Mushrooms: Natural factory of anti-oxidant, anti-inflammatory, analgesic and nutrition

Sadiur Rahman Sajon, Samiron Sana, Sohel Rana, SM Mushiur Rahman and Zobaida Mostarin Nishi

Abstract
Mushrooms have been consumed as food items and medications since earliest history; old Greeks had a strong faith that mushrooms gave strength to warriors in fight and the Romans saw them as the “Food of the Gods”. For hundreds of years, the Chinese culture has treasured mushrooms as a wellbeing nourishment, an “elixir of life.” They have been a piece of the human culture for thousands of years and had been the item of considerable interest for the most essential civic establishments in history on account of their sensory attributes. Likewise, they additionally incorporate numerous bioactive metabolites which make mushrooms and truffles regular parts in medication, particularly in Africa, the Middle East, China and Japan. It is accounted for and in some cases have demonstrated that mushrooms have numerous pharmacological and remedial activity including anti-oxidant, anti-cancer, anti-inflammatory, analgesic, nutraceutical and numerous others. However, this attempt has been made to concentrate on the short reviews of anti-oxidant, anti-inflammatory, analgesic and food values of mostly used mushrooms all over the world.

Keywords: mushrooms; anti-oxidants; anti-inflammatory; analgesic; nutrient

Introduction
Mushrooms are a substantial and diversified collection of macrofungi having a place with Basidiomycetes and Ascomycetes; with a cell cycle including the arrangement of sexual spores. Mushrooms have been viewed as gourmet food over the globe since vestige for their unique taste and inconspicuous flavor. As of late, it has been found that many mushroom species are miniature pharmaceutical factories producing thousands of novel constituents with exceptionally helpful biologic properties. They have a long history of utilization in Oriental prescription, however their incredible impacts in advancement of good health and imperativeness are being upheld by contemporary reviews. Recently, mushrooms have developed as great wellspring of nutraceuticals, anti-oxidants, anticancer, prebiotic, immune modulating, anti-inflammatory, cardiovascular, anti-microbial and anti-diabetic.

Inadequate nutrition because of current way of life and the expansion of normal life span are the two key purposes behind the increased rate of ailment everywhere throughout the world. Oxidative stress created by an imbalanced digestion and an abundance of reactive oxygen species (ROS) end into a scope for disorders i.e., metabolic disease, coronary disease, severe neural disease, for example, Alzheimer's and Parkinson's, untimely aging and some cancers. ROS are created inside, in the cellular organism, as well as through different outer sources like ultra violet, ionizing radiation, chemotherapeutics, inflammatory cytokines, and environmental poisons. Breathing in poisonous chemicals from the environment has turned out to be unavoidable in current human progress. Manufactured phenolic antioxidants include butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and others e.g., propyl gallate, tert-butylhydroquinone (TBHQ), ethoxyquin (EQ), that all adequately hinder oxidation [9]. Nonetheless, some synthetic anti-oxidants may bring about antagonistic harmful impacts under specific conditions [7, 8]. BHA, which is all the time utilized as an additive in sustenance industry, can negatively affect the control of the movement of mitogen-activated protein kinase (MAPK) contingent upon the dose [8, 9]. A few synthetic anti-oxidants are approved for being used as additive in the European Union [10]. Lately, the confinement on the utilization of synthetic anti-oxidants, for example, BHA and BHT, has brought on a quickly expanded interest towards natural anti-oxidant substances [7, 8]. Prerequisites for natural option for anti-oxidant foods and ingrediants are derived basically from purchasers. Lately edible mushrooms have pulled in consideration as a business source of anti-oxidants [7, 8, 11]. They may be utilized straightforwardly in improvement of anti-oxidant guards through dietary supplementation to lessen the level of oxidative stress. There is an abundance of confirmation to uphold the adequacy of such a methodology in vitro.
In the human body, inflammation is thought to be a piece of the complex organic reaction to expel damage or destructive jolts, for example, pathogens, harmed cells or disturbance. This reaction prompts numerous physical side effects, for example, fever, pain, and swelling, therefore of many related changes, for example, vasodilation, expanded vascular penetrability and plasma extravasation. Then again Pain is a physiologically applicable sensation important to identify or potentially avert harm; it is once primary afferent nociceptive C and A fibres are often brought on by actuation of a few sorts of ionotropic channels and etabotropic receptors [14, 15]. Actually, transient receptor potential and corrosive detecting particle diverts take an interest in creating nociceptive flags because of different particular toxic stimuli [15-17]. Action of some of these channels and different proteins implicated in nociceptive signaling pathways can be up regulated by protein kinase C [18-20]. Subsequently, pain is produced.

