Role of plant growth promoting rhizobacteria in sustainable agriculture: A review

Sudeshna Mondal and Suranjit Sarkar

Abstract

The use of external chemical inputs such as chemical fertilizers and pesticides undoubtedly resulted in huge increase in agricultural products in the past many decades in developing countries like India. Such indiscriminate use of agrochemicals has resulted not only in the deterioration of soil health but also has led to some major environmental disasters and other health related problems, besides increasing the input cost for crop production especially on the marginal farmers. So, the use of plant growth-promoting rhizobacteria (PGPR) as biofertilizers and/or as biocontrol agents to enhance plant growth and yield, suppress diseases in a wide range of agricultural crops and improve the socio-economic status of poor farmers is gaining momentum. The present review highlights the role of plant growth promoting rhizobacteria in the process of crop production and health, development of sustainable agriculture and their commercialization with global applicability.

Keywords: Plant growth-promoting rhizobacteria, sustainable agriculture, biofertilizer, biocontrol agent

Introduction

Agriculture is highly dependent on the use of chemical fertilizers, growth regulators, fungicides and pesticides for obtaining increased yield. This dependence is associated with problems such as environmental pollution, health hazards, interruption of natural ecology, nutrient recycling and destruction of biological communities that otherwise support crop production. The use of bioresources to replace these chemicals is gaining importance. In this context, plant growth promoting rhizobacteria (PGPR) are often considered as novel and potential tool to provide substantial benefits to agriculture. PGPR are a heterogeneous group of bacteria that can be found in the rhizosphere, at root surfaces and in association with roots, which stimulate plant growth through a wide variety of mechanisms like phosphate solubilisation, siderophore production, biological nitrogen fixation, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. through suppression of deleterious root colonizing microorganisms and by production of plant growth regulators (Kloeper and Schroth, 1981) [59]. PGPR are present in large number on the root surface where the plants exudates provide nutrients (Nelson, 2004) [80]. The beneficial response of crops to inoculation with these PGPR is attributed to better seed germination and seedling emergence, improved nutrition, and reduction in disease incidence an increased crop production. Growth promoting substances are likely to be produced in large quantities by these rhizosphere microorganisms that influence indirectly on the overall morphology of the plants. The concept of PGPR has now been confined to the bacterial strains that can fulfill at least two of the three criteria such as aggressive colonization, plant growth stimulation and biocontrol (Weller et al., 2002; Vessey, 2003) [117, 114].

Classification of PGPR

In accordance with their degree of association with the plant root cells, PGPRs can be classified into extracellular plant growth promoting rhizobacteria (ePGPR) and intracellular plant growth promoting rhizobacteria (iPGPR) (Martinez-Viveros et al., 2010) [71]. The ePGPRs may exist in the rhizosphere, on the rhizoplane or in the spaces between the cells of root cortex. The bacterial genera such as Agrobacterium, Arthrobacter, Azotobacter, Azospirillum, Bacillus, Burkholderia, Caulobacter, Chromobacterium, Erwinia, Flavobacterium, Micrococcus, Pseudomonas and Serratia belongs to ePGPR (Gray and Smith, 2005). Whereas, iPGPRs locates generally inside the specialized nodular structures of root cells. They include the endophytes and Frankia species both of which can symbiotically fix atmospheric N₂ with the higher plants (Verma et al., 2010) [113].
Endophyte includes a wide range of soil bacterial genera such as *Alorhizobium*, *Azorhizobium*, *Bradyrhizobium*, *Mesorhizobium* and *Rhizobium* of the family Rhizobiaceae that generally invades the root systems in crop plants to form nodules (Wang and Martinez-Romero, 2000) [116] and stimulates growth either directly or indirectly.

Mechanism of action

Plant growth promotion by plant growth promoting rhizobacteria is a well-known phenomenon and there are a number of mechanisms used by PGPR for enhancing plant growth and development in diverse environmental conditions. The effective PGPRs increased plant growth basically by changing the whole microbial community structure in rhizosphere (Kloeper and Schrot, 1981) [59]. PGPR strains can promote plant growth and development either directly due to their ability for enhancing plant nutrition by solubilization of minerals like phosphorus and iron, producing siderophores and enzymes, producing phytohormone (auxin, cytokinins and gibberellins), lowering level of ethylene and inducing systemic resistance (Bhattacharyya and Jha, 2012) [10], or indirectly by biocontrol of deleterious microorganisms or root pathogens that inhibit plant growth, including antibiotic production, parasitism, competition for nutrients and niches within the rhizosphere, synthesis of extracellular enzymes to hydrolyse the fungal cell wall, decreasing pollutant toxicity (Bhattacharyya and Jha, 2012; Podile and Kishore, 2006) [10], [63]. PGPR may use more than one of these mechanisms to enhance plant growth as experimental evidence suggests that the plant growth stimulation is the net result of multiple mechanisms that may be activated simultaneously (Martinez-Viveros et al., 2010) [71].

