National Conference on Conservation Agriculture
(ITT University, Gwalior on 22-23 February, 2018)

Impact of Abiotic and Biotic factors on population of sugarcane leaf hopper, Pyrilla perpusilla (Walk.) at Chhattisgarh

Bhupesh Joshi, VK Soni and DK Rana

Abstract
Impact of the various abiotic and biotic parameters on population of sugarcane leaf hopper, Pyrilla perpusilla (Walk.) was studied during 2016-17 and 2017-18 at Kawardha (Kabirdham) district of Chhattisgarh. On the basis of pooled mean various abiotic parameters viz. Maximum temperature, minimum temperature, relative humidity and sunshine hours and biotic parameters viz. egg parasitoid Tetrastichus pyrillae (Chirwold) and ento-pathogenic fungus Metarhizium anisopliae (Metscchn) were showed positive impact on the population of Pyrilla but in case of wind velocity and rainfall negative impact were shown. The Pyrilla population was reached maximum with 8.13 eggs, 28.16 nymphs and 5.17 adults leaf⁻¹ at first fortnight of October. During this period, pooled two year mean maximum temperature, minimum temperature, relative humidity, rainfall, wind velocity and sunshine was 31.7°C, 24.7°C, 80.3%, 26mm, 2.0 Km hr⁻¹ and 7.4 hr day⁻¹ respectively. The maximum parasitization by T. pyrillae was noticed during second fortnight of December with 44.16 per cent and ento-pathogenic fungus M. anisopliae was high during the second fortnight of October with 11.37 per cent. In various abiotic weather parameters, the maximum temperature play significantly important role in the fluctuation the population of P. perpusilla.

Keywords: Pyrilla perpusilla, abiotic factors, biotic factors, Tetrastichus pyrillae and Metarhizium anisopliae

Introduction
Sugarcane is attacked by various insect pests, more than 200 species of insect and few species of non-insect pest have been recorded on the sugarcane in different part of country. Isaac (1937) [12] listed 79 species of insects infesting sugarcane and categorized 18 as major pests and 21 as minor pests which are important limiting factors for obtaining high yield of sugarcane. Sugarcane leaf hopper, Pyrilla perpusilla (Walk) (Hemiptera: Lophopidae) is one of the most serious pest widely distributed on wheat, barley, oats, maize, sorghum and numbers of grasses in many part of the country, often reaching epidemic levels in the subtropics (Gupta and Avasthi, 1957 [10]; Chaudhary and Sharma, 1990 [6]; Kumarasinghe, 1996 [13]; Rajak, 2007 [22]; Pandey et al., 2008 [18]; Patre et al., 2017) [20]. Sugarcane is cultivated as one of the major cash crops in Kabirdham, Ambikapur and Balod district of Chhattisgarh where Kabirdham alone contributing area of 20,765 hectare with productivity of 82.3 tonnes ha⁻¹ (Anonymous, 2017) [3]. Kabirdham is Pyrilla prone district of Chhattisgarh. In year 2014-15, the sugarcane crop was severely infested by P. perpusilla with an average 10-20 adult and 50-100 nymphs leaf⁻¹ in Kabirdham (Anonymous, 2015a) [21]. P. perpusilla causes indirect losses. The nymphs and adults cause heavy damage to the plant and excrete thick transparent liquid known as honey dew which is good medium for the growth of black mold. The mold reduces the photosynthetic activity of the leaves and reduces about 25% of the sugar yield. The cane juice becomes high in glucose and if it is used for making gur gives a soggy transparent liquid known as honey dew which is good medium for the growth of black mold.

~ 67 ~
Patil and Hapase (1992) [19] came to opposite conclusion. According to Ganeharachchi and Fernando (2000) [20] Pyrilla abundance is negatively correlated with rainfall and humidity but positively with minimum temperature. They further concluded that egg parasitoid, predators and rainfall are the main factors responsible for fluctuating P. perpusilla population. For the adaptation of eco-friendly management practices in sugarcane, the first step is to know the pest population and their relationship with abiotic and biotic parameters. Hence, impact of abiotic and biotic factors on population of sugarcane leaf hopper, Pyrilla perpusilla (Walk.) was conducted during 2016-17 and 2017-18 at Kawardha (Kabirdham) district of Chhattisgarh.