The genuine nutritive estimation of mushrooms has quickly become known and perceived by mushroom specialists and farmers as well as by the general customers [21]. Notwithstanding their great flavor, mushrooms have positive chemical composition with high measures of useful proteins, low total fat level and the high extent of polyunsaturated fatty acids (PUFA), making them appropriate for low calorie diets. Palatable mushrooms give a nutritionally noteworthy substance of vitamins (B1, B2, B12, C, D, and E) [22-24]. Besides, mushrooms have a low glycemic record and high mannitol, which is particularly valuable for diabetics. Mushrooms have low sodium (Na) concentration, which is valuable for hypertensive patients and a high amount of potassium (K) and phosphorus (P), which is an imperative orthomolecular perspective [20]. In Asia, mushrooms are utilized as critical wellspring of home cures against different sicknesses inspired by oxidative stress [11].

The progressing research tasks are planned to advance mushrooms as new generation source of mostly craved drugs and help in the further research process to identify the novel compound from the mushroom species and help in human welfare.

Mushrooms with anti-oxidant properties

A whole variety of edible mushrooms were reported to possess antioxidant activity (Table 1). It is generally accepted that extracts of fungi contain many components, each of which has its own specific biological effects [25, 26]. Antioxidant compounds found in fruit bodies, mycelium and broth confirmed to be phenolics, flavonoids, glycosides, polysaccharides, tocopherols, ergothioneine, carotenoids, and ascorbic acid [24, 27, 28–105].

