Effect of integrated weed management practices on weed dynamics of dry direct seeded rice (Oryza sativa L.)

Piyush Kumar Bhargaw, DK Roy, Ashok Pandit, Awdhesh Kumar and Abhinandan Singh

Abstract
A field experiment was conducted during the kharif season of 2017 at the research farm of RPCAU, Pusa, Samastipur, Bihar to study the, Integrated weed management practices on weed dynamics and grain yield of Dry Direct Seeded Rice. The experiment was conducted in Randomized Block Design having 10 treatments with 3 replications. Among all the weed management practices both hand weeding and herbicidal treatments had reflective effect on weed population and weed dry matter accumulation as well as reflected in their superiority over the weedy check. Hand weedicings at 20, 40 and 60 DAS was found significantly superior over all the integrated weed management practices on weed growth of dry direct seeded rice. Amongst herbicidal treatments Pendimethalin @ 1 kg/ha at 0-2 DAS fb two hand weedicings at 20 and 40 DAS was superior on to rest of all herbicidal treatments for dry direct seeded rice during the year of experimentation.

Keywords: Integrated weed management practices, weed dynamics, dry direct seeded rice, (Oryza sativa L.)

Introduction
Rice (Oryza sativa L.) is the leading cereal of the world (Ashraf et al., 2006), and more than half of the human race depend on rice for their daily sustenance (Chauhan and Johnson, 2011). Almost 90% area and production of the world’s rice produced and consumed in Asia. The world’s total area under rice cultivation is 161.1 million ha and production is about 487.5 million tons along with the productivity of 3.03 ton/ha (STATISTA –The Statics Portal 2017-18). In India, Rice is cultivated in 44.1 million hectare area with an annual production of 110.2 million tons and productivity is 2.5 ton/ha (India Stat – Advance Estimate, 2017-18). In Bihar, Rice is cultivated on 3.2 million ha area with the production of 6.8 million tons and the productivity is 2.1 ton/ha (Directorate of economics statistics, Govt. of Bihar, 2017-18). Rice is grown in both kharif and Rabi seasons under diverse ecological and climatic conditions apart from socio-economic diversities of the state. 33% of total rice land has got irrigation facilities and rest is totally dependent upon rainfall. Dry seeding consists of sowing dry seeds on dry (unsaturated) soils. Seeds can be broadcasted, drilled or dibbled. Weeds are the universal pest in rice and causes yield loss of 72.6% in Direct seeded rice (Kolhe and Tripathi, 1998) [1]. Damage caused by weeds cannot be identified in early stage as compared to insect damage; so that weeds act as hidden war on crop plants. Early emergence of weeds along with crop seedlings and their rapid growth result in a severe crop weed competition for light, nutrients, moisture and space in direct seeded rice. Weeds will adversely affect the yield, quality and cost of production due to competition for various growth factors (Singh, 2008). Because of wide adaptability and faster growth, weeds dominate the crops habitat and reduce the yield potential (Rao, 2011). On an average yield loss due to weed competition ranges from 15-20%, but in severe cases it may exceed 50% (Hasanuzzaman et al., 2009) or even complete crop failure (Jayadeva et al., 2011) [2].

Materials and methods
An integrated weed management trial was conducted at University Research Farm, Pusa, Samastipur during kharif 2017 to find out the effective herbicides for weed management in dry direct seeded rice. The experiment was laid out in Randomized block design with ten treatments and three replications. T1; Pendimethalin @ 1 kg/ha at 0-2 DAS fb Bispyribac-Na @ 25 g/ha at 20 DAS, T2; Pendimethalin @ 1 kg/ha at 0-2 DAS fb two hand weedings’ at 20 & 40 DAS, T3; Stale seedbed using Glyphosate @ 1 kg/ha at 10 DBS fb Bispyribac-Na @ 25 g/ha at 20 DAS, T3; Stale seedbed using Glyphosate @ 1 kg/ha at 10 DBS fb Pendimethalin
Weed population

The dominance of three types of weeds viz. sedges, broad leaved weeds and grasses, commonly weed population/m² were considered at different stages of rice crop. The weed population revealed a decreasing trend from 30 DAS to 90 DAS in all the weed management practices except weedy check. Weed free (by hand weeding thrice at 20, 40 and 60 DAS) treated plots exhibited significantly lowest weed population of 9.05, 7.85 and 6.56 /m² at 30, 60 and 90 DAS, respectively. This might be due to timely suppression of weeds by intercultural tools. The weeds were uprooted and killed. Similar findings were observed by Pandey et al., 1997 and Satyanarayanan et al., 1997 [14].