<table>
<thead>
<tr>
<th>PGPR forms</th>
<th>Definition</th>
<th>Mechanism of action</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biofertilizer</td>
<td>A substance that contains live microorganisms which, when applied on the seed, plant surface or soil, colonizes the rhizosphere and promote plant growth through increased supply of primary nutrients for the host plant</td>
<td>Biological nitrogen fixation, Utilization of insoluble phosphorus</td>
<td>Vessey, 2003; Somers et al., 2004; Fuentes-Ramirez and Caballero-Mellado, 2006 [114, 106, 115]</td>
</tr>
<tr>
<td>Phyto-stimulator</td>
<td>Microorganism, with the ability to produce phytohormones such as indole acetic acid, gibberellic acid, cytokinins and ethylene</td>
<td>Production of phytohormones</td>
<td>Lugtenberg et al., 2002; Somers et al., 2004 [67, 106]</td>
</tr>
<tr>
<td>Biopesticide</td>
<td>Microorganisms that promote plant growth by controlling phytopathogenic agents</td>
<td>Production of antibiotics, siderophores, HCN Production of hydrolytic enzymes Acquired and Induced systemic resistance</td>
<td>Vessey, 2003; Somers et al., 2004; Chandler et al., 2008 [114, 106, 14]</td>
</tr>
</tbody>
</table>

Source: Martinez-Viveros et al., 2010 [71]

Role of PGPR in agriculture

Direct mechanisms

Nitrogen fixation

Nitrogen is one of the principal plant nutrients, becoming a limiting factor in agricultural ecosystems due to heavy losses by rainfall or mineral leaching. Plant growth promoting rhizobacteria have the ability to fix atmospheric nitrogen and provide it to plants by two mechanisms: symbiotic and non-symbiotic. Rhizobia are a vast group of rhizobacteria that have the ability to lay symbiotic interactions by the colonization and formation of root nodules with leguminous plants, where nitrogen is fixed to ammonia and make it available for the plant (Ahemad and Kibret, 2014) [3]. The plant growth promoting rhizobacteria widely presented as symbionts are *Rhizobium*, *Bradyrhizobium*, *Sinorhizobium* and *Mesorhizobium* with leguminous plants, Frankia with non-leguminous trees and shrubs (Zahran, 2001) [122]. Various rhizobacterial species like *Azotobacter* spp., *Bacillus* spp., *Beijerinckia* spp., etc., have the capacity to fix atmospheric N₂ symbiotically. On the other hand, non-symbiotic nitrogen fixation is carried out by free living diazotrophs and this can stimulate non-legume plants growth. Non-symbiotic nitrogen fixing rhizospheric bacteria belonging to genera including *Azoarcus*, *Azotobacter*, *Acetobacter*, *Azospirillum*, *Burkholderia*, *Diazotrophicus*, *Enterobacter*, *Glucanacetobacter*, *Pseudomonas* and *Cyanobacteria* (Anabaena, *Nostoc*) (Bhattacharyya and Jha, 2012) [10], Vessey, 2003) [114]. Besides, combined inoculations of rhizobacterial species to improve the quality of soil are also seemed to be a potent area of research in present day agriculture. For instances, combined inoculations of *Bradyrhizobium* sp., with *Pseudomonas striata* have established enhanced nodule occupancy in soyabean resulting in more biological N₂ fixation (Dubey, 1996) [23]. Cakmakci et al. (2007) [27] studied that on inoculating the barley seeds with five different N₂-fixing (*Bacillus licheniformis* RC02, *Rhodobacter capsulatus* RC04, *Pannibacillus polymyxa* RC05, *Pseudomonas putida* RC06, and *Bacillus OSU-142*) and two different phosphate-solubilising (*Bacillus megaterium* RC01 and *Bacillus M-13*) in greenhouse conditions, all bacterial strains fixed N₂ and significantly increased the growth of barley and total culturable bacteria count. Maximum NO₃-N was found in soil after inoculation with N-fixing *Bacillus OSU-142*, followed by *P. polymyxa* RC05 and *R. capsulatus* RC04.

Phosphorous solubilization

Phosphorus is one of the most essential nutrient requirements in plants. Ironically, soils may have large reservoir of total phosphorous (P) but the amounts available to plants are usually a tiny proportion of this total. This low availability of phosphorus to plants is because of the vast majority of soil P is found in insoluble forms, while the plants can only absorb it in two soluble forms, the monobasic (H₃PO₄) and the dibasic (HPO₄²⁻) ions (Glass 1989) [38]. Several phosphate solubilizing microorganisms (PSMs) are now recorded to convert the insoluble form of phosphorus to soluble form through acidification, secretion of organic acids or protons (Richardson et al., 2009) [91] and chelation and exchange reactions (Hameeda et al., 2008) [48]. Of the various PSMs inhibiting rhizosphere, Phosphate Solubilizing Bacteria (PSB) are considered as promising biofertilizers since they can supply plants with P from sources otherwise poorly available by various mechanisms (Fig. 1) (Khan et al., 2006) [56].
Saprophytic bacteria and fungi are reported for the chelation-mediated mechanisms (Whitehead, 2000) [138] to solubilise phosphate in soil. Release of plant root exudates such as organic ligands can also alter the concentration of P in soil solution (Hinsinger, 2001) [51].

