A review on Morphology, Phytochemistry and Pharmacological activities of medicinal herb *Plumbago zeylanica* Linn.

Mukul Chauhan
Department of Chemistry, College of Natural and Computational Sciences, Ambo University, Ethiopia

Abstract
Plumbagin is the most common and broad spectrum phytochemical of *P. zeylanica*. The leaves and root bark contains plumbagin. The root yield new pigments, viz, 3-chloroplumbagin, 3, 3-biplumbagin, binaphthoquinone identify as 3', 6'-bipelumbagin, and four other pigments identify as isoeylanone, zeylanone, ellipiptone, and drosorone. The isolation of plumbagin, drosorone, isoshinanolone and a new napthalenone i.e., 1, 2 (3)-tetrahydro-3, 3'-plumbagin is reported from the phenolic fraction of the light petrol extract of the roots. Two plumbagic acid glucosides; 3'o-beta-glucopyranosyl plumbagic acid and 3'-o-beta-glucopyranosyl plumbagic acid methyl ester along with five naphthaquinones. All parts of the plant are used, but the roots have tremendous pharmacological properties. The pulped roots or aerial parts are reported abortifacient, while powdered bark, root or leaves are used to treat gonorrhoea, syphilis, tuberculosis, rheumatic pain, swellings, wound healing dyspepsia, piles, diarrhoea, skin diseases, leprosy and also reported to possess antibacterial, antifungal, and caantharides.

Keywords: Plumbagin, Anticancer activity, phytochemical, Antioxidant, Antibacterial drug, naphthoquinones, *Plumbago zeylanica*, Nonyl 8-methyl-dodec-7-enoate.

1. Introduction
From thousands of years and a remarkable number of modern drugs have been obtained from natural sources, particularly from the plants. Plant based medicines have played an important role in primary health care needs of human as well as animals. Variety of plants exhibit antimicrobial, larvicidal, anti-inflammatory and antioxidant activities due to the presence of some active compounds like essential oils, flavonoids, terpenoids, tri-terpenoids, glycosides, alkaloids and other natural phenolic compounds play a dominant role in the maintenance of human health since ancient times[1]. Natural products play on important role in drug development programmes in the pharmaceutical industry[2]. There are a few reports on the use of plants in traditional healing by either tribal people or indigenous community[3-5]. Many reports show the effectiveness of traditional herbs against microorganisms; as a result, plants have become one of the bases of modern medicine[6]. As an alternative form of health care and the development of microbial resistance to the available antibiotics has led researchers to investigate the antimicrobial activity of medicinal plants[7-10]. Silver and Bostian[11] have documented the use of natural products as new antibacterial drugs. There is an urgent need to identify novel substances active towards highly resistant pathogens[12-13]. It is thought that herbal remedies have the advantage of combining their active components with many other substances which appear to be inactive but which give the plant as a whole a level of safety and efficiency superior to that of its isolated, pure active components; moreover, in developing countries, synthetic drugs are presently too expensive and also are often adulterated[14]. *P. zeylanica* Linn (Plumbaginaceae) is a perennial herb commonly distributed in forest of the Uttarakhind, India, and cultivated in the gardens throughout India. It grows wild as a garden plant in eastern, northern and southern India and has been reported to be used in variety of folk medicine in Africa and Asia. It has been using in the treatment of refractory prostate cancer[15] and shown anti fertility activity, antihyperlipidemic activity[16], anti estrogenic activity[17] to kill intestinal parasites, treat rheumatism, anemia due to "stagnant blood", external and internal trauma, toxic swelling and malignant furunculous scabies[18]. Antiplasmodial[19], antimicrobial[20], antifungal[21], anti-inflammatory[22], antibacterial[23], hypolipidaemic and antiatherosclerotic activities[24].
Plumbagin (5-hydroxy-2-methylnaphthalene-1,4-dione) is a naturally occurring yellow pigment produced by the members of Plumbaginaceae, accumulated mostly in root [25]. Plumbagin showed antitumor [36], antimalarial and antibiotic [27, 28], antibacterial and antifungal activities [29]. Five coumarins – seselin [30], 5-methoxyseeselin [31], suberosin [32], xanthyletin and xanthoxyletin have been isolated from the roots of Plumbago zeylanica [33].

