Anti-tubercular evaluation of *Rivea hypocrateriformis* (Der.) choisy against *Mycobacterium tuberculosis* H37Rv strain

Wadhah Ahmed Al-Baadani and ND Satyanarayan

Abstract

The MABA method of the anti-tuberculosis activity of various solvent extracts (n-hexane, dichloromethane and methanol) of *Rivea hypocrateriformis* was carried out on *Mycobacterium tuberculosis* H37Rv strain. The study revealed that those solvent extracts showed activity at 12.5 μg/ml, when compared with standard pyrazinamide. The results indicate the presence of compound which is omnipresent in all solvent extracts. The phytochemical investigation indicates the presence of alkaloids, steroids and tannins. The steroids are present in all extracts tested. Hence, the anti-TB activity might be due to the presence of steroids or steroidal glycosides which showing the activity. Further study will be carried out to isolate the active compound responsible for potential.

Keywords: soxhlet, MABA, minimum inhibitory concentration (MIC), pyrazinamide, phytochemicals

1. Introduction

Tuberculosis (TB) is a deadly infectious disease caused by *Mycobacterium tuberculosis* [1, 2], also known as Koch’s bacillus [3]. It generally affects the lungs and also can attack other organs of the body, such as the brain, kidneys and lymphatic system [4-7]. TB is second in rank after HIV as the most common cause of death from infectious disease [8]. WHO studies estimated that 9.6 million new TB cases of worldwide. Out of which, 5.4 million are men, 3.2 million are women and 1.0 million are children [7]. Strains of TB that show extensive drug resistance (XDR-TB) to first line drugs have been reported from different countries worldwide [8]. The top five countries with the highest number of Multi-drug-resistant tuberculosis (MDR-TB) are India, China, Russia, Pakistan and Philippines [9]. The number of cases worldwide is increasing rapidly due to multi-drug resistant strains of *M. tuberculosis* and also increasing in patients with HIV/AIDS [10, 11]. The recent increase in the incidence of tuberculosis (TB) with the emergence of multidrug-resistant (MDR) cases has lead to the search for new TB-drugs, which are safe, effective and affordable. Medicinal plants have always offered a great hope to fulfill these needs, because of their proven template in the development of new drugs [12-14]. Many drugs listed as conventional medications were basically derived from plants, like Salicylic acid, quinine, vincristine, morphine and codeine [15]. India is one of the countries with unique wealth of medicinal plants and vast traditional knowledge of use of herbal medicine for curing several diseases [16, 17]. In India, 70% of Indian medicinal plant species have shown antymycobacterial activity, of which 149 species have shown positive ethnomedical uses in correlation with the traditional knowledge for TB or related diseases [18]. In view of this, a medicinally important plant, *R. hypocrateriformis* was selected to evaluate for its anti-TB potential.

*R. hypocrateriformis* (Family: Convulvulaceae), found in subtropical forests of India, common name: Night glory, vaividang. It is an important medicinal plant, traditionally used in the treatment of diseases [19], such as malaria, and to relieve pain [20]. The plant is known for a large number of biological activities such as anti-implantation [21], antioxidant, hepatoprotective [22], anti-fertility [23], analgesic and anti-inflammatory activity [24]. The phytochemicals investigation revealed that the presence of flavonoids, steroids, phenolic compounds [25]. So far, no systematic investigation has been carried out on its anti-TB potency. Hence, in the present study we explored and assessed the anti-tubercular potential of various extracts of *R. hypocrateriformis* on drug resistant H37Rv strain.

2. Materials and Methods

2.1 Chemicals

The chemicals and reagents used were of analytical grade. Diastase (HiMedia), Almar blue reagent (HiMedia) and other chemicals are also purchased from (HiMedia), Mumbai- India.
2.2 Plant material
The leaves of *R. hypocrateriformis* were collected in the month of December 2015 from some places of Kalaburgi Dist., Karnataka state, India. The collected plant was authenticated with voucher specimen no HGUG 90 at the Herbarium, Department of Botany, Kalaburgi University, Karnataka State, India.

2.3 Preparation of extract
The collected plant materials was cleaned and immediately sprayed with ethanol to cease any enzymatic degradation of secondary metabolites. The shade dried plant material (100 gm) was chopped into smaller fragments of 1-2 inches and subjected for hot continuous successive extraction, with n-hexane (500 ml), dichloromethane (500 ml) and methanol (500 ml), until the completion of the extraction. The solvent was evaporated to dryness under reduced pressure and controlled temperature of 40-50 °C using a rotary evaporator to obtain crude extracts; n-hexane (3 gm, 0.03%), dichloromethane (5 gm, 0.05%), and methanol (15 gm, 0.15%), respectively.

