Chemical composition and biological activity of the essential oil of rhizome of *Zingiber zerumbet* (L.) Smith

Chingakham B Singh, Saikhom B Chanu, Lenin Kh, Ningombam Swapana, Charles Cantrell, Samir A Ross

Abstract
The aim was designed to study the biological activity and chemical composition of essential oil of *Zingiber zerumbet* (L.) Smith. The essential oil extracted from the rhizome of the plant was analysed by gas chromatography-mass spectroscopy and its major components amounting to 98.4 % were found to be zerumbone (75.2%), α-caryophyllene (7.1%), camphene (5.1%), eucalyptol (2.4%), and camphor (3.0%). Antioxidant activity and total phenol content assay were studied using the DPPH and Folin-Ciocalteu colorimetric methods. Antimalarial, antileishmanial, antimicrobial assays were analysed for the essential oil and its major component, zerumbone. The essential oil and zerumbone exhibited antimalarial and antileishmanial activities, whereas only *Cryptococcus neoformans* showed antimicrobial activity of the essential oil.

Keywords: *Zingiber zerumbet*, Essential oil, Zerumbone, Antimalarial, Antileishmanial, Antimicrobial, Antioxidant

1. Introduction
Zingiber zerumbet (L.) Smith is a monocotyledonous perennial medicinal plant belonging to the Zingiberaceae family. It is known as shampoo ginger or pinecone ginger as its rhizomes produce foaming properties like that of shampoo. It has many different local names depending on their area of vegetation and location. It grows in subtropical climates such as India, South-East Asian countries, South Pacific Islands and Okinawan Islands, and has been used for local folk medicine and gardening. It is called Shinkha in Manipur, North-East India. Traditionally, it is used for the treatment of stomach ache, toothache, fever, and indigestion [1]. It has been also used as a spice and for ulcerative colitis [2]. The essential oils of *Z. zerumbet* have been studied by different authors since 1944. The major component of the rhizome’s oil varies from 12.7-73.1% [3, 4, 5, 6]. Zerumbone and α-caryophyllene has been reported as major constituents in rhizome and leaf oils [7]. Many authors have reported different bioactivities from the essential oils and extracts of *Z. zerumbet* such as anti-inflammatory [8, 9], antitumor [10, 2], free radical scavenging [11], colon and skin cancer [12], antialzheimer diseases and dementia activities [13, 14].

In the present work we aimed to evaluate the antileishmanial, antimalarial, antimicrobial and chemical composition of the essential oil. In this work we are reporting for the first time, the antileishmanial and antimalarial activities of essential oil from *Z. zerumbet* and the major compound zerumbone isolated from its rhizome essential oil.

2. Materials and Methods

2.1. Plant material
The plant materials were collected from Manipur, North-East India, 920 m from sea level, longitude 93°58’ and latitude 24°44’ in March, 2012. The plant was identified by the taxonomist of the institute and accession number as IBSD/Z-42-23.

2.2. Solvents and chemicals
Gallic acid, ascorbic acid, 1,1-diphenyl-2-picrylhydrazyl (DPPH), ciprofloxacin, amphotericin-B chloroquine, pentamidine were obtained from Sigma Aldrich. Analytical grade solvents were used during the experiments obtained from the Merck chemicals, Mumbai, India and Sigma-Aldrich.
2.3. Extraction of essential oil
Fresh rhizomes were collected and washed thoroughly with tap water. These were cut into 5-6 mm slices and put into the Clevenger type oil extractor. The oil was dried over anhydrous sodium sulphate and stored at 4±2 °C.

2.4. Gas chromatography-mass spectrometry (GC-MS)
The oil was analysed by GC-MS on a Varian CP-3800 GC coupled to a Varian Saturn 2000 MS/MS. The GC was equipped with a DB-5 fused silica capillary column (30 m x 0.25 mm, with film thickness of 0.25 µm) operated using the following conditions: injector temperature, 240 °C, column temperature, 60-240 °C at 3 °C per minute, then held at 240 °C for 5 min; carrier gas, He; injection volume, 1 µl (splitless). The MS mass ranged from 40 to 650 m/z, filament delay of 3 min, target TIC of 20,000, a prescan ionization time of 100 µ sec, an ion trap temperature of 150 °C, manifold temperature of 60 °C, and a transfer line temperature of 170 °C.

2.5. Identification of components
The constituents of the oil were identified using retention times, Kovats indices and mass spectra. Confirmed integrated peaks were then used for the percentage of each chemical constituents present in the essential oil. Kovats indices were calculated using the equation:

\[KI (x) = 100 \frac{(log \ RT (x) - log \ P_z)}{(log \ RT (P_{z+1}) - log \ RT (P_z))} \]

Where: \(RT (x) \leq RT (x) \leq RT (P_{z+1}) \), and \(P_z, \ldots, P_{25} \) are n paraffins.