Among different herbicidal treatments, application of Pendimethalin @ 1 kg/ha at 0-2 DAS /fb two hand weeding’s at 20 & 40 DAS (T2) recorded significantly the lowest weed population of 11.34, 8.05 and 7.74/m² at 30, 60 and 90 DAS, respectively followed by Pendimethalin @ 1 kg/ha at 0-2 DAS /fb 2,4-D Na salt @ 0.5 kg/ha at 20 DAS /fb one hand weeding at 40 DAS (T3) and Staie seedbed using Glyphosate @ 1 kg/ha at 10 DBS /fb Pendimethalin @ 1 kg/ha at 0-2 DAS /fb 2,4-D Na salt @ 0.5 kg/ha at 20 DAS /fb one hand weeding at 40 DAS, T6: Weed free (By hand weeding’s at 20, 40 & 60 DAS) and T10: Weedy check. The fertilizer dose viz. 120-60-40 kg/ha N-P2O5-K2O were applied in experimental field. Nitrogen was applied through urea and DAP and Phosphorus through DAP whereas Potassium was applied through MOP. 1/3rd dose of nitrogen and full dose of phosphorus and potassium were applied as basal dose at the time of sowing and remaining 2/3rd dose of nitrogen was applied in two equal splits at 30 and 60 DAS. Crop seeds were treated with SAAF (Carbendazim+Mancenob) @ 3 g/kgseed before sowing to protect the crops from seed borne diseases. Seed of *Sesbania* was sowing in between rows just after seeding of rice for brown manuring and was knock down at 20 DAS with the help of 2, 4-D. using mulch by wheat straw at just after sowing and also applied staie seedbed technique. The application of pre-emergence herbicide with the help of Pendimethalin 0-2 DAS and post-emergence herbicides with the help of Bispyribac-Na and 2, 4-D at 20 DAS. Manual weeding’s are applied at 20, 40 and 60 DAS.

Weed population was counted from an area enclosed in a quadrant of 0.50 m² from each plot and then converted into per meter square. Weeds were removed from an area of 0.50 m² and were cleaned, washed, air dried and then kept in the oven at 60°C till constant weight reached. The dry weight of weeds was expressed on oven dry basis in g/m². Weed control efficiency (WCE) was computed by the formula:

$$WCE(\%) = \frac{X-Y}{X} \times 100$$

Where,
$X =$ Dry weight of weed in un weeded check, and
$Y =$ Dry weight of weed under the treatment for which WCE is being calculated.

The efficacy of the weed index was calculated by the following formula:

$$W.I. (\%) = \frac{X-Y}{X} \times 100$$

Where, X was the grain yield (q/ha) in weed free plot, Y was the grain yield (q/ha) in treated plot.

Result and discussion

It is very much needed to know the type of weeds associated with dry direct seeded rice before taking a suitable integrated weed management practices. In the present study, different weed species posed serious problem in the dry direct seeded rice. This incidence of weeds might be due to their inherent ability of germination, early maturity, early seedling vigor, rooting habit and speedy growth under the favorable climatic condition.

Weed Dry Matter (g/m²)

There was a decreasing trend in the dry weight of weeds with the increase of crop age up to 90 DAS. Weed free i.e by hand weeding thrice recorded lowest weed biomass of 17.95, 16.79 and 15.22 g/m² at 30, 60 and 90 DAS respectively i.e at each growth stages of crop, and weedy check revealed significantly highest weed dry matter/m². It might be due to removal of most weed flora at the time of intercultural operation, thus, reduced in weed biomass. Similar findings were also given by Pandey et al., 1997 and Satyanarayanan et al., 1997 [14].

Among different herbicidal treatment application of Pendimethalin @ 1 kg/ha at 0-2 DAS /fb two hand weeding’s at 20 and 40 DAS, recorded significantly lowest weed dry matter i.e. (26.55, 17.75 and 17.25 g/m²) at 30, 60 and 90 DAS, respectively which was closely followed by T3 - Pendimethalin @ 1 kg/ha at 0-2 DAS /fb 2,4-D Na salt @ 0.5 kg/ha at 20 DAS /fb one hand weeding at 40 DAS (28.87, 18.32 and 16.89 g/m²), T5 - Mulch @ 5 t/ha (By wheat straw) /fb Bispyribac Na @ 25 g/ha at 20 DAS /fb one hand weeding at 40 DAS (27.54, 19.78 and 18.05 g/m²) and T4 - Staie seedbed using Glyphosate @ 1 kg/ha at 10 DBS /fb Pendimethalin @ 1 kg/ha at 0-2 DAS /fb Bispyribac Na @ 25 g/ha at 20 DAS (31.45, 20.95 and 18.99 g/m²). The lowest weed biomass observed with these treatments might be due to inherent capability of the chemical to affect the cell division, cell growth and hindering the germination of weeds. The finding was in conformity with the finding of Bhagirath et al., 2011 [2].

Weed Control Efficiency and Weed Index (%)

Weed control efficiency recorded at 60 DAS because this stage had recorded maximum weed population and weed dry weight (g/m²). Among all the integrated weed management practices, treatment T5 - Weed free (By hand weeding’s at 20, 40 and 60 DAS) recorded highest Weed Control Efficiency.
(WCE) of 77.54%, which might be due to decrease in weed biomass as compared to rest of the weed management practices. The highest WCE with weed free treatment i.e thrice hand weeding also reported by Singh et al., 2014 and Walia et al., 2012.