Organic Acids by Rhizosphere

Organic acids are produced by rhizosphere bacteria to solubilise phosphate in soil. These acids lower the pH, which increases the solubility of phosphate. This process is important for plant growth, as it enhances the availability of phosphorus. The mechanism involves the production of organic acids by rhizosphere bacteria, which lower the pH, increasing the solubility of phosphate. This process is a key component of phosphorus cycling in soil ecosystems.

H⁺ Excretion

Both from inorganic and organic acids lead to a decrease in pH, which increases the solubility of phosphate. This process is important for plant growth, as it enhances the availability of phosphorus. The mechanism involves the production of organic acids by rhizosphere bacteria, which lower the pH, increasing the solubility of phosphate. This process is a key component of phosphorus cycling in soil ecosystems.

Iron Depletion of K in the Soil System

Iron (Fe) is one of the major constraints in crop production. Potassium (K) is the third major essential macronutrient for plant growth. The concentrations of soluble potassium in the soil are usually very low and more than 90% of potassium in crop plants are bound to K and (iii) acidolysis of the surface-adsorbed minerals (Lian et al., 2002; Sheng, 2005; Liu et al., 2012) [64, 103, 65]. The most important mechanisms involved by these potassium solubilizing bacteria (KSB) in K solubilization from insoluble K-bearing minerals are (i) by lowering the pH, (ii) by enhancing chelation of the cations bound to K and (iii) acidolysis of the surrounding area of microorganisms (Meena et al., 2014) [74]. Thus, application of potassium solubilizing plant growth promoting rhizobacteria as biofertilizer for agriculture improvement can reduce the use of agrochemicals and support eco-friendly crop production. Different PGPR species having the ability to solubilize potassium and exerting beneficial effects on growth of various crops are given in Table 2.

Table 2: Different PGPR strain as potassium solubilizer in number of crops

<table>
<thead>
<tr>
<th>PGPR</th>
<th>Crop</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus edaphicus</td>
<td>Cotton and rape</td>
<td>Sheng, 2005 [103]</td>
</tr>
<tr>
<td>Bacillus mucilaginosus</td>
<td>Pepper and cucumber</td>
<td>Han et al., 2006 [71]</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>Sorghum</td>
<td>Badr et al., 2006 [49]</td>
</tr>
<tr>
<td>Bacillus edaphicus</td>
<td>Wheat</td>
<td>Sheng and He, 2006 [101]</td>
</tr>
<tr>
<td>Bacillus mucilaginosus</td>
<td>Sudan grass</td>
<td>Basak and Biswas, 2008</td>
</tr>
<tr>
<td>Bacillus mucilaginosus, Azotobacter chroococcum and Rhizobium</td>
<td>Maize and wheat</td>
<td>Singh et al., 2010 [9]</td>
</tr>
<tr>
<td>Paenibacillus glucanolyticus</td>
<td>Black pepper</td>
<td>Sangeeth et al., 2012 [95]</td>
</tr>
<tr>
<td>Enterobacter hormaechei</td>
<td>Okra</td>
<td>Prajapati et al., 2013 [188]</td>
</tr>
<tr>
<td>Pseudomonas putida</td>
<td>Tea</td>
<td>Bagyalakshmi et al., 2012</td>
</tr>
<tr>
<td>Enterobacter hormaechei (KSB-8)</td>
<td>Cucumber</td>
<td>Prajapati and Modi, 2016 [97]</td>
</tr>
</tbody>
</table>

Sequestration of Iron by Siderophores

Iron (Fe) is one of the bulk minerals present on earth surface, yet it is unavailable in the soil for plants. This is because iron is commonly found in nature in Fe³⁺ form which is meagrely soluble and its concentration is too low to support microbial growth. To survive, the PGPR’s synthesize and secrete siderophores that are low molecular iron binding protein compound having a high binding affinity with ferric iron. When Fe is limited, microbial siderophore provide plant with Fe, enhancing their growth. Thus, siderophores act as chemical complexing agents to facilitate iron uptake by plants.

Fig 1: Mechanisms of P solubilization by phosphate solubilizing bacteria

Bacterial genera like Azotobacter, Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, Microbacterium, Pseudomonas, Rhizobium and Serratia are reported as the most significant phosphate solubilizing bacteria (Bhattacharyya and Jha, 2012) [10]. Rhizobacteria can solubilize inorganic P sources and enhance growth and yield of crop plants. The ability of PGPRs to solubilize mineral phosphate, therefore, has been of immense interest to agricultural microbiologists since it can enhance the P uptake of crops. Synthesis of organic acids by rhizosphere microorganisms could be the possible reason for solubilisation of inorganic P sources.