2.6. Determination of total phenolic content
The total phenolic content of the essential oil was determined by the Folin-Ciocalteu colorimetric method [15]. An aliquot (0.125 ml) of a diluted acetone sample was added to 0.5 ml of deionized water and 0.125 ml of the Folin-Ciocalteu reagent. The mixture was shaken and allowed to stand for 6 min, before adding 1.25 ml of 7% sodium carbonate solution. The solution was adjusted with deionized water to a final volume of 3 ml and mixed thoroughly. After incubation for 90 min at 23 °C, the absorbance versus prepared blank was read at 725 nm with a UV-Visible spectrophotometer (Multiskan spectrum, Thermo Scientific). Total phenolic content was expressed as milligrams of gallic acid equivalents per 100 gram of essential oil through the calibration curve with gallic acid.

2.7. Antioxidant activity assay
The DPPH free radical scavenging was assessed of the essential oil [15]. 0.1 mM DPPH radical solution in ethanol was prepared. After 30 min, the absorbance was measured at 517 nm on UV-Visible spectrometer (Multiskan spectrum, Thermo Scientific). Decreasing the absorbance of the DPPH solution indicates an increase in DPPH radical scavenging activity. The radical scavenging activity, expressed as percentage of inhibition was calculated using the equation:

\[\text{Inhibition Concentration} \% = \frac{[(A-B)/A] \times 100}{B} \]

Where \(A \) is the absorbance of control (DPPH solution without the sample), \(B \) is the absorbance of DPPH solution in the presence of the sample. \(IC_{50} \) value is the concentration of the sample required to scavenge the 50% DPPH free radical.

2.8 Biological activity
2.8.1. Antimicrobial assay
The oil and the isolated compound, zerumbone were tested for antibacterial activity against Staphylococcus aureus ATCC 29213, methicillin resistant S. aureus ATCC 33591(MRS), Escherichia coli ATCC 35218, Pseudomonas aeruginosa ATCC27853, Mycobacterium intracellulare ATCC 23068 and antifungal activity against Candida albicans ATCC 90028, C. glabrata ATCC 90030, C. krusei ATCC 6258, Cryptooccus neoformans ATCC 90113, Aspergillus fumigatus ATCC 204305. Ciprofloxacin and Amphotericin-B were used as positive control for bacteria and fungi respectively [17].

2.8.2. Antimalarial activity
In vitro antimalarial activity was determined against chloroquine sensitive (D6, Sierra Leone) and resistant (W2, Indo China) strains of P. falciparum by measuring plasmodial LDH activity. Chloroquine was used as positive control [18].

2.8.3. Antileishmanial activity
The antileishmanial activity was tested against Leishmania donovani promastigotes; pentamidine and Amphotericin-B were used as positive controls [19].

2.8.4 Statistical analysis
All IC50 values were calculated using the XL Fit curve fitting software.

3. Results and Discussion
3.1. Extraction yield and GC-MS analyses
The yield of essential oil was 0.12%. GC-MS analyses of the essential oil led to the identification of ten major compounds accounting for the 98.4% of the oil (Table 1). Zerumbone (75.2%), α-caryophyllene (7.1%), camphene (5.1%), eucalyptol (2.4%), and camphor (3.0%) were the major components of the oil. Zerumbone was isolated in pure form and its structure was confirmed by 1H-NMR, 13C-NMR, DEPT, HR-ESIMS and comparison with literature data.

3.2. Antioxidant activity and total phenolic content
The DPPH free radical scavenging activity together with Folin-Ciocalteu colorimetric assay was performed on the essential oil [15]. The results were given in table 2. The antioxidant activity in the DPPH radical scavenging test is due to the hydrogen donating ability of the test material. The capability of substances to donate hydrogen to convert DPPH into the non-radical form of DPPH can be followed spectrophotometrically. The oil exhibited DPPH scavenging activity (IC50 1.60 µg/ml) which is comparable with the standard ascorbic acid (IC50 1.59µg/ml). The high scavenging activity was attributed to the high content of zerumbone (IC50 2.55 µg/ml). Total phenolic content of the oil was 5.05 mg/100 g and it doesn’t play much role in the high scavenging activity of the oils [16]. Although not much data on antioxidant activity of Z. zerumbet is available, solvent extracts (ethanol, methanol and isopropanol) of Z. zerumbet spent have shown fair DPPH scavenging activity [20] which is similar with what we are reporting. However, other authors reported low DPPH
scavenging activity which may be due to difference in extraction methods, cultivars, maturity and other environmental factors [21].

Table 1: Chemical composition of Zingiber zerumbet essential oil

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Retention time</th>
<th>Kovat Index</th>
<th>% Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclone</td>
<td>6.050</td>
<td>927.04</td>
<td>0.11</td>
</tr>
<tr>
<td>Alpha pinene</td>
<td>6.338</td>
<td>938.31</td>
<td>0.59</td>
</tr>
<tr>
<td>Camphene</td>
<td>6.744</td>
<td>953.35</td>
<td>5.1</td>
</tr>
<tr>
<td>Eucalyptol</td>
<td>9.250</td>
<td>1037.09</td>
<td>2.4</td>
</tr>
<tr>
<td>Camphor</td>
<td>13.506</td>
<td>1150.84</td>
<td>3.0</td>
</tr>
<tr>
<td>Humulene</td>
<td>26.455</td>
<td>1458.66</td>
<td>1.2</td>
</tr>
<tr>
<td>Caryophyllene Oxide</td>
<td>31.514</td>
<td>1582.35</td>
<td>1.91</td>
</tr>
<tr>
<td>2,6,6-trimethylundecan-1,3-dien-9-yn-5-one</td>
<td>32.122</td>
<td>1595.85</td>
<td>1.96</td>
</tr>
<tr>
<td>α-caryophyllene</td>
<td>32.526</td>
<td>1606.61</td>
<td>7.1</td>
</tr>
<tr>
<td>Zerumbone</td>
<td>37.209</td>
<td>1740.71</td>
<td>75.2</td>
</tr>
</tbody>
</table>