Materials and Methods
Population of sugarcane leaf hopper, Pyrilla perpusilla (Walk.) and its natural enemies were recorded during the year 2016-17 and 2017-18 at Kabirdham districts of Chhattisgarh. The population of P. perpusilla (Walk.) was observed on three leaves i.e. top, middle and lower leaves on 10 randomly selected plants from each location. Number of egg mass, nymph and adult of P. perpusilla (Walk.) was recorded on each leaf of plant. At each location ten egg masses of sugarcane leaf hopper were collected at fifteen days interval than each egg mass was cut along with leaf 5 cm length. Each egg mass was kept inside the ½ kg transparent poly beg, afterwards emergence of parasitoid from the egg mass total number of eggs, parasitized egg and unparasitized eggs was counted with the help of binocular microscope. Percentage of egg parasitism of sugarcane leaf hopper was recorded by using the following formula as described by Mishkat and Khalid (2007) [25].

\[
\text{Egg parasitism} (%) = \frac{\text{Total no. of parasitized egg}}{\text{Total no. of eggs}} \times 100
\]

For the study of parasitization by M. anisopliae on nymphs and adults of P. perpusilla (Walk.) thirty sugarcane leaves were randomly selected at fifteen days interval from each location. Percentage parasitism by M. anisopliae on sugarcane leaf hopper was carried out by using the following formula.

\[
\text{Percent parasitism} (%) = \frac{\text{No. of parasitized nymph and adult}}{\text{Total no. of nymph and adult}} \times 100
\]

The data on various abiotic factors (weather parameters) were recorded daily from meteorological observatory of S.K. College of Agriculture and Research Station, Kabirdham from the occurrence to disappearance of leaf hopper. The population of leaf hopper was correlated with recorded temperature, rainfall, relative humidity, sunshine hours and wind velocity.

Results and Discussion
Various abiotic and biotic parameters were recorded along with Pyrilla population during 2016-17 and 2017-18 at Kawardha district Kabirdham Chhattisgarh. Population of sugarcane leaf hopper, Pyrilla perpusilla (Walk.) on sugarcane crop revealed that the occurrence of P. perpusilla commenced from second fortnight of July, increasing till second fortnight of October and then falls down from November to January, Results revealed that during the year 2016-17 and 2017-18, the population of sugarcane leaf hopper, P. perpusilla (Walk.) was first occurred second fortnight of July with 1.63 and 0.64 eggs, 0.07 and 0.04 nymphs and 0.04 and 0.05 adults leaf⁻¹, at this time maximum temperature, minimum temperature, relative humidity, rainfall, wind velocity and sunshine was 31.0 and 30.5 °C, 24.5 and 25.6 °C, 85.7 and 81.3%, 140.2 and 103.4mm, 2.4 and 4.7 Km hr⁻¹ and 2.8 and 2.8 hr day⁻¹ and gradually decreased first fortnight of January with 1.42 and 0.84 eggs, 0.80 and 0.47 nymphs and 0.32 and 0.24 adults leaf⁻¹ at this time maximum temperature, minimum temperature, relative humidity, rainfall, wind velocity and sunshine was 26.9 and 25.3 °C, 12.6 and 11.3 °C, 62.1 and 65.7%, 0.0 and 0.0mm, 1.9 and 1.5 Km hr⁻¹ and 6.1 and 6.2 hr day⁻¹, respectively. On the basis of pooled mean the Pyrilla population was first appeared in first fortnight of July with 1.14 eggs, 0.06 nymphs and 0.05 adults leaf⁻¹ and gradually increasing and reached maximum with 8.13 eggs, 28.16 nymphs and 5.17 adults leaf⁻¹ at first fortnight of October. The present findings are in agreement with Hugar et al. (2002) [31] who noticed the egg and nymphal incidence of the leaf hopper from June to December; while the adult activity was observed throughout the year. Rana et al. (2002) [24] observed Pyrilla first appeared in March, April and May. Peak population of Pyrilla was recorded during August.

The egg parasitoid, T. pyrillae was first appeared in first fortnight of August and gradually increasing trend of parasitization second fortnight of December. The population was disappeared at first fortnight of January. The maximum parasitization was noticed during second fortnight of December with 43.12 and 45.19 per cent during the year 2016-17 and 2017-18, respectively. Similar trend of result was obtained by Miah et al. (1986) [14] who studied the alternative food and natural enemies of the sugarcane pest Pyrilla perpusilla. These results indicated that P. perpusilla could survive in areas of sugarcane plantation. Tetramystichus pyrillae was identified as the egg parasite. Yadav and Choudhary (1987) [27] reported that the Tetramystichus pyrillae was egg parasitoid of sugarcane leaf hopper, Pyrilla perpusilla.