The aim of this study was to emphasize the phytochemistry and pharmacological activities of Plumbago zeylanica herb.

2. Morphology
There is no consistency in the literature citing the classification of P. zeylanica as herb or shrub. Some authors have described it as a perennial dicot herb [34, 35], while it has also been designated as a shrub by others [34]. P. zeylanica plant attains a height of about 0.5–2 m (1.6–6.6 ft). The leaves are alternate, simple, ovate or ovate-lanceolate, elliptical or oblong, 0.5–12 cm in length with a tapered base 3 cm broad and often with a hairy margin. The stipules are absent and the petiole is narrow (0–5 mm long) with small auricles in young leaves. The inflorescence is of terminal raceme-type about 6–30 cm long and many-flowered. Flowers are white in colour [34, 37] long, inodorous, inbracteate, axillary and terminal elongated spikes, bisexual regular, pentamorous, pedicellate and sweet-scented. Calyx densely covered with stalked, sticky glands. Corolla is white, very slender, and tubular and Stamens 5, free. Ovary superior, 5-locular, one celled, ovule one basal.

The style is filiform with five elongated stigma lobes and the ovary is superior, single-celled. The flowers are also characterized by having a tubular calyx (7–11 mm long and 5-ribbed) with glandular trichomes (hair) secreting a sticky mucilage. The plant flowers round the year and pollination is primarily by insects. The mucilaginous glands aid in trapping insects and fruit dispersal by animals. The fruit of the plant is an oblong (7.5–8 mm long) five-furrowed capsule containing single seed. Each seed is oblong in structure, 5–6 mm long and reddish-brown to dark brown in colour. Roots are straight, smooth, branched or unbranched, with or without secondary roots and about 30 cm or more in length and 6 cm in diameter [34]. They are light-yellow when fresh and become reddish-brown on drying. The roots have a strong and characteristic odour with acid and bitter taste [34].

3. Phytochemistry
Plumbagin is the most common and broad spectrum phytochemical of P. zeylanica. The leaves and root bark contains plumbagin. The root yield new pigment, viz, 3-chloroplumbagin, 3, 3- diplumbagin, binaphthoquinone identify as 3', 6'-diplumbagin, and four other pigments identify as isozeylanone, zeylanone, ellipitnine, and droserone. The isolation of plumbagin, droserone, isoshinanolone and a new napthalenone i.e., 1, 2 (3)-tetrahydro-3, 3'- plumbagin is reported from the phenolic fraction of the light petrol extract of the roots. Two plumbagic acid glucosides; 3'-o-beta-glucopyranosyl plumbagic acid and 3'-o-beta-glucopyranosyl plumbagic acid methyl ester along with five naphthaquinones (plumbagin, chitanone, maritinone, ellipitnine and isoshinanolone), and five coumarins (seselin, methoxyseeselin, suberosine, xanthyletin and xanthoxyletin) were isolated from the roots isolated by Lin and coworkers [33].

Some phytochemical from different parts of P. zeylanica are reported by different workers [36, 39, 40, 41]. Like in stem plumbagin, zeylanone, isozeylanone, sitosterol, stigmasterol, campesterol, and dihydroflavonol plumbagin. In leaves plumbagin and chitanone. Flowers contain plumbagin, zeylanone, and glucose. Fruit contains plumbagin, glucopyranoside and sitosterol. Seeds also contain plumbagin, and the root bark of P. zeylanica contains plumbagin. The root yield new pigment, viz, 3-chloroplumbagin, 3, 3- diplumbagin, binaphthoquinone identify as 3', 6'-diplumbagin, and four other pigments identify as isozeylanone, zeylanone, ellipitnine, and droserone. The isolation of plumbagin, droserone, isoshinanolone and a new napthalenone i.e., 1, 2 (3)-tetrahydro-3, 3'-plumbagin is reported from the phenolic fraction of the light petrol extract of the roots. Two plumbagic acid glucosides; 3'-o-beta-glucopyranosyl plumbagic acid and 3'-o-beta-glucopyranosyl plumbagic acid methyl ester along with five naphthaquinones (plumbagin, chitanone, maritinone, ellipitnine and isoshinanolone), and five coumarins (seselin, methoxyseeselin, suberosine, xanthyletin and xanthoxyletin) were isolated from the roots. Plumbagin (2-methyl-5-hydroxy-1,4-naphthoquinone) is a yellow crystalline bioactive phytoconstituent present in the roots isolated from P. zeylanica by soxhlet apparatus followed by silica gel column chromatography [33, 42].

