Prunella vulgaris Linn. as antihyperlipidemic and antioxidant against high-fat diet induced oxidative stress in wistar rats

Bilal A Zargar, Bahar Ahmad, Mohammad Faizan Bhat and Mubashir Hussain Masoodi

Abstract

Background: Hyperlipidemia and underlying high cholesterol has been reported among the top five leading cause of global mortality. Many drugs and extracts from plant origin and specifically from Indian plants have been reported and used for hyperlipidemia alleviation.

Objective: The present study was aimed to evaluate antioxidant and anti-hyperlipidemic activity of hydroalcoholic and aqueous extract of *Prunella vulgaris* Linn. against high-fat diet induced oxidative stress and hyperlipidemia in Wistar rats.

Materials and Methods: Hyperlipidemia and oxidative stress was induced in wistar rats with high-fat diet *ad libitum*. The hyperlipidemic rats were then treated with gavage feeding with aqueous and hydroalcoholic extract of *Prunella vulgaris* at different doses (100, 250 and 500 mg/kg b.wt./day). The effect was compared with standard drug Lovastatin (7.2mg/Kg).

Results: The high-fat diet showed marked increase in the lipid profile levels in rats as measured by enzyme analytical methods. Both the extracts of the plants showed marked lowering of LDL and VLDL while the aqueous extract showed a substantial increase in HDL (Good Cholesterol). In addition, promising radical scavenging effects were observed through *in vitro* superoxide, hydroxyl, and hydrogen peroxide assays.

Conclusion: The present study established rhizome/root extract of *Prunella vulgaris* as a promising antioxidant and anti-hyperlepedimic agent. However, further investigations are needed to understand the mechanistic basis of this effect of the extract and its chemical constituents thereof.

Keywords: Prunella vulgaris, antioxidant, *in vitro* evaluation, *in vivo* evaluation, hyperlipidemia, oxidative stress

Introduction

Under physiological and pathological aerobic conditions, reactive oxygen species (ROS), Reactive Nitrogen Species (RNS) and Reactive Chlorine Species (RCS) are generated by the organism [1]. The most important of them being the ROS, which comprise hydroxyl, superoxide, peroxyl (RO₂⁻), hydroperoxy (HO₂⁻) and alkoxyl radicals (RO·). Less common include the nitrogen free radicals as Nitric Oxide and Nitrogen Dioxide (NO₂⁻). These free radicals are then usually converted into nonradical reactive species, such as, hypochlorous acid (HOCI), hydrogen peroxide (H₂O₂), and peroxyxinitrite (ONOO⁻). Thus, both ROS and RNS include a radical as well as non-radical species, which, under normal conditions are maintained at a safe base level by the inherent anti-oxidant mechanisms of the organism. However, when this homeostasis is breached by pathological conditions, there is a consequent decrease in the efficiency of this anti-oxidant system and the complete dwindling of protective system leading to oxidative stress and eventual biological target damage.

Plasma lipoproteins, which are involved in hyperlipidemia, are protected against oxidative stress by antioxidant defense system found innately in the organism. Several enzymes make up this antioxidant defense system, including but not limited to glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase, in addition to hydrophilic antioxidants such as reduced glutathione, ascorbate and urate. Plasma Lipoproteins also facilitate the carriage of lipophilic antioxidants like tocopherols and carotenoids. All of these mechanism work together to alleviate free radical stress and also block free radical chain reactions in the process [2].

Phospholipids oxidative stress in response to several underlying factors released through different types of cells and organisms, these include, endothelial cells, smooth muscle cells, and macrophages. In particular, monocytes and T Lymphocytes are tethered, activated and attached to endothelial cells by induction and expression of adhesion molecules released due to damage to endothelial cells in response to Ox-LDL.
These adhesion molecules encompass P-selectin and chemotactic factors like monocyte chemoattractant protein-1 and macrophage colony stimulating factor [3]. Macrophages in the atherosclerotic lesions have also been indicated to express myeloperoxidases, resulting in the formation of unique pattern of protein oxidation products. The myeloperoxidases released have also been associated with LDL-oxidation [4]. Anti-oxidant potential of natural products from plants in particular have been thoroughly researched and proven to be effective in metabolic syndromes, including altered lipid profile, hypertension, insulin resistance, diabetes and obesity [5-7].