Potassium Solubilization

Potassium (K) is the third major essential macronutrient for plant growth. The concentrations of soluble potassium in the soil are usually very low and more than 90% of potassium in the soil exists in the form of insoluble rocks and silicate minerals (Parmar and Sindhu, 2013) [82], most of which is unavailable for plant uptake. Potassium deficiency has been reported as one of the major constraints in crop production which might be due to imbalanced fertilizer utilization and depletion of K in the soil system. Since cost of K-fertilizers is increasing every year (Meena et al., 2014) [74] and also use of these fertilizers has harmful effects on the environment, it is necessary to find an alternative indigenous source of K and maintain K level in soils for sustainable crop production (Kumar and Dubey, 2012) [62]. A wide range of bacteria namely Pseudomonas, Burkholderia, Acidithiobacillus ferrooxidans, Bacillus mucilaginosus, Bacillus edaphicus, B. circulans and Paenibacillus sp. has been reported to release potassium in accessible form from potassium-bearing minerals in soils (Lian et al., 2002; Sheng, 2005; Liu et al., 2012) [64, 103, 65]. The most important mechanisms involved by these potassium solubilizing bacteria (KSB) in K solubilization from insoluble K-bearing minerals are (i) by lowering the pH, (ii) by enhancing chelation of the cations bound to K and (iii) acidolysis of the surrounding area of microorganism (Meena et al., 2014) [74]. Thus, application of potassium solubilizing plant growth promoting rhizobacteria as biofertilizer for agriculture improvement can reduce the use of agrochemicals and support eco-friendly crop production. Different PGPR species having the ability to solubilize potassium and exerting beneficial effects on growth of various crops are given in Table 2.
solubilizing agents for iron from minerals or organic compounds under conditions of iron limitation (Indragandhi et al., 2008) [52]. Among PGPRs, fluorescent pseudomonads are widely reported for their broad-spectrum antagonistic activity against number of phytopathogens. Han et al. (2005) [50] reported that *Delftia tsuruhatensis* strain, HR4 have suppressed the growth of various plant pathogens like *Pyricularia oryzae*, *Rhizoctonia solani* and *Xanthomonas oryzae*. Different PGPR strains of *Rhizobium meliloti* have been reported to produce siderophores in iron stress conditions (Arora et al., 2001) [9]. Sharma et al. (2003) [100] assessed the role of the siderophore-producing *Pseudomonas* strain GRP3 on iron nutrition of *Vigna radiata*. Crowley and Kraemer (2007) [17] also revealed a siderophore mediated iron transport system in oat plants and inferred that siderophores produced by rhizosphere microorganisms deliver iron to oat, which has mechanisms for using Fe-siderophore complexes under iron-limited conditions.

Production of plant growth regulators
PGPR can alter root architecture and promote plant development by producing different phytohormones like IAA, gibberellic acid and cytokinins (Kloeper et al., 2007) [58]. Several PGPRs as well as some pathogenic, symbiotic and free living rhizobacterial species are reported to produce IAA and gibberellic acid in the rhizospheric soil and thereby play a significant role in increasing the root surface area and number of root tips in many plants (Han et al., 2005) [50]. Swain et al. (2007) [109] reported a positive effect of IAA producing strains of *Bacillus subtilis* on Dioscorea rotundata L. They applied a suspension of *B. subtilis* on the surface of the plant, which resulted in an increase in the root: stem ratio as well as number of sprouts as compared with the non-inoculated plants. Similarly, significant shoot growths in maize and rice dwarf mutants were promoted by gibberellins-like substances excreted by *Azospirillum* spp. (Boiero et al., 2007) [12]. Table 3 represents some of the efficient PGPR strains as the producer of different plant growth regulators.

Table 3: Efficient PGPR strains as phytohormone producer in numbers of plants

<table>
<thead>
<tr>
<th>Hormone produced</th>
<th>PGPR</th>
<th>Host</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAA</td>
<td>Agrobacterium sp.</td>
<td>Lettuce</td>
<td>Bhattacharyya and Jha (2012) [100]</td>
</tr>
<tr>
<td></td>
<td>Azospirillum brasilense</td>
<td>Wheat</td>
<td>Thakuria et al. (2004) [110]</td>
</tr>
<tr>
<td></td>
<td>Bradyrhizobium japonicum</td>
<td>Maize</td>
<td>Shubhroona et al. (2006) [99]</td>
</tr>
<tr>
<td></td>
<td>Rhizobium leguminosarum</td>
<td>Radish</td>
<td>Bhattacharyya and Jha (2012) [100]</td>
</tr>
<tr>
<td></td>
<td>Rhizobium phaseoli</td>
<td>Green gram</td>
<td>Zahir et al. (2010) [121]</td>
</tr>
<tr>
<td></td>
<td>Bacillus subtilis</td>
<td>Mustard</td>
<td>Zaidi et al. (2006) [123]</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas fluorescens</td>
<td>Peanut</td>
<td>Dey et al. (2004) [124]</td>
</tr>
<tr>
<td></td>
<td>Paenibacillus polymyxa</td>
<td>Pepper</td>
<td>Phi et al. (2010) [83]</td>
</tr>
<tr>
<td></td>
<td>Xanthomonas sp.</td>
<td>Rape</td>
<td>Sheng and Xia (2006) [102]</td>
</tr>
<tr>
<td></td>
<td>Sphingomonas sp., Mycobacterium sp., Bacillus sp., Rhodococcus sp., Cellulomonas sp., Pseudomonas sp.</td>
<td>Orchid</td>
<td>Tsavkelova et al. (2005) [112]</td>
</tr>
<tr>
<td>Cytokinin</td>
<td>Paenibacillus polymyxa Pseudomonas</td>
<td>Wheat</td>
<td>Timmusk et al. (1999) [111]</td>
</tr>
<tr>
<td></td>
<td>fluorescens</td>
<td>Soybean</td>
<td>Bhattacharyya and Jha (2012) [100]</td>
</tr>
<tr>
<td></td>
<td>Rhizobium leguminosarum</td>
<td>Rape and lettuce</td>
<td>Bhattacharyya and Jha (2012) [100]</td>
</tr>
<tr>
<td>Gibberellin</td>
<td>Bacillus sp.</td>
<td>Alder</td>
<td>Bhattacharyya and Jha (2012) [100]</td>
</tr>
</tbody>
</table>