3.1 Phytochemicals isolated from P. zeylanica
Plumbagin is the major phytochemical isolated from P. zeylanica and it have tremendous medicinal values. Several other naphthaquinones, binaphthoquinones [43-47], coumarins [35, 40], di-phenyl sulfone [49], carboxylic acids and esters [50], meroterpenes [51], triterpenoids [52, 53], amino acids [54], anthraquinones [55], steroids [56], steroid glucosides [58, 57] and other compounds [58-62]. Recently four other compounds one naphthaquinone and three difuranonaphthaquinones have been isolated and characterized [63, 64].

Table 1: List of phytochemicals isolated from different parts of p. zeylanica

<table>
<thead>
<tr>
<th>Compound names</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty acid esters:</td>
<td></td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>[67]</td>
</tr>
</tbody>
</table>
Palmitic acid [67]

Trilinolein [83]

Nonyl nonanoate [56]

Nonyl 8-methyl-dodec-7-enoate [56]

Hentriacontane [65]

1,2-Benzenedicarboxylic acid [50]

Diisooctyl phthalate [50]

Gugultetrol-18-ferrulate [65]

Vanillic acid [68]

Naphthoquinones:
Plumbagin [56,69,70]

3-chloroplumbagin [71]

3,8-dihydroxy-6-methoxy-2-isopropyl-1,4-napthoquinone [44]

5,7-dihydroxy-8-methoxy-2-methyl-1,4-napthoquinone [44]

2-methynaphthazarin [43]

2-methyl-5-(3'-methyl-but-2'-enyloxy)-[1,4]napthoquinone [63]

Droserone (3,5-Dihydroxy-2-methyl-1,4-napthoquinone) [47,55]
<table>
<thead>
<tr>
<th>Compound</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylene-3,3'-diplumbagin</td>
<td>[43]</td>
</tr>
<tr>
<td>Dihydrogesterone</td>
<td>[72]</td>
</tr>
<tr>
<td>Isozeylanone</td>
<td>[73]</td>
</tr>
<tr>
<td>Zeylanone</td>
<td>[73]</td>
</tr>
<tr>
<td>Chitranone</td>
<td>[45]</td>
</tr>
<tr>
<td>Maritinone</td>
<td>[43]</td>
</tr>
<tr>
<td>Elliptinone</td>
<td>[47]</td>
</tr>
</tbody>
</table>
3,3-diplumbagin [74]

1,2(3)-tetrahydro-3,3'-biplumbagin [75]

9-hydroxy-2-isopropenyl-1,8-dioxa-dicyclopenta[b,g]naphthalene-4,10-dione [64]

2-(1-hydroxy-1-methyl-ethyl)-9-methoxy-1,8- dioxa-dicyclopenta [b,g]naphthalene-4,10-dione

Meroterpenes:

12- hydroxyisobakuchiol [51]

Bakuchiol [51]

Flavonoid and flavonoid glucosides:

2-(2, 4-Dihydroxy-phenyl)-3, 6,8-trihydroxy-chromen-4-one [76]
Saponaretin [51]

Isoorientin [51]

Isoaffinetin [51]

Coumarins:

Xanthyletin [51]

Xanthoxyletin [51]

Psoralen [51]

Seselin [33]

5'-methoxyseselin [33]