<table>
<thead>
<tr>
<th>Mushroom Species</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boletus edulis, Boletus badius</td>
<td>[47, 79, 100]</td>
</tr>
<tr>
<td>Cantharellus lutescens, Cantharellus clavatus, Cordyceps sinensis, Calvatia gigantea, Cerrena unicolor, Coprinus comatus</td>
<td>[24, 47, 49, 53, 60, 71, 90, 96, 98, 100, 103]</td>
</tr>
<tr>
<td>Dictyophora indusiata</td>
<td>[10]</td>
</tr>
<tr>
<td>Flammulina velutipes (white), Flammulina velutipes (yellow)</td>
<td>[57, 59, 61, 62, 63]</td>
</tr>
<tr>
<td>Inonotus obliquus</td>
<td>[18-20]</td>
</tr>
<tr>
<td>Ganoderma lucidum, Ganoderma tsugae, Grifola frondosa, Ganoderma aplancaturn, Geastrum arenarium, Geastrum saccatum,Ganoderma atrum</td>
<td>[10, 12, 22, 24, 47, 51, 53, 54, 56, 62, 63, 65, 70, 74, 75, 83, 98, 101, 102]</td>
</tr>
<tr>
<td>Lepista nuda, Lentinus edodes, Lactarius sanguifluus, Lentinus squarrosus, Lentinus javor-cuja,Leucopaxillus giganteus, Lactarius piperatus, Laetiporus sulphureus, Lycoperdon molle, Lycoperdon perlatum, Lactarius piperatus</td>
<td>[29, 30, 37, 40, 47, 51, 53, 55, 64, 67, 70, 71, 76, 81, 82, 84, 89, 96, 100, 101, 103]</td>
</tr>
<tr>
<td>Morchella esculenta, Morchella conica, Macrolepiota procera, Morchella angusticeps, Macrolepiota procera</td>
<td>[47, 74, 96]</td>
</tr>
<tr>
<td>Pleurotus ostreatus, Pleurotus eryngii, Pleurotus citrinopileatus, Pleurotus djamor, Pleurotus sapor-cujia, Pleurotus cystidiosus, Pleurotus australis, Pleurotus tuber-regium, Phellinus linteus, Phellinus rimosus, Phellinus merrillii, Polyporus squamosus, Picoa juniperi, Pleurotus florida, Pleurotus pulmonarius, Paeclomyces japonica, Piptoporus betulinus</td>
<td>[10, 12, 24, 47, 49, 51, 53, 58, 60, 64, 71, 72, 80, 89, 97, 98, 100, 105]</td>
</tr>
<tr>
<td>Russula brevipes, Russula cyanoxantha, Russula delica, Ramaria botrytis, Russula vinoso</td>
<td>[47, 57, 60, 79, 98]</td>
</tr>
<tr>
<td>Sparassis crispa, Suillus bellinii, Suillus lutescens, Suillus granulatus, Sarcodon imbricatus, Schizophyllum commune</td>
<td>[40, 47, 79, 81, 100, 101]</td>
</tr>
<tr>
<td>Tricholoma acerbum, Tricholoma equestre, Tricholoma giganteum, Tricholomopsis rutians, Termitomyces microcarpus, Termitomyces schimperi, Termitomyces mammiformis, Termitomyces tylerance, Termitomyces heimi, Termitomyces albuminous, Termitomyces robustus, Terfezia cleaverty, Tremella luciformis, Trametes (Coriolus) versicolor, Trametes orientalis</td>
<td>[30, 46, 47, 49, 55, 56, 70, 71, 74, 79, 89, 96, 101, 103]</td>
</tr>
<tr>
<td>Verpa conica, Volvariella volvacea</td>
<td>[59, 60, 62, 76]</td>
</tr>
</tbody>
</table>

The different strategies utilized to measure the anti-oxidative properties of mushroom compounds or concentrates are fit for different levels of anti-oxidative activity, for example, techniques based on the exchange of electrons and hydrogen
atoms, the capacity to chelate ferrous (Fe2+) and cupric (Cu2+) particles, the electron spin resonance (ESR) strategy, erythrocyte hemolysis and the observing of the action of SOD, CAT and GPx [24, 27, 28-98, 101-103]. It has been established that mushroom agents can exhibit their defensive properties at various phases of the oxidation procedure and by various mechanisms. There are two fundamental sorts of mushroom anti-oxidants, in particular, primary (chain breaking, free radical scavengers) and secondary or preventive [106, 107, 108, 24, 28-98, 101-103]. Secondary antioxidants are the result of deactivation of metals, restraint or breakdown of lipid hydroperoxides, recovery of anti-oxidants, singlet oxygen (O2) extinguishing and so forth. Some mushroom substances that display anti-oxidant activity work as inducers and additionally cell signals, prompting changes in quality expression, which result in the enactment of catalysts that dispose of ROS [107, 64-67, 109]. Diverse logical strategies have been connected for its recognizable proof and evaluation: high performance liquid chromatography (HPLC) and gas chromatography (GC) coupled to unmistakable detection gadgets, Nuclear Magnetic Resonance (NMR), Fourier transform infrared (FT-IR), UV-VIS spectroscopy and different spectrophotometric measures [24, 27, 28-103, 105].

Fig 1: Agaricus species, the most cultivated mushroom worldwide

Fig 2: Lentinus edodes or “shiitake mushroom.”