Green muscardine fungus, M. anisopliae an ento-pathogenic fungus on nymphs and adults of sugarcane leaf hopper, P. perpusilla under field condition on sugarcane crop revealed that the parasitization was first appeared with 9.50 per cent parasitization in first fortnight of September and gradually increasing and reached maximum parasitization 11.63 per cent at second fortnight of October; while the adult activity was observed throughout the year 2016-17 and 2017-18 the M. anisopliae was first appeared with 4.16 per cent parasitization in first fortnight of October and gradually increasing and reached maximum parasitization 16.31 per cent at second fortnight of October (Table-2). Similar finding were found by Oblisami et al. (1969) [17] who isolated M. anisopliae from P. perpusilla proved pathogenic to another species of Pyrilla. Varma et al. (1977) [30] observed nymphal mortality caused by fungi in August-November. A comparative symptom of infection by M. anisopliae was seen on Pyrilla. Asre et al. (1983) [4] reported that the effectiveness of natural enemies for the control of P. perpusilla on sugarcane. The entomopathogenic fungus M. anisopliae was caused septicemia on Pyrilla. Varma and Singh (1987) [25] used M. anisopliae as microbial peptide against leafhopper. On the basis of pooled mean various abiotic parameters viz. Maximum temperature, minimum temperature, relative humidity and sunshine hours and biotic parameters viz. egg parasitoid T. pyrillae and ento-pathogenic fungus M. anisopliae were showed positive impact on the egg (0.69, 0.43, 0.27, 0.21 and 0.12), nymph (0.56, 0.29, 0.12, 0.33 and 0.75) and adult (0.56, 0.31, 0.16, 0.26 and 0.70) population of Pyrilla but in case of wind velocity (-0.32, -0.45 and -0.43)
and rainfall (-0.04 and -0.03) negative impact were shown. The *Pyrrilla* population were reached maximum with 8.13 eggs. 28.16 nymphs and 5.17 adults leaf\(^{-1}\) at first fortnight of October. During this period, pooled two year mean maximum temperature, minimum temperature, relative humidity, rainfall, wind velocity and sunshine was 31.7 °C, 24.7 °C, 80.3%, 26mm, 2.0 Km hr\(^{-1}\) and 7.4 hr day\(^{-1}\), respectively. It’s evident that when the relative humidity was increased the population was also gradually increased i.e. relative humidity play significantly important role in the fluctuation of *P. perpusilla* population. Mishra (2005)\(^{(16)}\) reported that *Pyrrilla* is more active in the humid area and during summer bring down the population. More or less similar findings were obtained by Akhtar *et al.* (2014)\(^{(1)}\) reported that maximum population of *P. perpusilla* during the second fortnight of September and more variation in *P. perpusilla* population by temperature rather than relative humidity. Choudhary *et al.* (2015)\(^{(17)}\) reported the *Pyrrilla* infestation initiated in last week of June. The peak activity (14-20 individuals/leaf) was observed from second last week of August to 1\(^{st}\) week of September. The relative humidity of morning and evening, total rain fall were positive influence on *Pyrrilla* field population.

Table 1: Meteorological parameters at the pest infestation period

<table>
<thead>
<tr>
<th>SMW<sup>4</sup></th>
<th>Date</th>
<th>Rain fall (mm)</th>
<th>Max. Temperature(^{0})C</th>
<th>Min. Temperature(^{0})C</th>
<th>Relative Humidity (%)</th>
<th>Wind Velocity (Km hr(^{-1}))</th>
<th>Sunshine (hr day(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-31</td>
<td>July 30</td>
<td>140.2</td>
<td>31.0</td>
<td>30.5</td>
<td>85.7</td>
<td>81.3</td>
<td>83.5</td>
</tr>
<tr>
<td>32-33</td>
<td>August 15</td>
<td>63.4</td>
<td>29.5</td>
<td>31.5</td>
<td>84.8</td>
<td>78.3</td>
<td>81.6</td>
</tr>
<tr>
<td>34-35</td>
<td>August 24</td>
<td>82.3</td>
<td>31.9</td>
<td>32.1</td>
<td>81.4</td>
<td>83.4</td>
<td>82.4</td>
</tr>
<tr>
<td>36-37</td>
<td>September 15</td>
<td>28.8</td>
<td>30.9</td>
<td>33.5</td>
<td>78.3</td>
<td>84.6</td>
<td>81.5</td>
</tr>
<tr>
<td>38-39</td>
<td>September 30</td>
<td>82.6</td>
<td>31.3</td>
<td>32.8</td>
<td>87.4</td>
<td>80.9</td>
<td>84.2</td>
</tr>
<tr>
<td>40-41</td>
<td>October 14</td>
<td>14.9</td>
<td>30.9</td>
<td>32.5</td>
<td>78.3</td>
<td>82.3</td>
<td>80.3</td>
</tr>
<tr>
<td>42-43</td>
<td>October 28</td>
<td>0.0</td>
<td>31.8</td>
<td>33.6</td>
<td>64.1</td>
<td>68.4</td>
<td>66.3</td>
</tr>
<tr>
<td>44-45</td>
<td>November 15</td>
<td>0.0</td>
<td>29.4</td>
<td>28.8</td>
<td>40.4</td>
<td>69.7</td>
<td>55.1</td>
</tr>
<tr>
<td>46-47</td>
<td>November 30</td>
<td>0.0</td>
<td>29.8</td>
<td>28.2</td>
<td>36.7</td>
<td>64.6</td>
<td>50.7</td>
</tr>
<tr>
<td>48-49</td>
<td>December 15</td>
<td>0.0</td>
<td>28.4</td>
<td>26.4</td>
<td>45.9</td>
<td>54.2</td>
<td>50.1</td>
</tr>
<tr>
<td>50-51</td>
<td>December 31</td>
<td>0.0</td>
<td>27.8</td>
<td>24.3</td>
<td>50.9</td>
<td>45.8</td>
<td>48.4</td>
</tr>
<tr>
<td>52-01</td>
<td>January 15</td>
<td>0.0</td>
<td>26.9</td>
<td>25.3</td>
<td>62.1</td>
<td>65.7</td>
<td>63.9</td>
</tr>
</tbody>
</table>