Suberosin [33]
<table>
<thead>
<tr>
<th>Compound</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,2'-dimethyl-5'-hydroxy-6'-acetyl chromene</td>
<td>[56]</td>
</tr>
<tr>
<td>2,5'-dimethyl-7'-hydroxycromone</td>
<td>[77]</td>
</tr>
<tr>
<td>Amino acids and alkaloids:</td>
<td></td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>[54]</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>[54]</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>[54]</td>
</tr>
<tr>
<td>Threonine</td>
<td>[54]</td>
</tr>
<tr>
<td>Alanine</td>
<td>[54]</td>
</tr>
<tr>
<td>Histidine</td>
<td>[54]</td>
</tr>
<tr>
<td>Glycine</td>
<td>[54]</td>
</tr>
</tbody>
</table>
Methionine [54]

Hydroxyproline [54]

Indole-3-carboxaldehyde [77]

Harman [78]

Neoechinulin A [78]

N - (N' - benzoyl - S - phenylalaninyl) - S - phenylalaninol [78]

Steroids:
β-sitosterol [49,172]

Stigmasterol acetate [56]

Sitosterone [56]

Stigmasterol [56]

Ergostadiene-3β,5α,6β-triol [78]

α-amyrin [53]

β-amyrin [53]
ψ -taraxasterol [79]

Terpenoids:

1-keto-3 β,19 α-ainyaroxyurs-12-ene-24,28-dioic acid dimethyl ester [52]

3-O-β-D-arabinopyranosy derivative [52]

Friedelinol [56]

Lupeol [53]
Lupanone [56]

Lupeol acetate [83]

Glycosides:

β-sitosterol-3 β-glucopyranoside-6'-O-palmitate [60]

Hydroplumbagin glucoside [80]

β-sitosteryl glucoside [83]

3'-O- β-glucopyranosyl plumbagin acid [33]
1-hydroxy-3-methyl-6-methoxyanthraquinone-8-β-D-xylopyranoside [55]

3'-O-β-glucopyranosyl plumbagic acid methylester [33]

Plumbagic acid [68,91]

Plumbagic acid Bu. Ester [51]

Isoshinznolone [78]

Isoshinanolone [46,51]

Benzyl 2,5-dihydroxy-6-methoxybenzoate [56]

1-acetoxy-4-hydroxy-2-methyl-5-methoxynaphthalene [74]
3.2 Macro, micro and some essential elements detected in *P. zeylanica*:
Some elemental analysis has been done for leaves, stems and roots of *P. zeylanica* exists with abundant amounts of elements like four macro-elements (Na, K, Ca and Mg), five essential microelements (Zn, Fe, Mn, Cr and Co), and eight other elements (Mo, Sb, Bi, Cd, Sr, Pb, Cd and As) respectively were detected by inductively Coupled plasma atomic emission spectrometry (ICP-AES) [85].

4. Pharmacological activities of *P. zeylanica*.
The whole plant and its root have been used as a folk medicine in Taiwan for the treatment of rheumatic pain, menostasis, carbuncle and injury by bumping [86]. All parts of the plant are used, but the roots have tremendous pharmacological properties. The pulped roots or aerial parts are reported abortifacient, while powdered bark, root or leaves are used to treat gonorrhea, syphilis, tuberculosis, rheumatic pain, swellings, wound healing [87] dyspepsia, piles, diarrhoea, skin diseases, leprosy and also reported to possess antibacterial, antifungal [88], cantharides [83].

The pharmacological importance of this perennial shrub lies in its ability to produce a naphthoquinone, called plumbagin [89]. The main constituent in the root and leaves is Plumbagin (2-methyl-5-hydroxy-1,4-naphthoquinone). Plumbagin is a yellow crystalline bioactive phytoconstituent [42] about 0.03% of dry weight of the roots. Plumbagin showing a broad range of pharmaceutical activities. Table 2 & 4

Pharmacological effects of plumbagin have been investigated on shortness of breath [90]. In Ayurvedic and Unani system of medicines, the plant has been described for significant anticancer [83, 91], antitumor [92], anti-inflammatory [22], antioxidant [93, 94], anti-mycobacterial [95] and antimicrobial activities [25, 39, 96, 97], rheumatic pain, sprains, scabies, skin diseases, and wounds. The roots of the plant and its constituents are credited with potential therapeutic properties including anti-atherogenic, cardiotonic, hepatoprotective, neuroprotective, and central nervous system stimulating properties [98], activity against canine distemper virus [99].