Among the different herbicidal treatments, the highest WCE was obtained with treatment T_2-Pendimethalin @ 1 kg/ha at 0-2 DAS fb two hand weeding’s at 20 & 40 DAS (76.26%), $f_b T_2$-Pendimethalin @ 1 kg/ha at 0-2 DAS fb 2,4-D Na salt @ 0.5 kg/ha at 20 DAS f_b one hand weeding at 40 DAS (75.50%) and T_3-Mulch @ 5 t/ha (By wheat straw) f_b Bispyribac Na @ 25 g/ha at 20 DAS f_b one hand weeding at 40 DAS (73.54%). The highest WCE with Pendimethalin f_b manual weeding also reported by Mahajan et al., 2009.

However, weed index followed just opposite trend of Weed Control Efficiency. The reason attributed is the better growth of crop with more yield attributes and yield at higher doses, hence less loss due to weeds despite of their luxuriant growth. Lower weed index represents here the less yield losses due to weed in these treatments. Whereas, Pendimethalin is more or less an omni effective herbicide against weed flora. However, the combination of Pendimethalin with manual weeding again a specific rice herbicide may be capable of suppressing wider range of weeds which are always expected there in direct seeded rice crop sown either in dry condition or in wet condition. This explains the greater efficacy of Pendimethalin at pre-emergence and thereafter hand weeding at critical crop growth stages. These results are in conformity with Saha et al. (2005) and Ramesh et al. (2009).

Table: Effect of different weed management practices on Weed Population/m², Weed dry matter (g/m²) WCE (%) and WI (%) of dry direct seeded rice.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Weed Population/m²</th>
<th>Weed Dry Matter (g/m²)</th>
<th>WCE (%)</th>
<th>WI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 DAS</td>
<td>60 DAS</td>
<td>90 DAS</td>
<td>30 DAS</td>
</tr>
<tr>
<td>T_1</td>
<td>16.95</td>
<td>13.56</td>
<td>12.77</td>
<td>38.59</td>
</tr>
<tr>
<td>T_2</td>
<td>11.34</td>
<td>8.05</td>
<td>7.74</td>
<td>26.55</td>
</tr>
<tr>
<td>T_3</td>
<td>17.25</td>
<td>15.77</td>
<td>14.10</td>
<td>35.95</td>
</tr>
<tr>
<td>T_4</td>
<td>14.56</td>
<td>9.74</td>
<td>8.26</td>
<td>31.45</td>
</tr>
<tr>
<td>T_5</td>
<td>13.65</td>
<td>9.01</td>
<td>8.80</td>
<td>27.54</td>
</tr>
<tr>
<td>T_6</td>
<td>16.22</td>
<td>12.56</td>
<td>11.39</td>
<td>33.75</td>
</tr>
<tr>
<td>T_7</td>
<td>14.95</td>
<td>11.59</td>
<td>11.09</td>
<td>30.69</td>
</tr>
<tr>
<td>T_8</td>
<td>12.87</td>
<td>8.42</td>
<td>7.84</td>
<td>28.87</td>
</tr>
<tr>
<td>T_9</td>
<td>9.05</td>
<td>7.85</td>
<td>6.56</td>
<td>17.95</td>
</tr>
<tr>
<td>T_{10}</td>
<td>32.56</td>
<td>34.75</td>
<td>35.54</td>
<td>68.62</td>
</tr>
<tr>
<td>SE_{Imx}</td>
<td>0.91</td>
<td>0.80</td>
<td>0.78</td>
<td>1.64</td>
</tr>
<tr>
<td>CD (P=0.05)</td>
<td>2.71</td>
<td>2.37</td>
<td>2.32</td>
<td>4.92</td>
</tr>
</tbody>
</table>

Conclusion
The lowest weed count, weed dry weight and highest weed control efficiency were recorded by treatment T_9-Weed free (By hand weedicides at 20, 40 and 60 DAS). Among herbicidal treatments the lowest weed count, weed dry weight and highest weed control efficiency were recorded by treatment T_2-Pendimethalin @ 1 kg/ha at 0-2 DAS fb two hand weedicides at 20 & 40 DAS, which was significantly superior among all the treatments and statistically at par with treatment T_2-Pendimethalin @ 1 kg/ha at 0-2 DAS fb two hand weedicides 20 & 40 DAS and T_3 - Pendimethalin @ 1 kg/ha at 0-2 DAS fb 2,4-D Na salt @ 0.5 kg/ha at 20 DAS fb one hand weeding at 40 DAS. The highest grain yield of rice were recorded by treatment T_9 - Weed free (By hand weedicides at 20, 40 and 60 DAS). Among herbicidal treatments the highest grain yield were recorded by treatment T_2-Pendimethalin @ 1 kg/ha at 0-2 DAS fb two hand weedicides at 20 & 40 DAS.

References