Mushrooms with anti-inflammatory & analgesic properties

Inflammation is a complex arrangement of co-operations among soluble factors and cells that can emerge in any tissue in case of injury, diseases, or post-ischaemic, poisonous, or immune system damage [110]. In ordinary cases, the body's reaction to inflammation is self-restricting through the down-direction of pro-inflammatory protein expression, the expanded expression of anti-inflammatory proteins, and an inversion in the vascular changes that is encouraged by the initial immune cell recruitment process [111]. The procedures prompting inflammation are typically connected to the activities of the cells required in the rebuilding of tissue structure and function. At the point when cells are exposed to safe stimulants, the pro-inflammatory cells, for example, macrophages, monocytes, or other host cells, begin to create numerous molecular mediators which start the inflammation procedure. Of the different inflammatory biomarkers that are created, the most understood are interleukins (IL-1β, IL-6; IL-8; tumor necrosis factor (TNF-α); nuclear factor κB (NF-κB), intercellular adhesion molecule 1 (ICAM-1), inducible type cyclooxygenase-(COX-2), prostaglandin E2 (PGE2); 5-lipoxygenase (5-LOX); and inducible nitric oxide synthase (iNOS), which prompts the generation of receptive nitrogen species, for example, nitric oxide (NO). Overproduction of these inflammatory mediators prompts various types of cell damage. What's more, drawn out inflammation causes numerous inflammatory disease, for example, Juvenile idiopathic arthritis (JIA), inflammatory bowel disease (IBD), multiple sclerosis, rheumatoid arthritis, gastritis, bronchitis, and atherosclerosis [112]. Subsequently, expanded attention is presently being focused around bioactive compound which can stifle the generation of inflammatory mediators.

Mushrooms are widely used for their high nutritional value and used as a functional food. Additionally, they have been highly appreciated for their medicinal and therapeutic applications [113, 114]. Many of the bioactive compounds found in mushrooms exhibit significant anti-inflammatory properties. Table 2 enlists most of the well-known mushroom species reported to be possessing anti-inflammatory, used parts and the solvent applied for extraction.

<table>
<thead>
<tr>
<th>Mushroom species</th>
<th>Plant part</th>
<th>Extracting solvent</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agaricus blazei</td>
<td>WM</td>
<td>1</td>
<td>115</td>
</tr>
<tr>
<td>Agaricus bisporus</td>
<td>WM</td>
<td>3</td>
<td>116</td>
</tr>
<tr>
<td>Agaricus subrufescens</td>
<td>FB</td>
<td>4</td>
<td>117</td>
</tr>
<tr>
<td>Agrocybe aegerita</td>
<td>FB</td>
<td>3</td>
<td>119</td>
</tr>
<tr>
<td>Agrocybe cylindracea</td>
<td>FB</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>Albatrellus caeruleoporus</td>
<td>FB</td>
<td>3</td>
<td>121,122</td>
</tr>
<tr>
<td>Amanita muscaria</td>
<td>FB</td>
<td>2,3,4</td>
<td>123</td>
</tr>
<tr>
<td>Boletus edulis</td>
<td>WM</td>
<td>3</td>
<td>116</td>
</tr>
<tr>
<td>Cantharellus cibarius</td>
<td>WM</td>
<td>3</td>
<td>116</td>
</tr>
<tr>
<td>Cantharellus tubaeformis</td>
<td>WM</td>
<td>2</td>
<td>124</td>
</tr>
<tr>
<td>Cordyceps militaris</td>
<td>SC/FB</td>
<td>4</td>
<td>125</td>
</tr>
</tbody>
</table>

Fig 3: Pleurotus or “oyster mushroom”
Pain signaling to the central nervous system is initiated when harmful excitement and primary afferent nociceptive C and A fibres are frequently caused by activation of several types of ionotropic channels and etabotropic receptors [14, 15]. In fact, transient receptor potential and acid-sensing ion channels participate in generating nociceptive signals in response to various specific noxious stimuli [16-18]. Activity of some of these channels and other proteins implicated in nociceptive signaling pathways can be up regulated by protein kinase C [19-21]. Thus, pain is generated. Mushrooms are also becoming a good source of analgesic medicine and they are being vastly used for pain amelioration as it is also a part of the inflammatory process. The list of mushrooms used as analgesic are long. But the mostly used edible mushrooms are listed in table 3 with their active compound.