Source- Meteorological observatory, S. K. College of Agriculture & Research Station, Kawardha

Table 2: *Pyrrilla perpusilla* population and its natural enemies at Kabirdham

<table>
<thead>
<tr>
<th>Date</th>
<th>Eggs/leaf(^{-1})</th>
<th>Nymphs/leaf(^{-1})</th>
<th>Adults/leaf(^{-1})</th>
<th>Percentage parasitization</th>
<th>Egg-parasitoids: Tetrastichus pyrillae</th>
<th>Ento-pathogenic fungus: Metarhizium anisopliae</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-Jul</td>
<td>1.63</td>
<td>0.64</td>
<td>1.14</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>15-Aug</td>
<td>2.16</td>
<td>2.30</td>
<td>2.23</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>30-Aug</td>
<td>3.40</td>
<td>3.91</td>
<td>3.66</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>15-Sep</td>
<td>6.21</td>
<td>4.52</td>
<td>5.37</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>30-Sep</td>
<td>8.48</td>
<td>5.63</td>
<td>7.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>15-Oct</td>
<td>9.44</td>
<td>6.82</td>
<td>8.13</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>30-Oct</td>
<td>6.83</td>
<td>9.24</td>
<td>8.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>15-Nov</td>
<td>4.72</td>
<td>4.37</td>
<td>4.55</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>30-Nov</td>
<td>4.83</td>
<td>2.60</td>
<td>3.72</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>15-Dec</td>
<td>3.35</td>
<td>1.76</td>
<td>2.56</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>30-Dec</td>
<td>3.01</td>
<td>1.21</td>
<td>2.11</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>15-Jan</td>
<td>1.42</td>
<td>0.84</td>
<td>1.13</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 3: Correlation of *Pyrrilla perpusilla* population with weather parameters & natural enemies

<table>
<thead>
<tr>
<th>Weather parameter</th>
<th>Eggs/leaf(^{-1})</th>
<th>Nymphs/leaf(^{-1})</th>
<th>Adults/leaf(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain fall (mm)</td>
<td>0.10</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Maximum Temperature(^{0})C</td>
<td>0.55</td>
<td>0.72**</td>
<td>0.69*</td>
</tr>
<tr>
<td>Minimum Temperature(^{0})C</td>
<td>0.43</td>
<td>0.43</td>
<td>0.37</td>
</tr>
<tr>
<td>Relative humidity (%)</td>
<td>0.16</td>
<td>0.36</td>
<td>0.27</td>
</tr>
<tr>
<td>Wind velocity (km/hr)</td>
<td>-0.12</td>
<td>-0.34</td>
<td>-0.27</td>
</tr>
<tr>
<td>Sunshine hours (hours)</td>
<td>0.14</td>
<td>0.25</td>
<td>0.21</td>
</tr>
<tr>
<td>Tetrastichus pyrillae</td>
<td>0.28</td>
<td>0.02</td>
<td>0.12</td>
</tr>
</tbody>
</table>

*: Significant (5%)
**: Highly significant (1%)
Acknowledgement
The first author expresses his heartfelt gratitude towards
Chairman of my Advisory Committee Dr. D. K. Rana,
Professor, Department of Entomology, College of
Agriculture, IGKV, Raipur and my Co-major Advisory Dr. V.
K. Soni, Assistant Professor, S. K. College of Agriculture &
Research Station Kawardha.