Prunella vulgaris has been researched thoroughly and the active compounds and extracts have shown promising results as antimicrobial, anti-allergic, anti-inflammatory, immunosuppressive, anticancer, cardioprotective, and above all, found to have substantial antioxidant and anti-hypertriglycerideric activities [8-19]. Hydro alcoholic extract of P vulgaris showed significant antioxidant response, which has been partly attributed to its high rosemerinc acid content [20, 21]. It is reported that P. vulgaris extract exhibit scavenging activity on diphenylpicrylhydrazyl (DPPH) radical, inhibits in vitro human LDL Cu (II)-mediated oxidation, protects rat mitochondria and rat hepatocytes exposed to either tert-butyl hydroperoxide, or to Cu(II) and Fe(III) ions. It also inhibited rat erythrocyte haemolysis and reduced the production of leukotriene B in bovine polymorphonuclear leucocyte generated by the 5-lipoxygenase pathway [9]. A positive effect on plasma lipoprotein profile in experimental models of high-fat induced lipidemia was also noted previously [22]. The P. vulgaris extract and its main phenolic acid component, rosmarinic acid significantly suppressed UVA-induced reactive oxygen species production in a human keratinocyte cell line (HaCaT), which indicated a decrease in intracellular lipid peroxidation [23]. This study was therefore aimed to establish on the previous research and build experimental data in support of antioxidant and anti-hyperlipidemic properties of P. vulgaris.

2. Materials and Methods
2.1. Plant Materials
Dried rhizome of the plant P. vulgaris was collected from Pahalgam area of Jammu and Kashmir during the month of May 2012. The curator authenticated the plant material and a voucher specimen (KASH-bot/Ku/PH-1201) was deposited in the Centre for Plant Taxonomy (KASH), University of Kashmir.

2.2. Chemicals and Reagents
DPPH, catchin and enzyme kits were obtained from Sigma-Aldrich Chemie GmbH, Industriestrasse 25, Postfach, CH-9471, Buch, Switzerland. Cholestrol was purchased from Merck KGaA, Darmstadt, Germany. All the other analytical grade reagents used in the experiment were obtained from HiMedia, A-516, Swastik Disha Business Park, LBS Marg, Mumbai 400086, India.

2.3. Animals
All ethical and handling guidelines were followed as set by Indian Legislation and approved by Institutional Animal Ethics Committee, (no. KU/Pharm/CPCSEA/2009-01), University of Kashmir. All the wistar rats (200 ± 50g) used in the experiment were obtained from Indian Institute of Integrative Medicine, Jammu, India. Rats were grouped in a number of 6 rats per group and placed in rat cage with water and food, ad libitum. The environment was also regulated at 25 ± 1 °C with 12/12 h (light/dark) cycle. A period of one week was decided for rats to be acclimatized to the laboratory environment, this was followed by random selection of rats into 6 groups (each group with 6 animals). The extract was suspended in normal saline at a dose level of 200mg/Kg body weight. Gavage was used to feed the rats with each dose at a final volume of extract at 1ml. Group I received vehicle only at 5ml/kg/day (NC); Group II received high fat diet (86.8% basic diet, 8% butter, 5% cholesterol, and 0.2% sodium cholate) only (HC). Group III received high-fat diet along with lovastatin (10mg/kg/day) (HC/LOVA); Group IV received high-fat diet and 1ml hydroalcoholic extract of Prunella Vulgaris (HC/HAPV); and Group V received high-fat diet and 1 ml aqueous extract of Prunella vulgaris (HC/AQPV). The experiment was conducted continuously for a period of 5 weeks with rats having free access to food and water. Food consumption and body weight was constantly measured on a daily basis. At the end of the experiment, all animals were put on fasting for 14h before anesthesia and sacrifice. Opthalmic venous plexus was used to draw blood sample, which was then centrifuged (5000g, 15 min, and 4 °C). The serum samples obtained were collected and stored at -20 °C.

