Effect of maltodextrin on the properties of lyophilized Aloe vera (Aloe Barbadensis Mill) powder

Ankit Dayal, Anju Bhat and Rafia Rashid

Abstract

The effect of maltodextrin concentrations (10%, 15% and 20%) on the properties of lyophilized Aloe vera powder was investigated. Addition of maltodextrin in Aloe vera juice yielded powder with free flowable properties. The moisture content and water activity of the powder decreased with incorporation of maltodextrin. Colour properties observed on the basis of L*, a* and b* revealed that lightness (L*) of the powder increased with incorporation of maltodextrin while a* and b* decreased. Highest L* value (86.87) was observed at 20% concentration of maltodextrin. Bulk and tapped density increased with incorporation of maltodextrin. Powder recovery improved with addition and increasing concentration of maltodextrin. Water solubility, swelling capacity and dissolution time increased whereas the water absorption index, hygroscopicity decreased upon addition of maltodextrin. Maltodextrin decreased the cohesive index measured in terms of Hausner ratio of the powder. Carr index and Hausner ratio measured showed the better flow properties of the powder.

Keywords: Aloe vera, maltodextrin, lyophilization, bulk density, carr index

Introduction

Drying of fruits is one of the oldest techniques of food preservation known to man for example solar drying. One of the essential feature of drying is that the moisture content is reduced to a level (<5%) below which microorganisms can’t grow. Lyophilization, also known as freeze-drying or cryodesiccation, has been proven as the best method for drying thermosensitive substances. This method minimizes thermal degradation reactions. It is comparatively costly method but the high value of nutraceutical extract and ability to encapsulate heat sensitive compounds could justify such costs [20].

Aloe vera (Aloe barbadensis Miller) originated in the warm, dry climates of Africa. Aloe is a member of liliaceae family and it resembles-cactus. Aloe vera is an important and traditional medicinal plant and has been used for its medicinal value for several thousand years. Its applications have been recorded in ancient cultures of India, Egypt, Greece, Rome and China. Aloe vera is known by several names, it is commonly known as ghrir kumari or gwarpatha in India. Aloe vera leaf contains two major liquid sources, yellow latex (exudate) and the clear gel (mucilage). The mucilaginous jelly from the parenchyma cells of the plant is referred to as Aloe vera gel [11]. Photochemistry of Aloe vera gel has revealed the presence of vitamins, minerals, enzymes, sugars, polysaccharides, anthraquinones of phenolic compounds [23]. Aloe vera has been utilized as a source of functional food, especially for the preparation of health food drinks and other beverages [27]. Globally the area under Aloe vera cultivation is 23589 ha. American countries possess 19189 ha, Australia 4170 ha, Africa 300 ha and India possess only negligible area under this crop [37].

Various carrier agents (maltodextrin, starch, modified starch and protein conjugates, gums, pectin, etc.) are available for the use in food. The ideal encapsulant should have film-forming properties, emulsifying properties, be biodegradable, be resistant to the gastrointestinal tract, have low viscosity at high solids contents, exhibit low hygroscopicity and have a low cost [28]. Maltodextrins are the hydrolyzed product of starches also known as modified starch. These are bland in flavour and are available with different degrees of polymerization measured as dextrose equivalent (DE: 4, 10, 15, 20, 30 and 42) [10, 8]. The use of maltodextrin is popular as it has number of functions including bulking and film formation properties, binding of flavour and fat in addition to playing a role in reduction of oxygen permeability of wall matrix [30].
Materials and Methods

Materials

Fresh and mature leaves of Aloe vera were supplied by the Department of Agriculture (Govt. of J&K) and the maltodextrin (DE-20) by Biopharma India. Laboratory scale lyophilizer (Alpha 2-4 LD plus by Martin Christ) was employed for the drying of Aloe vera juice.

Methods

a. Processing of Aloe vera juice

Aloe vera gel was extracted using hand filleted technique and processed into juice. Leaves were dipped in 500 ppm potassium metabisulphite (KMS) solution for an hour and then washed thoroughly with tap water followed by cooling of leaves at 5°C for gel stabilization. Tapering tip and lower leaf base of Aloe vera leaves were trimmed off (1-2 inch) and the sharp spikes located along the leaf margins were also removed with the help of a sharp stainless steel knife. Thereafter, green rind portion (epidermis) was carefully separated from the parenchyma (inner fillet) by knife to avoid mixing of gel with yellow latex, located between the rind and the inner fillet. These fillets were then passed through the juicer to get the Aloe vera juice. The Aloe vera juice was filtered through sieve to remove coarse particle. The Aloe vera juice obtained was mixed with maltodextrin (MD) at the concentrations of 10%, 15% and 20%. Then it was subjected to lyophilization (-61 to -65 °C for 72 hours). The Aloe vera powder obtained after the lyophilization was coded as T1, T2 and T3 for on the basis of maltodextrin concentration i.e. 10%, 15% and 20% respectively. The powder was packed in laminated pouches and stored under room conditions.

