero. No effects that could be perceived as signs of toxicity were observed following oral administration of an infusion prepared from the leaves of *C. citratus* to adult rats for 2 months at a dose 20 times larger than the estimated corresponding human dosage. An absence of effects was also noted in both male and female rats, and their offspring when the infusion was administered prior to mating or during pregnancy. In separate animal studies, citral and myrcene were reported to adversely affect the embryos, thereby discouraging the use of *C. citratus* in pregnancy and lactation. A study performed in Brazil by Paumgarten *et al.* [45] found that only very high doses (500 mg/kg) of myrcene increased the pregnancy loss rate and increased the rate of fetal skeletal abnormalities in Wistar rats. Developmental delays, such as delayed eye opening and incisor eruption, were observed in exposed offspring. Another Brazilian study performed by Nogueira *et al.* [46] found an increased rate of skeletal malformations and fetal growth retardation in Wistar rats administered citral at 60 mg/kg dose. An increased pregnancy loss rate also occurred at this dose.

3.4 Nephrotoxicity

The data available in the literature regarding the effects of the *C. citratus* leaf extract on the renal system are conflicting and inconclusive. A study by Hanisa *et al.* [47] found no significant changes in serum biochemical indices of renal function (creatinine, urea, uric acid, protein, and glucose) in rats following administration of the *C. citratus* extract. A separate study by Leite *et al.* [48] made a similar observation in healthy volunteers treated with an infusions prepared from *C. citratus* leaf powder. Similarly, Omer *et al.* [48], conducted a study assessing the effects of *C. citratus* leaf extract supplementation in rabbit feed and found no renal adverse effects, as evidenced by normal serum creatinine and protein levels. Furthermore, two studies suggested that *C. citratus* may have nephroprotective properties [49, 50]. Conversely, Tarkang *et al.* [51] found increased blood urea nitrogen and mild renal tubular distortion in rats following treatment with the *C. citratus* extract for 28 days, suggesting that a high dose or prolonged treatment may be associated with some degree of nephrotoxicity. This finding is supported by a report by Guerra *et al.* [51] of nephrotoxic effects in animals treated with 50 and 80% solutions of *C. citratus* leaf extract.

In another study by Paumgarten *et al.* [45], β-myrcene, an acyclic monoterpenepresent in the *C. citratus* essential oil, was found to induce kidney enlargement with associated sex-specific hyaline droplet nephropathy. This pathological state was similar to the hyaline nephropathy caused by d-limonene, a mononcylic monoterpenepresent in the essential oil [52-54]. Past studies have shown that the induction of microsomal enzymes by the bioactive constituents of *C. citratus* is the major pathogenic step in the induction of nephropathy [47, 55]. Interestingly, a growing amount of evidence indicates that the mechanism of d-limonene-induced nephropathy observed in animals may not be clinically relevant, since humans lack the protein that binds to d-limonene [54].

Much like the effects of other loop diuretics, previously documented diuretic and natriuretic effects of *C. citratus* extract [56, 57] could result in an altered glomerular filtration rate (GFR) and, by extension, changes in other indices of renal function with chronic administration. The dose and time-dependent effects, genetic differences, age at harvest, and geographical variations in chemical constituents of the essential oil could also account for the discordant results across published toxicity studies [25, 58]. Regrettably, reliable research data are scant in this regard, and more empirical data on the effect of *C. citratus* on GFR and renal function are needed to either support or counter- indicate its use, particularly in renally compromised individuals such as the elderly, individuals undergoing dialysis, and patients that have undergone a renal transplant. Additionally, further studies are warranted to evaluate the interaction of *C. citratus* extract components with the medications known to adversely affect the kidneys, such as antiretrovirals, aminoglycoside antibiotics, non-steroidal anti-inflammatory drugs, and angiotensin-converting enzyme inhibitors [59].