2.4. Extract Preparation
The extract was prepared by washing, drying and powdering in heavy-duty Willy-mill (Bells India Ltd.) the whole plant of P. vulgaris and then soaking the powder overnight in 70% ethanol.

After filtration, re-extraction of the powder was carried out through the same method. All the filtrates thus obtained were collected and combined and solvent removed in a rotary vacuum evaporator at 40° C to obtain the hydroalcoholic extract. For aqueous extract, the same procedure was followed with water used in place of ethanol.

2.5. Acute Oral Toxicity Testing
Albino rats were used to carry out in vivo oral acute toxicity test. Dried extracts were converted into solutions using normal saline. The study was carried out keeping in view the guidelines set by Organization of Economic Corporation and Development (OECD) with computer-aided statistical analysis program (AOT425StatPgm, version 1.0). Up and down procedure was conducted, using the dose increment of 175mg/kg p.o., 550mg/kg p.o., and 2000mg/kg p.o. of the aqueous and hydroalcoholic extracts (acute oral toxicity (AOT) (OECD Test guideline 425) statistical program (AOT425StatPgm, 2001).

2.6. Phytochemical Screening of the Crude Extracts
Proper techniques for phytochemical screening were followed to determine various phytocomponents from the hydroalcoholic and aqueous extracts of R. emodi [24, 25].

2.7. Total Phenolic Content (TPC)
Total Phenolic Content of HARE and AQRE was determined by Folin-Ciocalteu reagent, according to the method of Orthofer, Singleton, and Lamuela (1999). The result was expressed as mg gallic acid equivalents/g extract [25].

2.8 In vitro Anti-oxidant studies
2.8.1 DPPH Radical Scavenging Activity
Minor modifications were made to the method given by Blois for conducting the assay on the basis of scavenging activity of stable DPPH free radical [26, 27]. To 1mL of the sample (10, 20,
30, 40, and 50 µg/mL) was added 3mL of a 0.1mmol/L methanol solution of DPPH. The absorbance of all the samples was determined at 517nm (UVD 2960, Labomed, Inc.) after an incubation period of 30minutes. The percentage inhibitory activity was determined according to the following formula:

\[
\% \text{ Inhibition} = \left(1 - \frac{A_e}{A_c} \right) \times 100
\]

Where \(A_e \) is the absorbance without sample and \(A_c \) is the absorbance with the sample.

2.8.2 Reducing Power.
Oyaizu’s method was used to conduct the assay for reducing power [39]. According to this method, the reducing power of the sample can be determined by measuring the absorbance of 0.1% Prussian blue complex associated with reduction of Fe⁴⁺ to Fe²⁺. The principle of this method is reduction of Ferricyanide (Fe³⁻) in stoichiometric excess in relation to the antioxidants. Different concentrations of the extract were taken (10, 20, 30, 40, and 50 µg/mL) and was added to 2.5 mL of 1% potassium ferricyanide [K₃Fe(CN)₆] in 2.5 mL of 0.2 M phosphate buffer (pH 7.4). The entire mixture was incubated for 20 min at 50 °C and 2.5 mL of 10% trichloroacetic acid was added to the mixture and centrifuged for 10 min at 3000 rpm. The upper layer (2.5 mL) was added to (2.5 mL) distilled water and FeCl₃ (0.5 mL, 0.1%), and the absorbance was measured at 700 nm. For standard, BHT was used and the percentage reduction in relation to that was calculated using the following formula:

\[
\% \text{ reduction} = \left[1 - \left(1 - \frac{A_e}{A_i} \right) \right] \times 100
\]