\[
\text{Water absorption index} = \frac{\text{weight of gel} - \text{weight of ground dry sample}}{\text{weight of ground dry sample}} \quad \text{(eqn 1)}
\]

\[
\text{Water solubility index (\%)} = \frac{\text{weight of dry solids from the supernatant}}{\text{weight of ground dry sample}} \times 100 \quad \text{(eqn 2)}
\]

\[
\text{Swelling capacity} = \frac{\text{Dry weight}_{\text{supernatent}}}{\text{Dry weight}_{\text{sample}} \times (1 - \frac{\text{WS}}{100})} \quad \text{(eqn 3)}
\]

\[
\text{Bulk density} = \frac{\text{Mass of powder}}{\text{volume}} \quad \text{(eqn 4)}
\]

\[
\text{CI (\%)} = \frac{\rho_T - \rho_B}{\rho_T} \quad \text{(eqn 5)}
\]

\[
\text{HR} = \frac{\rho_T}{\rho_B} \quad \text{(eqn 6)}
\]

Table 1: Standard values for measuring flowability and cohesiveness of the powder

<table>
<thead>
<tr>
<th>CI (%)</th>
<th>Flowability</th>
<th>HR</th>
<th>Cohesiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td><15</td>
<td>Very good</td>
<td><1.2</td>
<td>Low</td>
</tr>
<tr>
<td>15–20</td>
<td>Good</td>
<td>1.2–1.4</td>
<td>Intermediate</td>
</tr>
<tr>
<td>20–35</td>
<td>Fair</td>
<td>>1.4</td>
<td>High</td>
</tr>
<tr>
<td>35–45</td>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>45</td>
<td>Very bad</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d. Powder recovery/yield

Powder recovery/yield, was evaluated by determination of the product recovery given by the percentage ratio between the total mass of product recovery and the mass of extract, fed in the system\([22]\).

e. Statistical analysis

Statistical analysis of the data recorded was done using using OPSTAT software program.

Results and Discussion

1. Moisture content

Moisture content of Aloe vera powder differed significantly in all the treatments. The highest moisture content (3.74 %) was observed in T1 and the lowest (3.40 %) in T3. Incorporation and increased concentration of maltodextrin increased the

\[1605\]
total solids in juice to be dried which in turn reduced the total water available for evaporation, thus moisture content decreased. Moisture content decreases with incorporation and increasing concentration of maltodextrin [23].

2. Water activity (a_w)
Water activity (a_w) was maximum (0.169) in treatment T_1 and the lowest (0.142) in T_3. Water activity decreased with incorporation and increase in maltodextrin concentration. This might be due to the increased total solids like in case of moisture content. Encapsulating agents reduced the water activity in ginger powder [24]. Water activity decreased with increased concentration of maltodextrin [26].

3. Water absorption index
The data (Table 2) revealed that different concentrations of encapsulating agents and storage period significantly affected the water absorption index of the powder. Highest water absorption index (9.64 g/g) was recorded in T_1 and the lowest (7.26 g/g) was in T_3. With the increase in concentration of maltodextrin, water absorption index of the powder decreased. Carrier agents decreased the water absorption index in Satureja montana powders [36]. These effects of encapsulating agents may be attributed to the inverse relationship between the agent's concentration and the mean particle size. The agents could form an outer layer on the drops and alter the surface stickiness of particles due to the transformation into a glassy state [31]. Encapsulating agents decreased the water absorption index in encapsulated bioactive components of purple sweet potato [2].

4. Water solubility index / solubility index
Maximum water solubility index (94.99 %) was recorded in T_1 and the lowest (86.99%) in T_3. The addition of maltodextrin seemed to improve the solubility of the powder which might be attributed to the fact that carrier agent like maltodextrin had superior water solubility [14]. Similar results were observed in freeze dried anthocyanin powder [19].

5. Swelling capacity
From the data (Table 2), it is evident that the highest swelling capacity (32.21 %) was recorded in T_1 and the lowest (30.69 %) in T_3. The swelling capacity of the powders increased with maltodextrin, this might be due to the starch-water interactions [2-15]. Amylopectin fraction of starch is believed to be primarily responsible for swelling [34].

6. Hygroscopicity
Hygroscopicity is a measurement of the capacity of the food to contain occluded moisture and is an important property, to be considered during the storage of the product [29]. Higher hygroscopicity (8.36 g/100g) was in T_1 and the lowest (6.18 g/100g) was in T_3. With the increase in concentration, hygroscopicity decreased which might be due to the low moisture content. Increased concentration of drying aids decreased the hygroscopicity of the tamarind pulp powder and beetroot juice concentrate [5-7].

7. Dissolution
Dissolution test is the measurement of the reconstitution speed of dried powder into water. It is expressed as the time taken by the powder to fully reconstitute in water by vortexing [26]. Increase in dissolution time with increase of maltodextrin concentration was recorded. Highest (16.33 s) dissolution time was recorded in T_3 and the lowest (11.67 s) in T_1, this might be due to increase in total solids in the powder. Increased concentration maltodextrin increased dissolution time in lyophilized watermelon powder [21].

