Dirofilariasis: An emerging zoonoses

Vivekanandhan R, Shanmuganath C, B Sunil, Anukampa Kadwalia, Bhoomika, Muralikrishna P and Murugavelu M

Abstract
Dirofilariasis is one of the emerging zoonotic parasitic diseases accidentally affecting the humans (dead-end host), caused by filarial nematodes of genus *Dirofilaria*, subgenus *Nochtiella*. It infects various domestic and wild animals naturally and canines are the principal reservoir hosts. They are known to cause accidental infections in humans. *D. repens* is the prevalent species identified in India. Mosquitoes of the genera *Aedes*, *Culex*, *Anopheles*, *Mansonia* and *Armigeres* species are reported to be associated in its transmission while a blood meal, mosquitoes deposit hemolymph on the wound, which conveys infectious “larvae 3” stage that enters the host’s skin on their own. The clinical signs include coughing, exercise intolerance, unthriftiness, dyspnea, cyanosis, hemoptysis, syncope, epistaxis, and ascites. Preventing infection in dogs can be done by daily administration of diethylcarbamazine during and after the heartworm season. Preventing infection in humans is done by using insect repellent containing formulations. Dirofilariasis can be prevented by avoiding mosquito bites by using insecticide-treated bednet.

Keywords: *Dirofilaria*, emerging, mosquitoes, canines and humans

Introduction
Emerging zoonoses are those diseases that are newly recognized or newly evolved or that has occurred previously but shows an increase in incidence or expansion in the geographic, host or vector range. Further, it affects the economy and health of particular region or country and other nations also. These zoonotic diseases are a group of diseases and infections which are naturally transmitted from vertebrate animals to man. Vector-borne zoonotic disease causes death and economic losses in human and domestic animal populations globally, hitting seriously the socio-economic development of developed and developing countries (Faburay, 2015; Day, 2011) [12, 11]. Dirofilariasis is one of the zoonotic parasitic diseases accidentally affecting the humans (dead-end host), caused by filarial nematodes of genus *Dirofilaria*, subgenus *Nochtiella* (Kini et al., 2015) [19]. It infects various domestic and wild animals naturally and canines are the principal reservoir hosts (Reddy, 2013) [35]. Among nearly forty known species of *Dirofilaria* and at least six of them (*Dirofilaria immitis, Dirofilaria repens, Dirofilaria spectans, Dirofilaria tenuis, Dirofilaria striata and Dirofilaria ursi*) are known to cause accidental infections in humans (Horst, 2003) [14]. *D. repens* is the prevalent species identified in India. Mosquitoes of the genera *Aedes*, *Culex*, *Anopheles*, *Mansonia* and *Armigeres* species are reported to be associated in its transmission. Some classes of fleas, lice, and ticks are also supposed to act as vectors for dirofilariasis (Joseph et al., 2011) [16]. Adult female *D. immitis* lays microfilariae, which are taken up by suitable mosquito vectors and finally develop to the infective 3rd larval stage. Transmission takes place when a likely vector bites dogs or other hosts during a subsequent blood meal. It takes about 6-7 months to shift into an adult stage. The symbiotic relationship with *Wolbachia* (Bacteria) along with *D. immitis* magnifies disease severity (Morchón et al., 2009) [25]. The main clinical signs include tenacious cough, dyspnea and poor exercise tolerance followed by ascites, anorexia and weight loss. Globally there is greater attention and consideration of the increasing incidence and severity of human dirofilariasis infections. In India, at least one hundred subcutaneous/ocular and three pulmonary human cases had been reported (Kini et al., 2015) [19]. Hence, this focuses a detailed review on dirofilariasis and its zoonotic potential.