4.1 Pharmacological activities of different solvent extracts of *P. zeylanica*.
Acetone extract of *P. zeylanica* also affects on chromosomal aberrations induced by ethinylestradiol in cultured human lymphocytes [100]. hypolipidemic effect [101], anti-tumor [102-104], antimicrobial, anticancer, wound healing [105], anti-inflammatory and altered T-cell
proliferative activities [106, 107], and anti-fertility actions [108, 112]. Plumbagin has also shown antibacterial activity against both gram-positive and gram-negative bacteria [28, 113-117], antihyperglycemic [118], insecticidal [119, 120], anti-allergic [121, 122] and antigenorhooal activity [123]. Besides, it has been also found active against certain yeasts fungi [124, 125], protozoa [19] and in tumor inhibitory activity [129]. It has also demonstrated significant hyperglycemia, hypolipidemic, and antiatherosclerotic effects in rats [24, 65, 126-129]. The root of *P. zeylanica* has been reported to be a powerful poison when given orally or applied to ostiumuteri, causes abortion [130] cytotoxic and anti-insecticidal property [48, 131, 132]. Different kinds of solvent extracts of *P. zeylanica* have shown their broad spectrum pharmacological activities. Table-3

Table 2: Pharmacological activities of plumbagin (2-methyl-5-hydroxy-1,4-naphtho-quinone)

<table>
<thead>
<tr>
<th>Antibacterial activity</th>
<th>Antitumour activity</th>
<th>Antifertility activity</th>
<th>Synergistic activity</th>
<th>Anticoagulant activity</th>
<th>Hypolipidaemic activity</th>
<th>GST activity</th>
<th>Antibacterial activity</th>
<th>Blood coagulation activity</th>
<th>AntiHelicobacter pylori activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>[28]</td>
<td>[103,104]</td>
<td>[104,111]</td>
<td>[95]</td>
<td>[127]</td>
<td>[24]</td>
<td>[93]</td>
<td>[97]</td>
<td>[129]</td>
<td>[113]</td>
</tr>
</tbody>
</table>

Table 3: Pharmacological activities of some solvent extracts of *Plumbago Zeylanica* herb.