Table 2: Physio-chemical and functional properties of freeze dried aloe vera powder

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Treatment</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture Content</td>
<td>3.74</td>
<td>3.52</td>
<td>3.40</td>
<td></td>
</tr>
<tr>
<td>Water activity</td>
<td>0.169</td>
<td>0.152</td>
<td>0.142</td>
<td></td>
</tr>
<tr>
<td>Water absorption index (g/g)</td>
<td>9.64</td>
<td>8.59</td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>Water solubility index (%)</td>
<td>86.99</td>
<td>89.97</td>
<td>94.99</td>
<td></td>
</tr>
<tr>
<td>Swelling capacity (%)</td>
<td>30.69</td>
<td>31.22</td>
<td>32.21</td>
<td></td>
</tr>
<tr>
<td>Hygroscopicity (g/100g)</td>
<td>8.56</td>
<td>7.47</td>
<td>6.18</td>
<td></td>
</tr>
<tr>
<td>Dissolution time (s)</td>
<td>11.67</td>
<td>13.67</td>
<td>16.33</td>
<td></td>
</tr>
</tbody>
</table>

T_1 = (Aloe vera : Maltodextrin :: 90 : 10); T_2 = (Aloe vera : Maltodextrin :: 85 : 15); T_3 = (Aloe vera : Maltodextrin :: 80 : 20)

8. Bulk density and tapped density
Highest bulk and tapped density (0.38 and 0.47 g/ml) was recorded in T_3 and the lowest (0.31 and 0.41 g/ml) in T_1 respectively. Increased concentration of maltodextrin increased the bulk and tapped density. Bulk density of powders is affected by chemical composition, particle size and moisture content as well as by processing and storage conditions [6]. In principle, density increases as volume decreases at a given constant mass. In the present study, bulk densities of powders, increased gradually as the ratio of carrier agents increased (Figure 1). Maltodextrin has high density so fits easily in the spaces between the particles, occupying less volume and consequently particles with higher concentration of maltodextrin present higher bulk density [55]. Bulk density increased with increased concentration of encapsulating agent in dried pink guava and avocado oil [32,4]. Tapped density corresponds to the real solid density and does not consider the spaces between the particles, in contrast to the bulk density, which takes into account all these spaces [9]. Increased concentration of maltodextrin resulted in increased tapped density (Figure 1). This may be due to the properties of maltodextrin, which minimizes the sticking of thermoplastic particles [13]. With increase in carrier agent tapped density increased which might be due to increase in weight of end product in ber powder [33].

Fig 1: Bulk and tapped density of the freeze dried aloe vera powder

9. Cohesiveness (Hausner ratio) and Carr index (CI %)
With the increase in concentration of maltodextrin, the mean Hausner ratio (Figure 2) and Carr index (Figure 3) of the powder decreased significantly. Highest Hausner ratio (1.32) and Carr index (24.39%) was recorded in T_1 and the lowest Hausner ratio (1.24) and Carr index (19.15%) in T_3.
10. Colour

Colour is a very important quality characteristic of fruit and vegetable products which influences the consumer acceptability. It was observed that with addition and increase in concentration of carrier agents, L* value increased. Highest L* value (86.87) was observed in T3 and the lowest (81.08) was observed in T1. a* and b* values decreased with the addition of maltodextrin. Maximum a* value (1.39) and b* value (21.04) was observed in T1 and the minimum (1.25 and 20.74) was observed in T3 respectively (Table 3). High concentration of maltodextrin resulted in whiteness of the powder \[21\]. Increased maltodextrin concentration, decreased a* and b* values of spray-dried encapsulated anthocyanins from Hibiscus sabdariffa L\[16\].

Table 3: Colour analysis of freeze dried aloe vera powder

<table>
<thead>
<tr>
<th>Treatment</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>81.08</td>
<td>1.39</td>
<td>21.04</td>
</tr>
<tr>
<td>T2</td>
<td>83.67</td>
<td>1.33</td>
<td>20.90</td>
</tr>
<tr>
<td>T3</td>
<td>86.87</td>
<td>1.25</td>
<td>20.27</td>
</tr>
</tbody>
</table>

L* [whiteness (+)/darkness (-)]; a* [redness (+)/greenness (-)]; b* [yellowness (+)/blueness (-)]

11. Powder recovery/Yield

Highest yield (23.49%) of freeze dried powder was recorded in T3 and the lowest (12.73%) in T1. Significant increase in the yield percentage was observed with increase in concentration of maltodextrin (Figure 4).

Conclusion

Aloe vera powder was produced using lyophilization at three maltodextrin concentration. Maltodextrin was an effective drying aid helped in reducing stickiness and altered the physicochemical properties of the Aloe vera powder. With increase in maltodextrin concentration, the moisture content of the lyophilized powder decreased, whereas time for reconstitution increased. Solubility of the powder was increased with increasing concentration of maltodextrin. Maltodextrin increased the lightness of the powder. Storage also had significant effect on the properties of the powder. Moisture content, water activity, dissolution time bulk and tapped density increased with time.

Acknowledgement

The corresponding author greatly acknowledges the financial support from the University Grants Commission (UGC), Govt. of India.

References

19. Laokuldiok T, Kanha N. Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying, LWT - Food Science and Technology. 2015; 64:405-11.