3.5 Hepatotoxicity

A recent study has shown that citral can induce hepatic cytochrome P450 activity, with potential consequences for toxicity and interaction with other drugs [60], especially those that are dependent on this enzyme for metabolism. In a study by Koh *et al.* [61] aimed at evaluating the hepatoprotective effect of *C. citratus* against carbon tetrachloride (CCl₄)-mediated oxidative damage in rats, the animals were treated with *C. citratus* extract (100, 200, and 300 mg/kg body weight) for 14 days before the administration of a CCl₄ challenge (1.2 mL/kg body weight, p.o.) in the last two days of treatment (13th and 14th day). Hepatic damage was evaluated by assessing standard serum biochemical parameters (alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase), malondialdehyde levels, glutathione (GSH) levels, and altered antioxidant enzymes (catalase, glutathione peroxidase, quinone reductase, glutathione-S-transferase, glutathione reductase, and glucose-6-phosphate dehydrogenase). Additionally, CCl₄-mediated hepatic damage was further evaluated by histopathological examination. Most of these changes were alleviated by a prophylactic treatment of animals with *C. citratus* in a dose-dependent manner. The protection was further evident through decreased histopathological alterations in the liver. The results of the
study indicated that the hepatoprotective effect of C. citratus can be ascribed to its antioxidant and free radical scavenging property. In a parallel study evaluating the hepatoprotective effects of C. citratus against CCL\textsubscript{4}-induced damage, El-Serwy found that the addition of C. citratus or its oil to the diet improved the nutritional value, in addition to the ratio of liver weight to total body weight. The mean levels of serum cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein (VLDL-C), uric acid, urea nitrogen, creatinine, glucose, aspartate amino transferase (AST), and alanine amino transferase (ALT) were decreased in animals treated with C. citratus or its oil, as compared to the positive controls, while high-density lipoprotein (HDL-C) was increased by C. citratus treatment. While histopathological examination of the liver in CCl\textsubscript{4}-treated group revealed degenerative and necrotic changes, hepatic tissues of animals treated with C. citratus or its oil showed a marked reduction in the severity and frequency of these changes. Based on these observations, a high level of C. citratus or its oil (5 g/100 g of diet) elicited the strongest beneficial effect on the lipid profile, kidney and liver functions, glucose level, and iron status.

Extract of C. citratus protects the integrity of the plasma membrane by reducing the leakage of serum aminotransferase and LDH. At the same time, it also increased the regenerative and reparative capacity of the liver by normalizing the hepatic oxidative stress marker profile. In addition to improving the biochemical profile, reduced CCL\textsubscript{4}-induced liver damage was detected on histological examination. On the basis of their results, Koh et al. hypothesized that the efficacy of the hepatoprotective effects of the ethanol extract of C. citratus may be largely related to the phenolic content and its free radical scavenging activity, which stabilizes the membrane and maintains the normal functioning of hepatocytes. Phenols such as isoorientin-2-O-rhamnose, chlorogenic acid, and caffeic acid are well-known plant antioxidants and free radical scavengers. These compounds were reported to exhibit hepatoprotective properties.

Arhogho et al. investigated hepatoprotective effects of the aqueous leaf extracts of C. citratus on cisplatin-induced liver damage. Cisplatin treatment causes an increase in serum ALT levels and a decrease in serum protein concentration, with considerable decreases in body weight, and ratio of liver to body weight. Most of these changes were alleviated by prophylactic treatment with the aqueous extract of C. citratus in a dose- and time-dependent manner. The ameliorating effect was further evident through the decreased severity of histopathological alterations in liver tissues samples obtained from animals treated with the aqueous extract of C. citratus. In the same study, aqueous leaf extracts of C. citratus were found to exhibit anti-hepatotoxic action against cisplatin-induced hepatotoxicity in rats. C. citratus extracts, therefore, have the potential for use in the management of liver pathological states, and as a therapeutic adjuvant for the amelioration of cisplatin toxicity.

In a study by Ojo et al., antioxidant effects of water extract of green tea and C. citratus were investigated in Wistar albino rats. Control and test groups were administered paracetamol (2 g/kg) on the last day of a 10-day treatment with vehicle or a daily dose of 100 mg/kg body weight of green tea and C. citratus. The effect of the extracts on serum malondialdehyde levels, catalase activity, and vitamin C were measured, in addition to the evaluation of the effects of the C. citratus extract on cholesterol and phospholipids. The extracts of green tea and C. citratus elicited a significant antioxidative effect by inhibiting the elevation of serum malondialdehyde levels and catalase activity. Additionally, pre-treatments prevented the depletion of vitamin C. Herbal extracts were able to prevent the alterations in membrane lipids by preventing the paracetamol-induced increase in the cholesterol/phospholipid ratio. On the basis of these results, it was suggested that the extracts of green tea and C. citratus could protect against paracetamol-induced lipid peroxidation, possibly by eliminating the deleterious effects of toxic paracetamol metabolites through their antioxidative effects.