2.8.3 Hydroxyl Radical Scavenging
Method used by Halliwell et al. was used to conduct the hydroxyl radical scavenging assay [39]. It is based on the measurement of thiobarbituric acid reactive species (predominantly malondialdehyde producing pink color on reaction with thiobarbituric acid) generated from the degradation of deoxyribose on exposure to hydroxyl radical. Hydroxyl radical is generated from Fe³⁺:ascorbate-H₂O₂ system (Fenton reaction). The reaction mixture contains 25mM deoxyribose, 10mM ferric chloride, 100mM ascorbic acid, 2.8mM H₂O₂ in 10mM KH₂PO₄ (pH 7.4), and various concentrations of plant extracts (10–50 µg/mL). The reaction mixture was incubated at 37°C for 1 h. 1%thiobarbituric and 3%trichloroacetic acid (1mL each) were added, and the mixture was heated at 100°C for 20min. The graded intensity of the color was measured spectrophotometrically at 532 nm. The results were expressed as percentage inhibition of deoxyribose oxidation using the formula below:

\[
\% \text{ inhibition} = \left(A_c - \frac{A_e}{A_c} \right) \times 100
\]

Where \(A_c \) represents absorbance in presence of control and \(A_i \) is the absorbance in the presence of extract.

2.8.4. Superoxide Radical Scavenging Activity
The capacity of substrates to inhibit the formation of formazan by scavenging the superoxide radicals generated in riboflavin-light-NBT system [30]. The reaction mixture was prepared by sequentially adding 50 mM phosphate buffer (pH 7.6), 20 µg riboflavin, 12mM EDTA, and NBT 0.1mg/3 mL. Reaction started by illuminating the reaction mixture with different concentrations of sample extract/standard for 90 seconds. This was immediately followed by measurement of absorbance at 590 nm. For positive control, Rutin was used and the percentage of superoxide anion scavenged was calculated using the following equation:

\[
\% \text{ inhibition} = \left(1 - \frac{A_e}{A_c} \right) \times 100
\]

Where \(A_e \) and \(A_c \) are absorbance in presence of extract and control, respectively.

2.8.5. H₂O₂ Scavenging Activity
Following the procedure laid down by Ruch et al. hydrogen peroxide scavenging assay was carried out [31]. This method is based on the principle that upon oxidation of H₂O₂ there is a decrease in absorbance. For this purpose, a solution of 43mM H₂O₂ was prepared in 0.1M-phosphate buffer (pH 7.4). 1mL extract (each at different concentrations) in 3.4mL phosphate buffer was added to 0.6mL of H₂O₂ solution (43mM), and absorbance of the reaction mixture was recorded at 230 nm. For blank solution sodium phosphate buffer without H₂O₂ was used. The percentage of H₂O₂ scavenging by the extracts and standard was calculated using the following equation:

\[
\% \text{ inhibition} = \left(1 - \frac{A_e}{A_c} \right) \times 100
\]

Where \(A_e \) and \(A_c \) are absorbance in presence of extract and control, respectively.

2.9. In Vivo Studies
2.9.1. Lipid Profile
After collecting the blood samples, they were subjected to centrifugation at 3500 rpm for 15 min to obtain serum. The levels of serum total cholesterol (TC), triglycerides (TG), and low density lipoprotein cholesterol (LDL-c) were determined using commercially available kits (purchased from Sigma-Aldrich Chemie GmbH, Industriestrasse 25, Postfach, CH-9471, Buchs, Switzerland) according to the manufacturer’s instructions. Low-density lipoprotein cholesterol (LDL-c) was calculated using Friedewald equation:

\[
[LDLc] = [Total \text{ Cholesterol}] - [HDLc] - \frac{[TG]}{5}
\]

The atherosclerosis index (AI) as calculated by the equation:

\[
AI = \frac{TC - HDLc}{HDLc}
\]

2.9.2. Statistical Analysis
The data has been analysed using descriptive statistics, t-test, and one-way ANOVA followed by post hoc analysis (Dunnett’s test), using SPSS-20. Statistical significance was considered at \(P < 0.05 \).