IAA-mediated ethylene production could increase root biomass, root hair number and consequently the root surface area of PGPR inoculated tomato plants (Ribaudo et al., 2006) [90]. The fresh weights of shoot and root tissue from inoculated plants were about 40% and 30% higher, respectively, than comparable weights of control plants. A small but statistically significant (about 20%) increase in shoot height was also observed. The amount of IAA in shoots and roots increased upon *Azospirillum* inoculation (7-and 19-fold increase, respectively).

Lowering Plant Ethylene Levels
Generally, ethylene is an essential metabolite for the normal growth and development of plants (Khalid et al., 2006) [55], produced endogenously by approximately all plants and also by different biotic and abiotic processes in soils. Under stress conditions like those generated by salinity, drought, water logging, heavy metals and pathogenicity, the endogenous level of ethylene is significantly increased which negatively affects the overall plant growth leading to inhibition of root elongation, as well as symbiotic N₂ fixation in leguminous plants and can even result in plant death under extreme conditions. Plant growth promoting rhizobacteria which possess the enzyme, 1-amino-1-cyclopropane-1-carboxylate (ACC) deaminase, facilitate plant growth and development by decreasing ethylene levels, inducing salt tolerance and reducing drought stress in plants (Nadeem et al., 2007; Zahir et al., 2008) [78, 120]. Ahmad et al. (2013) [3] proved that *Rhizobium* and *Pseudomonas* strains can produce ACC-deaminase and helps in improving the growth, physiology and quality of mung beans under salt-affected environments.

Production of ACC deaminase and regulation of ethylene level in plants
Although ethylene is essential for normal growth and development in plants, at high concentration it can be harmful as it induces defoliation and other cellular processes that may lead to reduced crop performance. Using their 1-amino cyclopropane-1-carboxylic acid (ACC) deaminase activity, PGPR can divert ACC from the ethylene biosynthesis pathway in the root system of *Arabidopsis thaliana* plant (Desbrosses et al., 2009) [21]. Thus, rhizobacteria assist in diminishing the accumulation of ethylene levels and re-establish a healthy root system needed to cope with environmental stress. The primary mechanism includes the destruction of ethylene via enzyme ACC deaminase. There are number of publications (Ghosh et al., 2003; Govindasamy et al., 2008; Duan et al., 2009) [36, 44, 24] mentioning rhizosphere bacteria such as *Achromobacter*, *Azospirillum*, *Bacillus*, *Enterobacter*, *Pseudomonas* and *Rhizobium* with ACC deaminase activity. Most of the studies have demonstrated the production of ACC deaminase gene in the
plants treated with PGPR under environmental stress. Grichko and Glick (2001) inoculated tomato seeds with Enterobacter cloacaee and Pseudomonas putida expressing ACC deaminase activity and registered an increase in plant resistance. Ghosh et al. (2003) recorded ACC deaminase activity in three Bacillus species namely, Bacillus circulans DUC1, Bacillus firmus DUC2 and Bacillus globisporus DUC3 that stimulated root elongation in Brassica campestris. Mayak et al. (2004) observed tomato plants inoculated with the bacterium Achromobacter piechaudii under water and saline stress conditions and reported a significant increase in fresh and dry weight of inoculated plants.

Production of volatile organic compounds

The discovery of rhizobacterial-produced volatile organic compounds (VOCs) constitutes an important mechanism for the elicitation of plant growth by rhizobacteria. Ryu et al. (2003) recorded some PGPR strains namely Bacillus subtilis GB03, B. amyloliquefaciens IN937a and Enterobacter cloaceae JM22 that released a blend of volatile components, particularly, 2,3-butanediol and acetoin, which promoted growth of Arabidopsis thaliana, suggesting that synthesis of bioactive VOCs is a strain-specific phenomenon. Acetoin-forming enzymes have been identified earlier (Forlani et al., 1999) in certain crops like tobacco, carrot, maize and rice although their possible functions in plants were not properly established in that period. The VOCs produced by the rhizobacterial strains can act as signalling molecules to mediate plant–microbe interactions as volatiles produced by PGPR colonizing roots are generated at sufficient concentrations to trigger the plant responses (Ryu et al., 2003). Farmer (2001) identified low-molecular weight plant volatiles such as terpenes, jasmonates and green leaf components as potent signal molecules for living organisms in different trophic levels.