Table 3: Mushroom species with analgesic activity

<table>
<thead>
<tr>
<th>Mushroom species</th>
<th>Active compunds</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleurotus pulmonarius</td>
<td>β-glucans</td>
<td>155-158</td>
</tr>
<tr>
<td>Pleurotus florida</td>
<td>Hydroethanolic extract</td>
<td>159</td>
</tr>
<tr>
<td>Pleurotus eous</td>
<td>Methanol and aqueous extract</td>
<td>160</td>
</tr>
<tr>
<td>Agaricus brasilensis</td>
<td>Fucogalactan</td>
<td>161</td>
</tr>
<tr>
<td>Agaricus bisporus var. hortensis</td>
<td>Fucogalactan</td>
<td>161</td>
</tr>
<tr>
<td>Agaricus macrospores</td>
<td>Agaricoglycides</td>
<td>162-167</td>
</tr>
<tr>
<td>Coriolus versicolor</td>
<td>Polysaccharide glycerides</td>
<td>168-172</td>
</tr>
<tr>
<td>Cordyceps sinensis</td>
<td>Cordymin</td>
<td>173-175</td>
</tr>
<tr>
<td>Termitomyces albumininosus</td>
<td>Crude saponin and polysaccharide extract</td>
<td>176</td>
</tr>
<tr>
<td>Inonotus obliquus</td>
<td>Methanol extract</td>
<td>177</td>
</tr>
<tr>
<td>Phellinus linteus</td>
<td>EtOH extract</td>
<td>178</td>
</tr>
<tr>
<td>Lactarius rufus</td>
<td>Soluble β-glucans</td>
<td>179</td>
</tr>
<tr>
<td>Grifola frondosa</td>
<td>Agaricoglycides</td>
<td>180</td>
</tr>
</tbody>
</table>

Pain is natural for feelings of these diseases, for example, cancer, inflammation and wounds. Accordingly, the pain ameliorating impacts of edible mushrooms have an extensive variety of utilizations. The active components in many mushrooms with pain relieving properties are clear. Additionally these mushrooms specifically the consumable ones have far less side effects than other synthesized drugs found in the market.

Fig 4: Chemical structure of β-glucan isolated from Pleurotus pulmonarius

Fig 5: Structure of the fucogalactans EPF-Ab and EPF-Ah
Mushrooms as source of nutrients

Mushrooms have been considered as ingredient of gourmet cuisine across the globe; especially for their unique flavor and have been valued by humankind as a culinary wonder. More than 2,000 species of mushrooms exist in nature, but around 25 are widely accepted as foods and few are commercially cultivated. Mushrooms are considered as a delicacy with high nutritional and functional value and they are also accepted as nutraceutical foods. Compared to other conventional sources of dietary fibre, such as cereals, fruits, legumes and vegetables, mushrooms or fungi are underutilized [181, 182]. In fact, edible mushrooms or macrofungi are a rich source of some novel dietary fibers (DFs) that have various beneficial health effects to humans which are discussed below. Mushrooms are defined as fungi that have distinctive and visible fruiting bodies [183] and they include edible and medicinal ones. The fruiting bodies of edible mushrooms (e.g. Lentinus edodes) are mainly consumed in dried form, while medicinal mushrooms (e.g. Ganoderma lucidum) are non-edible fungi that have biopharmaceutical applications due to the bioactive components such as polysaccharides and triterpenoids that they contain. While plant cell walls are major sources of DF, mushroom cell walls can also be considered as DF. Mushroom cell walls contain a mixture of fibrillar and matrix components which include chitin (a straight-chain (1→4)-β-linked polymer of N-acetyl-D-glucosamine) and the polysaccharides such as (1→3) - β-D-glucans and mannans, respectively [184]. These mushroom cell wall components are non-digestible carbohydrates (NDCs) that are resistant to human enzymes and can be considered as source of DF. They have a great nutritional value since they are quite rich in protein, with an important content of essential amino acid, fiber and poor fat (Table 4).