<table>
<thead>
<tr>
<th>Type of plant extract</th>
<th>Dose ranges</th>
<th>Negative Control</th>
<th>Animal model / Microorganisms</th>
<th>Duration of the study</th>
<th>Results</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanolic extract of leaves</td>
<td>25, 50 & 100 mg</td>
<td>-</td>
<td>Pheretima posthuma</td>
<td>2 days</td>
<td>Anthelmintic activity</td>
<td>133</td>
</tr>
<tr>
<td>Methanolic extract of root</td>
<td>50,100, &150 µg/ml</td>
<td>-</td>
<td>Helicobacter pylori</td>
<td>1 day</td>
<td>Anti-bacterial activity</td>
<td>134</td>
</tr>
<tr>
<td>Ethanol, acetone or ethyl acetate of Rhizome</td>
<td>30 µl</td>
<td>-</td>
<td>Helicobacter pylori</td>
<td>3 day</td>
<td>Anti-bacterial activity</td>
<td>113</td>
</tr>
<tr>
<td>Ethanol extract of root</td>
<td>0.64-10.24 mg/ml</td>
<td>Ethanol</td>
<td>E. coli and Shigella</td>
<td>2 days</td>
<td>Anti-bacterial activity</td>
<td>135</td>
</tr>
<tr>
<td>Plumbago zeylanica root</td>
<td>100 mg/kg</td>
<td>-</td>
<td>Human study</td>
<td>14 days</td>
<td>Anti-hyper Cholesterolmic activity</td>
<td>34</td>
</tr>
<tr>
<td>Ethanol extract of stems</td>
<td>500, 1000 mg/kg</td>
<td>48/80</td>
<td>Wistar Mice</td>
<td>2 days</td>
<td>Antiallergic activity</td>
<td>121</td>
</tr>
<tr>
<td>Methanol, chloroform and alcoholic extracts of leaves</td>
<td>50, 100 mg/ml</td>
<td>-</td>
<td>Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa</td>
<td>1 day</td>
<td>Antibacterial activity</td>
<td>41</td>
</tr>
<tr>
<td>Methanol, Chloroform and</td>
<td>1 mg/ml</td>
<td>-</td>
<td>E. coli, Salmonella typhi, Klebsiella</td>
<td>2 days</td>
<td>Antibacterial activity</td>
<td>23</td>
</tr>
<tr>
<td>Extract/Ingested Material</td>
<td>Concentration/Culture</td>
<td>Activity</td>
<td>Antimicrobial Activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquous extract of root</td>
<td></td>
<td>S. pneumoniae, Serratia marcescens, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrol. ether, ethanol and aqueous extract of root</td>
<td>1200 µg/ml</td>
<td>Staphylococcus aureus and Micrococcus luteus</td>
<td>2 days, Antibacterial activity 39 172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanolic extract of leaves</td>
<td>50, 100 mg/ml</td>
<td>B. subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhi</td>
<td>2 days, Antibacterial activity 133 172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol extract of root</td>
<td>100, 200 mg/kg</td>
<td>Cancer cell lines Male Swiss albino mice</td>
<td>14 days, Anticancer activity 136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanolic extract of root</td>
<td>250 mg/kg bw</td>
<td>3-methyl-4-di methyl amino azo-benzine</td>
<td>Wistar albino rats 7 days, Anticarcinogenic activity 137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanolic extract of leaves</td>
<td>250, 500 mg/kg</td>
<td>Pentylenetetrazole</td>
<td>Wistar albino rats 1 hour, Anti-convulsion activity 138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanolic extract of root</td>
<td>4–10 mg/ml</td>
<td>Occluded dermal irritation</td>
<td>Albino rabbits, Swiss mice and Albino rats 1 day, Antidermatotoxicity 90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol extract of root</td>
<td>250 mg/kg bw</td>
<td>Alloxan</td>
<td>Wistar albino rats 21 day, Antidiabetic activity 118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous extract of root</td>
<td>100, 200 mg/kg</td>
<td>STZ</td>
<td>Wistar albino rats 42 day, Antidiabetic activity 139</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous extract of leaves</td>
<td>100, 200 mg/kg</td>
<td>STZ</td>