Growth enhancement

Application of PGPR strains in agriculture is a potential issue in increasing international demand for food and improving environmental quality. PGPRs have been continuously used to enhance the plant growth, seed emergence and overall yield of crops in different agroecosystems (Minorsky, 2008). Dobbeltaere et al. (2001) assessed the inoculation effect of Azospirillum sp., on the growth of some agriculturally important plants and observed a significant increase in the dry weight of both the root system and aerial parts of the PGPR inoculated plants, resulting in better development and flowering. Esitken et al. (2003) investigated the foliar applications of rhizobacterial microbes in mulberry and apricot and observed better development in total leaf area and chlorophyll production of the inoculated plants. Several PGPR strains such as Achromobacter xylosidans, Bacillus subtilis, B. licheniformis, B. pumilus, Brevibacterium halotolerans and Pseudomonas putida are identified as having crucial roles in cell elongation, increasing ACC deaminase activity and plant growth promotion (Sgroy et al., 2009). Total root length, surface area and volume in tomato and cucumber roots increased after inoculation with Pseudomonas fluorescens 92rk and P190r (Saranavakumar and Samiyappan, 2007). Ahanthem and Jha (2007) observed the response of rice crops, inoculated with arbuscular mycorrhizal (AM) fungi and PGPR in soils differing in nitrogen concentrations and recorded maximum shoot biomass, shoot phosphorus and nitrogen content in the rice plants inoculated with Azotobacter chroococcum in combination with Glomus sp. There are also reports concerning the root inoculation of apple trees with Bacillus M3 and Microbacterium FS01, resulting in significant tree growth and yield (Karlidag et al., 2007). The treatment of seeds or cuttings in some plants with non-pathogenic bacteria, such as Agrobacterium, Alcaligenes, Bacillus, Pseudomonas, Streptomyces, etc., induces root formation (Esitken et al., 2003). This phenomenon might be attributed to the production of auxin, inhibition of ethylene synthesis or mineralization of nutrients by efficient PGPRs (Steenhoudt and Vanderleyden, 2000) (167). Erturk et al. (2010) examined the growth promoting effects of PGPRs on rooting and root growth of Actinidia delicosa stem cuttings and recorded Bacillus RC23, Bacillus RC03, B. megaterium RC01, B. subtilis OSU142, B. simplex RC19, Comamonas acidovorans RC41 and Paenibacillus polymyxa RC05 as the successful PGPRs. Datta et al. (2011) also observed the effect of three rhizobacteria (Bacillus C2, Bacillus C25, and Streptomyces C32) on the growth and yield of chilli under field conditions and found remarkable increase in growth characteristics such as total number of fruits, fruit weight, and yield.

Maintenance of soil fertility and nutrient uptake

PGPR can change the plant physiology and certain nutritional and physical properties of rhizospheric soil and indirectly influence on the colonization patterns of soil microorganisms in that particular region. Inoculation of rhizobacteria increased uptake of nutrient elements like Ca, K, Fe, Cu, Mn and Zn by plants through stimulation of proton pump ATPase (Mantelin and Touraine, 2004). Reports are available on the combinations of Bacillus and Microbacterium inoculants to improve the uptake of the mineral elements by crop plants (Karlidag et al., 2007). This increase in nutrient uptake by plants might be explained through organic acid production by the plants and PGPRs, decreasing the soil pH in rhizosphere. Ample evidences (Forde, 2000; Glass et al., 2002) are there on the maintenance of soil fertility by the rhizobacterial isolates to increase the availability of nutrients for plants. Solubilization of unavailable forms of nutrients is one of the essential criteria in facilitating the transport of most of these nutrients (Glick, 1995).