Table 4: food values of different species of mushrooms

<table>
<thead>
<tr>
<th>Species</th>
<th>Protein (%)</th>
<th>Fat (%)</th>
<th>Ash (%)</th>
<th>Carbohydrates (%)</th>
<th>Energy (kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agaricus bisporus</td>
<td>14.1</td>
<td>2.2</td>
<td>9.7</td>
<td>74.0</td>
<td>325</td>
</tr>
<tr>
<td>Lentinus edodes</td>
<td>4.5</td>
<td>1.73</td>
<td>6.7</td>
<td>87.1</td>
<td>772</td>
</tr>
<tr>
<td>Pleurotus ostreatus</td>
<td>7.0</td>
<td>1.4</td>
<td>5.7</td>
<td>85.9</td>
<td>416</td>
</tr>
<tr>
<td>Pleurotus eryngii</td>
<td>11.0</td>
<td>1.5</td>
<td>6.2</td>
<td>81.4</td>
<td>421</td>
</tr>
<tr>
<td>Pleurotus sajor-caju</td>
<td>37.4</td>
<td>1.0</td>
<td>6.3</td>
<td>55.3</td>
<td></td>
</tr>
<tr>
<td>Pleurotus giganteus</td>
<td>17.7</td>
<td>4.3</td>
<td>-</td>
<td>78.0</td>
<td>364</td>
</tr>
<tr>
<td>Agaricus blazei</td>
<td>31.3</td>
<td>1.8</td>
<td>7.5</td>
<td>59.4</td>
<td>379</td>
</tr>
</tbody>
</table>

Adapted from Carneiro et al. 2013 [185]; Kalaˇc 2013 [186]; Phan et al. 2012 [187]; Reis et al. 2012 [188].

It is important to remark that the growth characteristics, stage and post-harvest condition may play a great role in the chemical composition and the nutritional value of edible mushrooms. Also, a varied number of differences can occur both among and within species [29, 30]. Mushrooms contain a high moisture percentage that ranges between 80 and 95 g/100 g, approximately. As above mentioned, edible mushrooms are a good source of protein, 200–250 g/kg of dry matter; leucine, valine, glutamine, glutamic and aspartic acids are the most abundant. Mushrooms are low-calorie foods since they provide low amounts of fat, 20–30 g/kg of dry matter, being linoleic (C18:2), oleic (C18:1) and palmitic (C16:0) the main fatty acids. Edible mushrooms contain high amounts of ash, 80–120 g/kg of dry matter (mainly potassium, phosphorus, magnesium, calcium, copper, iron, and zinc). Carbohydrates are found in high amounts in edible mushrooms, including chitin, glycogen, trehalose, and mannitol; besides, they contain fiber, β- glucans, hemicelluloses, and pectic substances. Additionally, glucose, mannitol, and trehalose are abundant sugars in cultivated edible mushrooms, but fructose and sucrose are found in low amounts. Mushrooms are also a good source of vitamins with high levels of riboflavin (vitamin B2), niacin, folates, and traces of vitamin C, B1, B12, D and E. Mushrooms are the only non-animal food source that contains vitamin D and hence they are the only natural vitamin D ingredients for vegetarians. Wild mushrooms are generally excellent sources of vitamin D2 unlike cultivated ones; usually cultivated mushrooms are grown in darkness and UV-B light is needed to produce vitamin D2 [189, 190, 191-196].