However, according to Guerra et al., the 30 and 80% fluid plant extracts can elicit hepatotoxic and nephrotoxic effects in animals. These could be perceived as resulting from a high dose and duration of C. citratus treatment, suggesting that caution should be exercised when administering high doses over a long period, especially in individuals with indices of compromised hepatic and renal function.

4. Are C. Citratus Leaf Extracts Really Toxic? A number of studies have attempted to answer this question, with conflicting and inconclusive data. Some studies observed toxic effects, while no toxicity was detected by others. However, most of these studies were performed in animals, making the results difficult to apply to humans. Species differences, methods of C. citratus processing, duration of intake, site of cultivation and the heavy metal content of the soil, as well as the health status of the individual are only some of the factors that could influence the toxicity of an herbal preparation. Other micro environmental, physical, and chemical stimuli known to elicit toxicity could qualitatively and quantitatively alter the phytochemistry of herbs. Additionally, toxicity of herbal preparations could be due to the adulteration, contamination from toxins during cultivation and extraction, or even from herb interactions with any pharmaceutical agents that the subject may be concurrently taking.

However, C. citratus has been used over many years to make caffeine-free tea and as an herbal drink, suggesting that it may be a healthier alternative to caffeine-containing tea products. Akande et al. found that, in comparison to other tea brands consumed among Nigerians (Lipton tea, Nescafe, green tea, and Top tea); C. citratus tea was a good source of antioxidants such as flavonoids, and therefore a nutritionally acceptable and medicinally valuable beverage. Although some studies have shown that it contains tannins, coumarins, saponins, and anthraquinones, which have been associated with minor toxic effects, the low bioavailability of these phytochemicals in humans may confer a measure of protection against toxicity. The average concentrations of anti-nutrients such as phytate are not significantly higher in C. citratus, while cardiac glycosides, cyanates, phlobatannins, and heavy metals like lead and mercury are absent. Therefore, C. citratus is considered to be safe for human consumption on the basis of its phytochemical constitution, both nutritional and non-nutritional.

As with other herbs, while C. citratus is relatively safe for consumption, caution should be taken in high doses and prolonged intake in both healthy individuals and in diseased states. Additionally, the site of cultivation and methods of extraction can be a concern, as contamination from environmental or industrial sources could render the herb toxic. Empirically, since past research has shown that C.
citrus can influence the activities of cytochrome P450 due to its citrus contents \(^{68, 69}\), it could interact with drugs that depend on this enzyme system for their metabolism. However, these interactions need to be confirmed through further studies.

As a general shortcoming in herbal medicine, dosage of administration cannot be as closely regulated as with conventional drugs. However, Salome et al. \(^{59}\) have produced *C. citratus* tablets containing powdered dry *C. citratus* leaves by using acacia and gelatin as binders at concentrations of 2.4, and 8% w/w. Use of such standardized tablets could help with the monitoring of dose consistency, quality standardization, and control of dosing. However, further studies are still warranted to evaluate the bioavailability of this form, as compared to teas and decoctions.

Though consumed for a wide range of diseases, herbal remedies, including *C. citratus*, should be used with caution in individuals with kidney damage, liver diseases, in pregnant or lactating women, or children under the age of six. High dose and prolonged use of *C. citratus* tea or decoction should be discouraged.

5. Conclusion

C. citratus leaf, stem, and roots are commonly used in herbal medicine. Its essential oils are considered safe for human consumption and are commonly used in aromatherapy. Accumulated evidence has shown that the phytochemicals present in *C. citratus* are responsible for its wide range of pharmacologic and physiologic actions, providing the rationale for its therapeutic applications. However, more empirical studies evaluating the effect of *C. citratus* on humans are needed to substantiate its use in therapeutics. Most of the available studies are animal-based and may not be informative for the assessment of its therapeutic potential in humans. This review provides an overview of the effects of *C. citratus* in health and disease states. There is a need for further research on the potential interaction of *C. citratus* with other drugs, evaluating the effect it may have on their pharmacokinetics and bioavailability, since the herb is most often consumed with other biologically active substances.

6. References

21. Nur ABS. Effect of different types of solvent on

65. Ojo OO, Kabutu M, Bello U, Babayo U. Inhibition of paracetamol induced oxidative stress in rats by extracts of lemon grass (Cymbopogon citratus) and green tea (Camellia sinensis) in rats. Afr J Biotechnol 2006; 5:1227-32.

71. USDA. United States Department of Agriculture Research: Agriculture Research Services, Beltsville; Gerplasm Resources Information, 2008 (http://www.nal.usda.gov/Fnic/Foodcomp/Search/).