Indirect mechanisms

PGPR as biocontrol agent

Competition for nutrients, niche exclusion, parasitism, induced systemic resistance and production of anti-fungal metabolites (AFMs) (contributing to antibiosis) are the probable means responsible for biocontrol activity of PGPRs (Bloemberg and Lugtenberg, 2001; Podile and Kishore, 2006). A variety of antibiotics have been identified, including compounds such as amphisin, 2,4-diacylphloroglucinol (DAPG), oomycin A, phenazine, pyoluteorin, pyrrolnitrin, tensin, tropolone, and cyclic lipopeptides produced by pseudomonads (Loper and Gross, 2007) and oligomycin A, kanosamine, zwitermicin, and xanthobaccin produced by Bacillus, Streptomyces and Stenotrophomonas sp. to prevent the proliferation of plant pathogens (generally fungi) (Comptant et al., 2005). Some rhizobacteria interacts with the plant roots resulting to the phenomenon called induced systemic resistance (ISR) in plant i.e., resistance against some pathogenic bacteria, fungi and viruses (Lugtenberg and Kamilova, 2009). Among PGPRs, Pseudomonas is the best-characterized biocontrol agent at molecular level. Fluorescent pseudomonads are also known to suppress soil
born fungal pathogens by producing antifungal metabolites and by sequestering iron in rhizosphere through the release of iron-chelating siderophores, rendering it unavailable to other organisms (Dwivedi and Johri, 2003) [28]. In soils, antibiotic 2,4-diacylphloroglucon (2,4-DAPG) producing Pseudomonas sp. was reported for biocontrol of disease in wheat caused by the fungus Gaeumannomyces graminis var. tritici (de Souza et al., 2003) [19]. Kidarsa et al. (2011) [57] generated information on the biosynthesis of pyoluteorin in Pseudomonas fluorescens Pf-5 and 2,4-diacylphloroglucon in P. fluorescens Q2-87. Ponnurugan et al. (2011) [86] screened some efficient Pseudomonas fluorescens strain for their plant growth promoting traits and antagonistic activities against tea pathogens such as Cercospora theae, Phomopsis theae and Poria hypolaterrita. They also confirmed the presence of various antifungal metabolites in the bacteria which are involved in the growth inhibition of fungal tea pathogen. Application of Pseudomonas aeruginos in combination with common medicinal plant Launaea nudicaulis also holds good promises for effective control of root infecting fungi of mungbean (Mansoor et al., 2007) [69]. The strains of Bacillus subtilis are the most widely used PGPR due to their disease reducing and antibiotic producing capabilities (Kokalis-Burelle et al., 2006) [60]. Mishra et al. (2011) [76] studied that the application of culture filtrate of PGPR i.e. Bacillus subtilis MA-2 inhibited the growth of phytopathogens infecting selected medicinal and aromatic plants, indicating that suppression was due to antifungal compounds in the filtrate. Bacillus amyloliquefaciens is known for lipopeptide and polyketide production for biological control activity and plant growth promotion activity against soil borne pathogens (Ongena and Jacques, 2008) [83]. Azospirillum, Azotobacter, Bacillus, Enterobacter, Paenibacillus, Pseudomonas and Streptomycyes are recorded as the potent genera of rhizobacteria acting against the pathogens like tomato mottle virus, tobacco necrosis virus, Hizoctonia bataticola, Myzus persicae, Acrhythosiphon kondoi, Fusarium avenaceum etc. Besides, experiments on the dual effect of PGPR and AM fungi on Fusarium oxysporum f. sp., melongena causing brinjal wilt has been done by Kalita et al. (2009) [53].

Rhizobium mellioli have been reported to exclude the pathogen, Macrophomina phaseolina, causing charcoal rot of groundnut. Micromonospora sp., Streptomycyes spp., Streptosporangium sp. and Thermobifida sp., have shown an enormous potential as biocontrol agents against different root fungal pathogens, indicating the tremendous potentiality of PGPRs as an alternative in controlling plant diseases in agriculture than that of conventional fungicides (Kumar et al., 2009; Franco-Correa et al., 2010; Bhattacharyya and Jha, 2012) [61, 33, 10].

Apart from the production of antibiotic, some rhizobacteria are also capable of producing volatile compound known as hydrogen cyanide (HCN) for biocontrol of black root rot of tobacco, caused by Thielaviopsis basicola (Sacherer et al., 1994) [93]. Lanteigne et al. (2012) [63] also reported the production of DAPG and HCN by Pseudomonas contributing to the biological control of bacterial canker of tomato.

Resistance to abiotic stress

Abiotic stresses such as extremely high or low temperature, salinity, drought, acidic soils, and metal toxicity are considered to be the main sources of agricultural yield reduction (Nadeem et al., 2010) [77]. The use of PGPR as elicitors of mechanisms facilitating plant tolerance to abiotic stresses has emerged as a promising strategy to improve plant adaptation and resource use efficiency in hostile environments (Yang et al., 2009) [119]. ACC deaminase is produced by plant growth-promoting bacteria to effectively protect plants against a wide range of abiotic stresses such as drought, salinity, heat, flooding or water logging, and heavy metal stress (Glick, 2014) [80]. Rhizobacteria belonging to the genera Pseudomonas, Azospirillum, Bacillus, Burkholderia, Enterobacter and Kluivera have been documented to have ACC deaminase activity (Saleem et al., 2007) [94]. Some plant growth promoting rhizobacteria produces exopolysaccharides which can bind cations, including Na+ suggesting a role in mitigation of salinity stress by reducing the content of Na+ available for plant uptake (Arora et al., 2013) [6]. Gururani et al. (2013) [47] reported that some free-living PGPR strains produce osmolytes which help plants to increase their osmotic potential within the cell thereby relieving the salinity stress. Marulanda et al. (2010) [72] reported that Bacillus megaterium strain inoculated into maize roots increased the ability of the root to absorb water under the salinity conditions. Similar behaviour was also found by Gond et al. (2015) [42] when Pantoaea agglomerans was inoculated into the maize roots. Inoculation of jojoba and lettuce plant with Azospirillum brasilense was found to improve the salt tolerance (Gonzalez et al., 2015; Gabriela et al., 2015) [43, 35].