3. Results
3.1. Acute Oral Toxicity Study
Both, aqueous as well as hydroacoholic extract were found to be safe even up to 2000mg/Kg body weight and did not cause any mortality.

3.2. Phytochemical Investigation
Qualitative tests on the rhizomes of P. vulgaris revealed the presence of carbohydrates, reducing sugars, tannins and phenolics, Anthrquinone glycosides, flavonoids, resins, oxalic, tartaric and ascorbic acid.
3.3. Total Phenolic Content
Total Phenolic Content of the hydroalcoholic extract was found to be 210.33 ± 5.51 while that of aqueous extract was reported as 105.50 ± 5.27. The phenolic contents in the samples were expressed as mg of gallic acid equivalent (GAE) for every g of sample (mg GAE/g).

3.4. DPPH Radical Scavenging
Both the aqueous as well as hydroalcoholic extract of R. emodi showed a concentration dependent scavenging of DPPH radicals as shown in Figure 1. The scavenging effect of both hydroalcoholic and aqueous extract was found to be 70% at a concentration of 100 μg/mL. This effect was highly comparable to the standard catechin, at the same concentration.

Insert Figure 1 here

3.5. Reducing Power
The reducing power of the plant extracts and standard antioxidants (BHT and Catechin) was estimated on Fe²⁺ and found to be concentration dependent (Figure 2). The concentration dependent increase in reducing power was highly comparable to standard BHT positive control.

Insert Figure 2 here

3.6 Hydroxyl Radical Scavenging
A concentration dependent hydroxyl radical scavenging activity was noted as shown in Figure 3. The hydroalcoholic and aqueous extract of plant showed 35.4% and 65.7% effect at a concentration of 50 μg/mL and 50 μg/mL, respectively. This effect was comparable to the standard Rutin, which is a well-known antioxidant.

Insert Figure 3 here

3.7. Superoxide Radical Scavenging
Both the hydroalcoholic and aqueous extract of the plant showed superoxide-scavenging activity. A concentration dependent radical scavenging activity was found for both the extracts and is presented in Figure 4. The highest activity was shown by the hydroalcoholic extract followed by the aqueous extract and the standard rutin.

Insert Figure 4 here

3.8. Effect on H₂O₂ Scavenging
As is evident from Figure 5, the hydrogen peroxide scavenging activity of hydroalcoholic extract was closely comparable to the standard α-tocopherol followed by aqueous extract that showed only moderate activity.

Insert Figure 5 here

3.9 In vivo Lipid Parameters
A high level of serum triglycerides, total and LDL cholesterol was induced by a high-fat diet in Male Wistar rats. The hydroalcoholic and aqueous extract of P. vulgaris as well as lovastatin significantly restored the elevated lipid levels to a considerable extent as shown in Table 1 (P < 0.05). The group administered with hydroalcoholic extract showed a marked enhancement of good cholesterol (HDL).

Insert Table 1 Here

3.10. Atherogenic Index
The highest value for atherogenic index (AI) was shown by lovastatin control followed by hydroalcoholic extract and aqueous extract.

4. Discussion
The aqueous and hydroalcoholic extract of P. vulgaris showed anti-oxidant activity, both in vitro as well as in vivo without any acute or long-term toxic effect. The anti-oxidant effect was found to be concentration dependent, however with different levels of intrinsic efficacy. Based on the amount of total phenolic content present, it would be safe to assume that the DPPH, Hydroxyl radical, hydrogen peroxide and Ferric reduction potential of the extracts might most probably be due to polyphenolics present.