2.4 Phytochemical screening
Preliminary phytochemicals investigation of *R. hypocrateriformis* extracts using different solvents revealed that the presence of alkaloids, flavonoids, glycosides, steroids, saponins and tannins by following the standard procedure [26]. The results are given in the Table 1.

2.5 Anti tubercular activity by MABA method
The anti-tubercular activity of the solvent extracts is carried out on *M. tuberculosis* H37Rv strain, by micro-plate alamar blue assay (MABA) method [27]. The minimum inhibitory concentration (MIC) was defined as the lowest drug concentration that prevented a colour change from blue (no growth) to pink (growth). The pyrazinamide drug was used as positive standard for comparison.

3. Results
The result for anti-tubercular activity by different solvent extracts of *R. hypocrateriformis* on *M. tuberculosis* revealed that n-hexane, DCM and methanol extracts exhibit sensitivity at 12.5 µg/ml when carried out by MABA method, Table 2.

<p>| Table 1: Preliminary phytochemicals investigation of <em>Rivea hypocrateriformis</em> leaves |
|-----------------------------------------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>S. No</th>
<th>Test</th>
<th>Phytochemical test</th>
<th>n-Hexane</th>
<th>DCM</th>
<th>Methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>Mayer’s test</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Flavonoids</td>
<td>Wagner’s test</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Glycosides</td>
<td>Shinoda test</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Tannins</td>
<td>Bromine water test</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Steroids</td>
<td>Ferric chloride test</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Saponins</td>
<td>Foam test</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

(+): presence, (-): absence

<p>| Table 2: MIC values of solvent extracts of <em>Rivea hypocrateriformis</em> leaves |
|-----------------------------------------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Sample</th>
<th>MIC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>12.5</td>
</tr>
<tr>
<td>R2</td>
<td>12.5</td>
</tr>
<tr>
<td>R3 Drug control</td>
<td>12.5</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>3.12</td>
</tr>
<tr>
<td>Ciprofluxacin</td>
<td>3.12</td>
</tr>
<tr>
<td>Stryptomycin</td>
<td>6.25</td>
</tr>
</tbody>
</table>

MIC: Minimum inhibitory concentration.
R1: n-hexane extract of *R. hypocrateriformis*
R2: dichloromethane extract of *R. hypocrateriformis*
R3: methanol extract of *R. hypocrateriformis*.
4. Discussion
To evaluate the anti-tuberculosis potentiality of R. hypocrateriformis against strain of M. tuberculosis H37Rv, the micro-plate alamar blue (MABA) assay was performed. In this study, the in vitro antimycobacterial susceptibility against M. tuberculosis H37Rv showed that all the crude extracts had minimum inhibitory concentration (MIC) value of 12.5 μg/ml compared with controls as shown in Table 1 and Fig 1. The MIC values of these crude extracts represented the lowest concentrations at which the drugs were responsible for the cessation of mycobacterial growth. The investigation is the first to report on the antimycobacterial activity of R. hypocrateriformis. The crude extracts potency may be due to the presence of the phytochemicals which have the potential to inhibit M. tuberculosis consists of both bacterial and fungal characteristics with different mechanism of action such as flavonoids, glycosides and steroid glycoside. Flavonoids are known to affect on bacteria cells in different ways [28]. Their effects might be related to ability against microbial adhesins, cell-wall or transport proteins. Flavonoids also show activity by damaging cytoplasmic membrane with the generation of hydrogen peroxide, inhibition of nucleic acid synthesis and inhibition of ATP synthase [29]. Steroids on the other hand could be effective in reducing mortality for all forms of tuberculosis, including pulmonary tuberculosis [30]. Use of steroids in conjunction with antituberculous therapy showed a reduction in mortality and morbidity in pericardial and central nervous system TB [31]. Steroids also show activity by inhibiting RNA synthesis. The delayed transcriptional activity may lead to the lack of vital proteins and subsequently induces the cell death [32].

5. Conclusion
The present investigation suggests that R. hypocrateriformis as a potential anti- M. tuberculosis plant for generating new drug/lead that maybe useful for treatment of tuberculosis. The inhibition performed by the extracts might be due to the presence of steroids in all the three successive extracts of the plant indicating that the activity might be due to the steroids. Further study should be considered to fractionate and isolate the active compound responsible for anti-tubercular activity with possible mechanism of action.

6. Acknowledgement
The authors are thankful to the authorities of Kuvempu University, for providing necessary facilities to carry out the present work and also are thankful to Dr. K. G. Bhat, Department of Microbiology and Molecular Biology, Maratha Mandal’s Institute of Dental Sciences and Research, Belagavi, for anti-TB activity. One of the authors, Wadhah Ahmed Al-Baadani is thankfully acknowledge the financial support provided by IBB University, Yemen.

7. Conflict of interest statement
We declare that we have no conflict of interest.

8. References