Table 2: Antioxidant and Total phenol content assay of Zingiber zerumbet essential oil and zerumbone

<table>
<thead>
<tr>
<th>Samples</th>
<th>IC50 (µg/ml)</th>
<th>TPC (mg/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizome oil</td>
<td>1.60</td>
<td>5.05</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>1.59</td>
<td>ND</td>
</tr>
<tr>
<td>Zerumbone isolated</td>
<td>2.55</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND-not determined

3.3. Antimicrobial activity
Antimicrobial study was done for both the isolated compounds and the essential oil against five fungi and five bacteria. The oil was found to have good activity against Cryptococcus neoformans ATCC 90113 with IC50 value of 8µg/ml. However, no antimicrobial activity was shown against zerumbone (Table 3) [17]. The essential oil of Z. zerumbet exhibited a negative antifungal effect using broth microdilution and disc gel diffusion methods [22]. The antifungal activity was assessed against five dermatophytes (Trichophyton mentagrophytes, T. rubrum, Microsporum canis, M. nanum and Epidermophyton floccosum), three filamentous fungi (Aspergillus niger, A. fumigatus and Mucor spp.) and five strains of yeast (Saccharomyces cerevisiae, C. neoformans, Candida albicans, C. tropicalis and Torulopsis glabrata). This report is similar with what we are reporting, however we found the essential oil Z. zerumbet with IC50 value of 8µg/ml against C. neoformans.

3.4. Antimalarial activity
Antimalarial activity was studied both for the oil and the compound zerumbone against chloroquine sensitive Plasmodium falciparum (D6, Sierra Leone) and resistant (W2, Indo China). The oil showed moderate antimalarial activity (IC50 17.5 µg/ml and 20.0 µg/ml against P. falciparum D6 and P. falciparum W2). Zerumbone showed good activity with IC50 values of 3.9 µg/ml and 4.4 µg/ml against P. falciparum D6 and P. falciparum W2 (Table 3) [18].

3.5. Antileishmanial activity
Antileishmanial evaluation was done on the oil and the compound zerumbone against Leishmania donovani. The oil showed moderate activity with IC50 and IC90 values of 4.6 µg/ml and 18.0 µg/ml. Zerumbone showed good activity with IC50 and IC90 <1.6 µg/ml and 4.7 µg/ml [19].

Table 3: Biological activity of essential oil of Zingiber zerumbet and zerumbone

<table>
<thead>
<tr>
<th>Biological activity</th>
<th>Test parasite</th>
<th>Rhizome essential oil (µg/ml)</th>
<th>Zerumbone (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antileishmanial activity</td>
<td>L. donovani IC50 IC90</td>
<td>4.62</td>
<td><1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.00</td>
<td>4.69</td>
</tr>
<tr>
<td>Antimalarial activity</td>
<td>P. falciparum D6 IC50</td>
<td>17.47</td>
<td>3.94</td>
</tr>
<tr>
<td></td>
<td>W2 IC50</td>
<td>20.03</td>
<td>4.44</td>
</tr>
<tr>
<td>Antimicrobial</td>
<td>C. neoformans</td>
<td>8.00</td>
<td>No activity</td>
</tr>
</tbody>
</table>

4. Conclusion
In conclusion, the biological activity of the essential oil of Z. zerumbet is attributed to zerumbone. To the best of our knowledge, this is the first study of antimalarial and antileishmanial properties of zerumbone and its rhizome essential oil. A further continuation of this research work for its antimalarial and antileishmanial properties is on its way which may lead to further information about the properties of zerumbone.

5. Acknowledgments
CBS is thankful to DBT, Govt. of India for DBT Overseas...
fellowship while WRD to DBT, Govt. of India for RA, National Programme. SBC also thanks to DBT, Govt. of India for JRF fellowship. Authors are thankful to Dr. Babu Tekwani and Surendra Jain for antileishmanial assay, Shabana Khan and John Trott for antimalarial assays, and Melissa Jacob and Marsha Wright for antimicrobial testing. Authors are also thankful to NCNPR, University of Mississippi, USA and USDA, University of Mississippi, USA for the facilities. We also thank Solomon Green III, and Amber Reichley for technical assistance.

6. References

8. Dambisiya YM, Lee LT. Effects L-NG-nitro arginine methyl ester (L-NAME), L-NG monomethyl arginine (L-NMMA) and L-arginine on the antinociceptive effects of morphine in mice. Experimental & Clinical Pharmacology 1995; 17:577-582.