Sarma and Saikia (2014) [97] reported that Pseudomonas aeruginosa strain has improved the growth of Vigna radiata (mung beans) plants under drought conditions. PGPR are also reported as beneficial to the plants like tomatoes and peppers growing on water deficit soils for conferring resistance to water stress conditions (Aroca and Ruiz-Lozano, 2009) [4]. Seed treatment with salinity or drought tolerant isolates of Trichoderma harzianum reduced the severity of stress in wheat plants (Rawat et al., 2011; Shukla et al., 2015) [89, 104] under laboratory and greenhouse conditions, respectively. ACC deaminase activity by the plant growth-promoting rhizobacteria Burkholderia pseudomorphous helped potato plants to maintain normal growth under heat stress (Saleem et al., 2007) [94]. Pischhik et al. (2002) [84] reported that PGPR could attenuate the toxic effect of cadmium pollution on the barley yield, mostly because these bacteria could remove cadmium ions from the soil by binding mechanisms, thereby decreasing cadmium availability in the soil.

Rhizoremediation

The application of PGPRs in rhizoremediation technologies is now being considered as effective, since inoculation of PGPR strains could aid remarkable enhancement in plant growth and development on contaminated agroclimatic conditions. Rhizobacteria can directly assist rhizoremediation by producing IAA, biological nitrogen fixation, solubilizing P and secreting siderophores (Denton, 2007) [20]. PGPR strains, pseudomonads and Acinetobacter enhance uptake of Fe, Zn, Mg, Ca, K and P by crop plants (Esitken et al., 2006) [29]. Subramanyam and Archana (2011) [108] found Enterobacter sp. C1D as multi-metal resistant in nature and it had clear positive measurable effects on root length, shoot length, fresh shoot weight, fresh root weight and chlorophyll content of the Vigna radiata GM4 in Cd6+ amended soils (up to 350 mg kg-1). Elevated IAA production probably enables Enterobacter sp. C1D to enhance plant growth in Cr6+ contaminated soils. PGPR along with AM fungi are now being utilized in the nutrient poor agricultural soils to increase the solubility of heavy metals and thereby increasing the chances of success in
rhizoremediation. Besides, investigations on the application of PGPR strains in decreasing the bioavailability of toxicity resulting in better growth and development in heavy metal contaminated soils through recycling of nutrients, maintaining soil structure, detoxifying chemicals and controlling pests are also well studied (Denton, 2007).

Commercial products developed using different PGPR strains

Numerous work done showed different stages in the process of commercialization include isolation of antagonist strains, screening, fermentation methods, mass production, formulation viability, toxicology, industrial linkages, quality control and field efficacy (Nandakumar et al., 2001). Moreover, commercial success of PGPR strains requires economical and viable market demand, consistent and broad-spectrum action, safety and stability, longer shelf life, low capital costs and easy availability of career materials. Chet and Chernin (2002) and Glick et al. (1999) had formulated some of the important PGPR strains along with their commercial products, which are listed in Table 4.

<table>
<thead>
<tr>
<th>PGPR</th>
<th>Products</th>
<th>Intended crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrobacterium radiobacter</td>
<td>Diegall, Galtrol-A, Nogall, Norbac 84 C</td>
<td>Fruit, nut, ornamental nursery stock and trees</td>
</tr>
<tr>
<td>Azospirillum brasilense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus subtilis GB03</td>
<td>Kodiak, Kodiak HB, Epic, System 3, Concentrate and Quantum 4000</td>
<td>Turf and forage crops Cotton and legumes</td>
</tr>
<tr>
<td>Bacillus subtilis GB03</td>
<td>Campanian</td>
<td></td>
</tr>
<tr>
<td>B. subtilis and</td>
<td>Bio Yield</td>
<td>Horticultural crops and turf</td>
</tr>
<tr>
<td>B. amyloliquefaciens</td>
<td>Intecept</td>
<td>Maize, vegetables, cotton</td>
</tr>
<tr>
<td>Psuedomonas cepacia</td>
<td>Pxix plus</td>
<td>Cotton</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>Blue Circle, Deny, Intercept</td>
<td>Alfalfa, barley, beans, clover, cotton, maize,</td>
</tr>
<tr>
<td>Burkholderia cepacia</td>
<td>Blight Ban AS06, Conquer, Victor</td>
<td>peas, sorghum and wheat</td>
</tr>
<tr>
<td>Psuedomonas fluorescens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. chlororaphis</td>
<td>AdEze</td>
<td>Almond, apple, cherry, mushroom, potato</td>
</tr>
<tr>
<td>P. syringae</td>
<td>Bio-save 10, 11, 100, 110, 1000</td>
<td>Ornamental and vegetable crops</td>
</tr>
</tbody>
</table>

Source: Glick et al. (1999), Chet and Chernin (2002).

Conclusion

Plant growth promoting rhizobacteria, having multiple activities in terms of biofertilization, biocontrol, and bioremediation, all of which exert a positive influence on crop productivity and ecosystem functioning, encouragement should be given to its implementation in agriculture. The of stable formulations of PGPRs should be implemented in agriculture by replacing the use of chemical fertilizers, pesticides and artificial growth regulators which have numerous side-effects to sustainable agriculture. PGPR promote plant growth not only by supplying nutrients to the plant, but also by producing phytohormones, inducing stress resistance, or preventing pathogen-induced plant diseases. Thus, the development of the biofertilizer market and the promotion of bacterial inoculations in the field is an environmentally friendly way to meet the worldwide need to raise crops yields.

References

12. Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V. Phytohormone production by three strains of *Bradyrhizobium japonicum* and possible physiological...