Superoxide shows selective reactivity due to the presence of an oxygen atom at the center. Although, the superoxide is a weak oxidant per se, its limited reactivity can lead to generation of more dangerous species, including the dreaded singlet oxygen and hydroxyl radicals, which eventually cause the peroxidation of lipids [32]. Superoxide anions are thus precursors to active free radicals that have potential for reacting with biological macromolecules and there by inducing tissue damage [33]. In addition, superoxide has also been associated with direct initiation of lipid peroxidation and it has been established that the antioxidant properties of flavonoids in plants show activity by indirectly or directly scavenging superoxide [34].

Superoxide opens up a Pandora’s box is the cascade of free radical formation by producing other kinds of free radicals and oxidizing agents [33]. Superoxide anions derived from dissolved oxygen by the riboflavin-light-NBT system will reduce NBT in this system. In this method, superoxide anion reduces the yellow dye (NBT2+) to produce the formazan, which is measured spectrophotometrically at 590 nm. Antioxidants are able to inhibit the blue NBT formation [36]. The decrease of absorbance at 560 nm with antioxidants indicates the consumption of superoxide anion in the reaction mixture. Figure 4 shows the inhibition of superoxide radical generation by different concentrations of extracts and standards.

Lipid peroxidation has also been known to initiate by DNA cross-links and strand breaks that occur due to hydroxyl radicals, and the extracts were shown to scavenge these hydroxyl radicals [37]. The ability of the extracts to scavenge OH radicals can be related to the prevention of lipid peroxidation. It can be inferred that the extracts might prevent reactive radical species from damaging biomolecules such as lipoproteins, polyunsaturated fatty acids, DNA, amino acids, proteins, and sugars in biological systems [37]. The aim of this study was to relate this scavenging potential of the extracts and therefor catechin, α-tocopherol, and BHT were used as standards.

In addition of the ability of the extracts to substantially lower the LDL and triglyceride levels, the marginal increase in HDL by hydrocolcoholic extract presents the plant as a promising plant to control hyperlipidemia and a propitious starting point for further research.
Table 1: Effect of Hydroalcoholic and Aqueous extract rhizome/root extract of P. vulgaris on lipid Profile and atherogenic index in make Wistar Rats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>NC</th>
<th>HC</th>
<th>HC/LOVA</th>
<th>HC/HAPV</th>
<th>HC/AQPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG</td>
<td>39.18 ± 1.08</td>
<td>73.39 ± 4.24</td>
<td>49.80 ± 2.12</td>
<td>38.30 ± 0.54</td>
<td>50.29 ± 2.38</td>
</tr>
<tr>
<td>TC</td>
<td>58.14 ± 2.51</td>
<td>69.65 ± 2.35</td>
<td>53.73 ± 1.27</td>
<td>49.24 ± 1.54</td>
<td>59.28 ± 3.70</td>
</tr>
<tr>
<td>HDL</td>
<td>29.55 ± 3.34</td>
<td>18.41 ± 0.74</td>
<td>27.73 ± 1.66</td>
<td>36.74 ± 1.82</td>
<td>38.03 ± 1.13</td>
</tr>
<tr>
<td>LDL</td>
<td>20.75</td>
<td>40.39</td>
<td>18.38</td>
<td>11.19</td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>51.14</td>
<td>72.48</td>
<td>55.06</td>
<td>48.24</td>
<td>58.28</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM. At p < 0.05, results were found to be significantly different from control group. NC (Normal control), HC (Hyperlipidemic Control Group), HC/LOVA (group fed with high fat diet+Lovastatin), HC/HAPV (group fed with high fat diet + hydroalcoholic extract of P. vulgaris), HC/AQPV (group few with high fat diet + aqueous extract of P. vulgaris).

TG= Triglycerides, TC= Total Cholesterol, HDL= High density Lipoprotein Cholesterol, LDL = low density lipoprotein cholesterol and AI= Atherogenic Index.
Conflict of Interest

All the authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgment

The financial support from CCRUM (AYUSH), Ministry of Health and Family Welfare, India, is highly acknowledged.

References

36. Parejo I. Comparison between the radical scavenging