References
1. Akhtar MF, Gogi MD, Abbas Q, Shamraiz RM, Ahmed
R, Niaz T. Impact of abiotic factors on population build-
up of Pyrilla perpusilla and Epiricana melanoleuca on
2014; 2(6):77-81.
2. Anonymous. Indian Institute of Sugarcane Research,
Lucknow, Uttar Pradesh, India. Newsletter. 2015a; 21(1):7
2017, 21-23.
4. Asre R, Gupta PK, Pawar AD. Control of sugarcane
pyrilla by its natural enemies. Indian Farming. 1983;
5. Chaudhary MA, Ansari NA. Insect pests of sugarcane in
6. Chaudhary RN, Sharma VK. A note on Pyrilla perpusilla
7. Choudhary AK, Amrate PK, Chatterjee A. Role of biotic
and abiotic factors in population dynamics of sugarcane
leaf hopper, Pyrilla perpusilla Walker in Madhya
Pradesh, India. Environment and Ecology, 2015;
8. Ganehiarachchi G, Fernando IVS. Population dynamics
of the sugarcane planthopper (Pyrilla perpusilla) in the
9. Gupta M, Ahmed I. The effect of temperature and
humidity on different nymphal instars of Pyrilla
10. Gupta BD, Avasthi PN. Observations on a new beetle
pest of sugarcane crop in Bihar. Indian Sug. 1957; 7:587-
594.
11. Hugar PS, Rachappa V, Rajendra H. Population dynamics
of sugarcane leafhopper, Pyrilla perpusilla (Walker) and
its natural enemies in Northern Karnataka. Resources
management in plant protection during twenty first
12. Isaac PV. Information on pests of sugarcane in India from
published received from Provinces and state
governments, Indian publications. 1937, 186.
13. Kumarasinghe NC. The sugarcane lophopid planthopper
Pyrilla perpusilla (Homoptera: Lophopidae): A review of
its biology, pest status and control. Bul Entomol Res.
14. Miah MAH, Qudrat-E-Khuda AKM, Shahjahan M. The
problems of Pyrilla perpusilla and the impact of its
15. Mishkat U, Khalid M. Population Dynamics of Sugarcane
Plant hopper, Pyrilla perpusilla Walker (Lophopidae:
Homoptera) and its natural enemies at District Mandi
Discovery Publishing House, New Delhi, India. 2005,
147.
17. Oblisami G, Ramoorthi K, Rangaswami G. Mysore
18. Pandey KP, Pandey MN, Mishra VK, Singh S, Singh DN,
Singh SB. Studies on the effect of eco-friendly bio-agent
Epiricana melanoleuca for the control of Sugarcane
Pyrilla (Pyrilla perpusilla) in eastern U.P. Indian
Agricultural Research Article. 2008; 23(2):91-95.
19. Patil AS, Hapase DG. Sugarcane pests management under
wet conditions in Maharasthra. Cooperative Sugar,
20. Patre RS, Soni VK, Joshi B. Impact of the Various
Abiotic Weather Parameters on Population of Sugarcane
Leaf Hopper, Pyrilla perpusilla (Walker). Trends in
21. Puri KD, Sidhart K. Effect of Pyrilla epidemic (1999-
Conv. Sugar Tech. Assoc., Ind., 25th to 27th August,
2001, A60-A68.
22. Rajak DC. Colonization & redistribution of Epiricana
melanoleuca Fletcher against P. perpusilla Walker. Ann.
23. Rajak RL, Pawar AD, Mishra MP, Prasad J, Verma A,
Singh GP. Sugarcane pyrilla epidemic 1985- a case study,
24. Rana ZA, Mahmood MM, Hashmi AA. Population
dynamics of Pyrilla perpusilla Walker. And its parasite
Epiricana melanoleuca Fletcher at Faisalabad. Pakistan
25. Varma A, Singh K. Metarhizium anisopliae (Metschnikoff)
Sorokin in the management of Pyrilla perpusilla Walker, the sugarcane leaf hopper.
Entomology Newsletter 1987; 18:12
26. Varma A, Avasthy PN, Agnihiotri VP. Record of three
entomogenous fungi on sugar-cane leafhopper, Pyrilla
perpusilla Walk. Science and Culture. 1977; 43(6):282-
283.
27. Yadav RP, Chaudhary JP. Effect of temperature and
relative humidity on longevity and development of the
parasitoid, Tetrastichus pyrillae Crawford (Hymenoptera:
Eulophidae). Insect Science and its Application. 1987;