<td>Wistar albino rats 28 day, Antidiabetic activity 140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous extract of leaves</td>
<td>100, 200 mg/kg</td>
<td>STZ</td>
<td>Wistar albino rats 28 day, Antidiabetic activity 141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol, chloroform extract of whole plant</td>
<td>50 µl</td>
<td>Rhizoctonia solani Kuhn, Bipolaris spp., Ustilago maydis and Alternaria alternate</td>
<td>2 day, Antifungal activity 142 172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol extract of root</td>
<td>250, 500 mg/kg</td>
<td>Cyclophosphamide</td>
<td>Swiss albino mice 7 day, Antigenotoxic activity 94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum ether extract of root</td>
<td>300 mg/kg</td>
<td>Paracetamol</td>
<td>Wistar albino rats 7 days, Antihepatotoxic activity 143</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanolic extract of aerial parts</td>
<td>35, 70 mg/kg</td>
<td>CCl4</td>
<td>Wistar albino rats 14 days, Antihepatotoxic activity 36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous extract of root</td>
<td>20, 40, and 80 mg/kg</td>
<td>Diet-induced hyperlipidemic rats</td>
<td>Wistar albino rats 7 days, Antihyperlipidemic effect 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol, extract of root</td>
<td>300, 500 mg/kg</td>
<td>Carrageenin</td>
<td>Wistar albino rats 7 days, Anti-inflammatory activity 66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum ether, chloroform and acetone extract of root</td>
<td>0.1 ml</td>
<td>Salmonella typhi, Staphylococcus aureus, Escherichia coli,</td>
<td>2 days, Antimicrobial activity 144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Concentration</td>
<td>Antimutagenic Effect</td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanolic extract of root</td>
<td>7.5 mg/ml</td>
<td>Male Sprague–Dawley rats</td>
<td>3 hours</td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root powder</td>
<td>7.5 mg/kg bw</td>
<td>Male Wistar Albino rats</td>
<td>21 hours</td>
<td>146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanolic extract of root</td>
<td>1 mg/L</td>
<td>In-vitro study</td>
<td>1 hour</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanolic extract of root</td>
<td>100 mg/kg</td>
<td>In-vitro</td>
<td>2 hours</td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanolic extract of leaves</td>
<td>50,100 mg/ml</td>
<td>In-vitro</td>
<td>2 hours</td>
<td>133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanolic extract of root</td>
<td>0.8–200 μg/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous extract of plant</td>
<td>0.5 μg/ml</td>
<td>Hepatitis B-virus</td>
<td>2 days</td>
<td>149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanolic extract of root</td>
<td>250 mg/kg</td>
<td>Cholesterol</td>
<td>Rabbit</td>
<td>28 days</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Ethanolic extract of root</td>
<td>250 mg/kg</td>
<td>Diet-induced hyperlipidemic rats</td>
<td>Rabbit</td>
<td>28 days</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Ethanolic extract of root</td>
<td>250 mg/kg bw</td>
<td>BALB/C mice</td>
<td>6 weeks</td>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous root extract</td>
<td>4 mg/ml</td>
<td>Turkey egg albumin</td>
<td>Balb/c mice</td>
<td>56 days</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>Chloroform extract of root</td>
<td>100, 200 & 400 mg/kg</td>
<td>Scopolamine</td>
<td>Swiss albino mice</td>
<td>10 days</td>
<td>154</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Plumbagin with putative anticancer and anti-proliferative tested in either *in vivo* or *in vitro* models