Table 5: fatty acid content of different species of mushrooms (g/100g fresh weight)

<table>
<thead>
<tr>
<th>Species</th>
<th>Palmitic</th>
<th>Stearic</th>
<th>Oleic</th>
<th>Linoleic</th>
<th>Linolenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agaricus bisporus</td>
<td>11.9</td>
<td>3.1</td>
<td>1.1</td>
<td>77.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Lentinus edodes</td>
<td>10.3</td>
<td>1.6</td>
<td>2.3</td>
<td>81.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Pleurotus ostreatus</td>
<td>11.2</td>
<td>1.6</td>
<td>12.3</td>
<td>68.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Pleurotus eryngii</td>
<td>12.8</td>
<td>1.7</td>
<td>12.3</td>
<td>68.8</td>
<td>0.1</td>
</tr>
<tr>
<td>Agaricus blazei</td>
<td>11.38</td>
<td>2.8</td>
<td>1.85</td>
<td>72.42</td>
<td>nd</td>
</tr>
</tbody>
</table>

Adapted from Carneiro et al. 2013 [185]; Reis et al. 2012 [186]. Nd, not detected.

![Structure of chitin](image)

Fig 8: Structure of chitin
Conclusion
A few mushroom species have been brought up as source of bioactive compounds, in addition their imperative dietary esteem. The incorporation of entire mushrooms into the eating routine may have viability as potential dietary supplements. The production of these medicinal mushrooms and the extraction of bioactive metabolite should be taken care of and advanced and proficient biotechnological strategies should be obtained to get these metabolites with highest yield. It has been appeared by an extensive variety of studies that mushrooms contain parts with exceptional properties to prevent or treat distinctive types of diseases. This review has demonstrated the importance of mushrooms as potential biofactories for the production of natural anti-oxidant, anti-inflammatory and analgesic metabolites of highly diversified chemical structure. In addition to the high potential application of anti-inflammatory metabolites from mushrooms in forms of unpurified extract and extra pure compounds in medical applications, they can also be used in cosmeceuticals as safe and natural active ingredients without undesired side effects. Conservation and cloning of therapeutic mushrooms is needed for sustainable development. Dedicated research should be undertaken to isolate, purify and structural investigation of novel antioxidant, anti-inflammatory, analgesic and nutraceutical compounds. Studies to date have identified a number of compounds and elucidated underlying mechanism. However, research is needed to elucidate the different roles of multiple active compounds and the pathways involved which will give us a better opportunity to make a life where we can take drugs to ameliorate human sufferings with far less side effects.

Competing Interests
The authors declare that they have no competing interests.

References
33. Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Niksic M, Van Griensven LJLD, Vrvic MM. Dietary polysaccharide extracts of Agaricus brasiliensis fruiting bodies: Chemical characterization and bioactivities at different levels of purification. Food Res. Int. 2014; 64:53-64.
43. Yeh JY, Hsieh LH, Wu KT, Tsai CF. Antioxidant and antioxidant compounds of various extracts from the edible Basidiomycete Grifola frondosa (Maitake).

83. Dore CMPG, Azevedo TCG, de Souza MCR, Rego LA, de Dantas JCM, Silva FRF, et al. Antiinflammatory,

114. Chang ST, Miles PG. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect and Environmental

171. Ngand TB, Chan WY. Polysaccharopeptide from the mushroom Coriolus versicolor possesses analgesic activity but does not produce adverse effects on female reproductive or embryonic development in mice. Gen Pharmacology. 1997; 29(2):269-73.

173. Collier HO, Dinneen JC, Johnson CA, Schneider C. The abdominal constriction response and its suppression by

188. Reis FS, Barros L, Martins A, Ferreira ICFR. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study, Food and Chemical Toxicology. 2012; 50(2):191-197.

192. Reis FS, Barros L, Martins A, Ferreira ICFR. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study, Food and Chemical Toxicology. 2012; 50(2):191-197.