<table>
<thead>
<tr>
<th>Cancer Cells</th>
<th>Results</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Prostate cancer cell (PC-3, LNCaP, and C4-2)</td>
<td>Decrease in cell viability, apoptosis induction, Generation of ROS, depletion of intra cellular GSH</td>
<td>155</td>
</tr>
<tr>
<td>Tissue/Cell Type</td>
<td>Effect</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Human Melanoma A375.S2</td>
<td>Reduced amounts of cyclin B1, cyclin A, Cdc2, and Cdc25C and enhanced the levels of inactivated phosphorylated Cdc2 and Cdc25C, increased the activation of apoptosis signal-regulating kinase 1, JNK and extracellular signal-regulated kinase 1/2 (ERK1/2) and finally blocking ERK and JNK</td>
<td></td>
</tr>
<tr>
<td>Human non small cell lung cancer cells, A549</td>
<td>Activation of JNK and SP600125 (Aanthera [1,9-cd]pyrazol-6(2H)-one-1,9- pyrazoloanthrone), a specific inhibitor of JNK, decreased apoptosis by inhibiting the phosphorylation of p53 and subsequent increased in the interaction of p53 and MDM2. SP6000125 also inhibited the phosphorylation of Bcl-2 (Ser70)</td>
<td></td>
</tr>
<tr>
<td>Human Peripheral blood lymphocytes</td>
<td>Effective cell growth inhibition, induces apoptosis, generates single-strand of DNA breaks and cytotoxic action</td>
<td></td>
</tr>
<tr>
<td>Human Prostate Cancer</td>
<td>Inhibition of both cultured Prostate Cancer cells and DU145 xenografts (a) the expression of protein kinase Cepsilon (PKCepsilon), phosphatidylinositol 3- kinase, phosphorylated AKT, phosphorylated Janus-activated kinase-2, and phosphorylated signal transducer and activator of transcription 3 (Stat3); (b) the DNA-binding activity of transcription factors activator protein-1, nuclear factor kappaB, and Stat3; and (c) Bcl-xL, cdc25A, and cyclooxygenase-2 expression</td>
<td></td>
</tr>
<tr>
<td>Human acute promyelocytic leukemia cells</td>
<td>Inhibition of proliferation of NB4 cells, chromosomes condensation and apoptotic body formation, cell proliferation and induce apoptosis of APL cell line NB4 cells</td>
<td></td>
</tr>
<tr>
<td>MCF7 and Bowes cancer cell lines</td>
<td>Inhibition of the proliferation of MCF7 and Bowes cells</td>
<td></td>
</tr>
<tr>
<td>Human hepatoma</td>
<td>Inhibition of the certain glycolytic enzymes and gluconeogenesis.</td>
<td></td>
</tr>
<tr>
<td>Human peripheral blood mononuclear cells</td>
<td>Involve the regulation of cell cycle progression, interleukin-2 and interferon production</td>
<td></td>
</tr>
<tr>
<td>MDA-MB-231 cells</td>
<td>Inhibitory effect on the protein levels of p- PI3K, p-Akt, p-JNK, p-ERK1/2, MMP-2, MMP-9, VEGF and HIF-1α</td>
<td></td>
</tr>
<tr>
<td>Human breast cancer cells</td>
<td>Inactivation of NF-kappaB and Bcl-2</td>
<td></td>
</tr>
<tr>
<td>Human breast cancer cells</td>
<td>Inhibit Akt activity and enhanced the activation of Chk2, resulting in increased inactive phosphorylation of Cdc25C and Cdc2.</td>
<td></td>
</tr>
<tr>
<td>Lung A549 cells</td>
<td>Increased the expression of p53 and phosphorylated p53 (Ser15 and Ser392) and regulates the levels of cell cycle related molecules in A549 and activates JNK</td>
<td></td>
</tr>
<tr>
<td>Human ovarian cancer cells</td>
<td>Bound to the active site of ER-α and inhibit classical ER-α signaling pathways</td>
<td></td>
</tr>
<tr>
<td>Cervical cancer cells</td>
<td>Lower dose of radiation in combination with plumbagin could induce apoptosis more effectively and activation of caspase 3 in C33A cells. Induction of apoptosis by irradiation and involves caspase-dependent pathways.</td>
<td></td>
</tr>
<tr>
<td>Human promyelocytic leukemia cells</td>
<td>Induced apoptotic cell death and inhibits tumor growth without obvious toxicity and triggering the mitochondria-dependent apoptosis of tumor cells by increasing ROS</td>
<td></td>
</tr>
<tr>
<td>Ovarian cancer cells</td>
<td>Induced loss of mitochondrial membrane potential, nuclear condensation, DNA fragmentation, and morphological changes</td>
<td></td>
</tr>
<tr>
<td>Human cervical cancer</td>
<td>Induced cell death is through the generation of ROS and subsequent induction of apoptosis caused loss of mitochondrial membrane potential and morphological changes characteristic of apoptosis, such as the translocation of phosphatidyl serine, nuclear condensation, and DNA fragmentation.</td>
<td></td>
</tr>
<tr>
<td>sarcoma-180</td>
<td>Ehrlich ascites model was evaluated and identified as less toxic, justified with the help of LD50 survival studies and stud</td>
<td></td>
</tr>
</tbody>
</table>
5. Conclusion
The study showed that the ethanol and petroleum ether and other solvent extract from the leaves, roots and stems of Plumbago zeylanica have anti microbial, antiviral, antioxidant, antifungal, anti-allergic and other wonderful medicinal properties. It is the most important medicinal plant extensively used in herbal formulations for centuries. The evidence presented in this review has shown that Plumbago zeylanica L. has tremendous potential to be integrated into conventional medical practice for the treatment and management of various metabolic syndromes, hepatotoxic, diabetes, inflammation, cancer and other disease complications. Some phenolic compounds have also been known as antioxidant agents, which act as free radical terminators and have shown medicinal activity as well as exhibiting physiological functions. It was reported that compounds such as flavonoids, which contain hydroxyls, are responsible for the radical scavenging effects of most plants. Development and research on Plumbago zeylanica through modern pharmaceutical technologies and analytical protocols is essential to assure its quality, safety and efficacy. It is anticipated that this review will provide some valuable information for ongoing explorations of this fascinating species its phytochemicals and pharmacological dynamics.

6. References
23. Jeyachandran R, Mahesh A, Cindrella L, Sudhakar S,

89. Ayo RG, Ampujiton JO, Yimin Z. Cytotoxicity and antimicrobial studies of 1, 6, 8-trihydroxy-3-methyl-anthaquinone (emodin) isolated from the leaves of cassia nigerics. Vahl, 2007; 6:1276-1279.