Epidemiology
Human infection is often located in temperate, tropical, and subtropical areas of the world. So far, more than 1,700 human cases of dirofilariasis (including > 370 pulmonary cases) have been documented globally, implying that wherever canine dirofilariasis is present humans are...
at higher risk (Montoya-Alonso et al., 2010; Simon et al., 2012) [24]. *Dirofilaria immitis* and *D. repens* are the most common species recorded in India (Sharma et al., 2017) [38]. In India, the first case of human pulmonary dirofilariasis due to *D. immitis* was announced from Mumbai (Badhe and Sane, 1989) [2]. Most of the *D. immitis* human infections are asymptomatic exhibiting typical coin lesions on chest radiography and are often wrongly removed as neoplasm (Ciferri, 1982) [10]. The distribution of *D. immitis* spreads from the Pakistani border in the west, to Delhi and Sikkim in the north, to the border with Myanmar in the east and to Orissa to the south (Sabu et al., 2005, Rani et al., 2010) [37, 33], whereas that of *D. repens* incorporates central and western India (Mumbai), to Kerala in the south and as far north as Delhi (Rani et al., 2010) [33]. The prevalence of *D. immitis* was found to be 1%, 3%, 4%, 34% and 57% in Sikkim, Kolkata, Delhi, Mizoram and Orissa, respectively (Rani et al., 2010; Chakravarty and Chaudhuri, 1983; Patnaik, 1989; Borthakur et al., 2006) [35, 30, 5], whereas that of *D. repens* was 5%, 7%, 17%, 14% and 21% in Delhi, Kerala, Mumbai, Orissa and Karnataka, respectively (Sabu et al., 2005; Patnaik, 1989; Ananda et al., 2006) [37, 30]. The first cases of human ocular and subcutaneous dirofilariasis was documented from Kerala in 1976 and 2004 respectively (Padmaja et al., 2005; Joseph et al., 1977) [29, 15]. In the past 2 years, cases of solitary subcutaneous dirofilariasis with *D. repens* were reported from Karnataka and Kerala (Permi et al., 2011; Bhat et al., 2012) [31, 4]. Till now, two cases of zoonotic filariasis due to *D. tenuis* have been reported and both cases reported from southern part of India (Bhat et al., 2012) [4].

![Diagram of geographic distribution of the different species of *Dirofilaria* in the animal hosts in the world](image1)

Fig 1: Geographic distribution of the different species of *Dirofilaria* in the animal hosts in the world:

![Diagram of geographic distribution of human dirofilariasis (reported cases)](image2)

(a) - Geographic distribution of human dirofilariasis (reported cases), (b) - Pulmonary dirofilariasis (blue), subcutaneous/ocular dirofilariasis (green), sporadic cases of subcutaneous/ocular dirofilariasis in areas where pulmonary dirofilariasis predominates (fuchsia triangles), sporadic cases of pulmonary dirofilariasis in areas where subcutaneous/ocular dirofilariasis predominates (red squares).

Source: The Complexity of Zoonotic Filariasis Episystem and Its Consequences: A Multidisciplinary View – (Simón et al., 2017) [39]
Life cycle
The life cycle of *Dirofilaria* species constitutes a definitive vertebrate host and a vector. The vectors are females of numerous mosquito species of the *Culicidae* family (Cancrini and Kramer, 2001) [6]. While a blood meal, mosquitoes deposit hemolymph on the wound, which conveys infectious “larvae 3” stage that enters the host’s skin on their own (Venco et al., 2011) [43]. The molt from L3 to L4 happens soon after *D. immitis* infection, between 3 to 12 days postinfection (d.p.i.) and the succeeding molt, which produces preadult worms, takes place between 50 to 70 d.p.i. Both *D. immitis* and *D. repens* exhibit poor vertebrate host specificity given that they can infect numerous mammalian species (Barriga, 1982) [3]. Among mammalian hosts, they are best adapted to domesticated and wild dogs, which function as reservoirs. Humans and cats are less suitable hosts (McCall, 2008) [21], in which parasite development is dramatically altered compared with the patterns in dogs.

![Diagram of life cycle of human dirofilariasis](image)

Fig 3: Life cycle of human dirofilariasis

Source: Human and Animal Dirofilariasis: the Emergence of a Zoonotic Mosaic – (Simón et al., 2012) [41]

Disease and clinical manifestation in humans
There are two classes of the disease: (1) Pulmonary dirofilariasis caused by *Dirofilaria immitis* (Dog heartworm) and (2) Subcutaneous dirofilariasis caused by *D. repens* and *D. tenuis*, parasites of the dog, cat and raccoon respectively. Unusually, parasite has also been recovered from deeper locations of the liver, breast, peritoneal cavity, omentum and ligament (Padmaja et al., 2005; Kim et al., 2002; Mrad et al., 1999; Orihel and Eberhard, 1998) [29, 18, 26, 28]. Human dirofilariasis typically manifests as either subcutaneous nodules or as lung parenchymal disease. Patients affected with *D. repens* notice a subcutaneous lump in the affected area which most commonly involves; face and conjunctiva of the eye and sometimes chest wall, upper arms, thighs, abdominal wall and male genitalia. Ocular involvement is usually periorbital, orbital, subconjunctival, or subtenon infection (Chopra et al., 2012) [9]. Human *D. immitis* infection has been associated with human pulmonary dirofilariasis and is usually asymptomatic. Those with symptoms have a cough, chest pain, fever and pleural effusion (Badhe and Sane, 1989) [2]. Clinically infection is apparent as a solitary subcutaneous nodule commonly in the head and neck region with or without pain.

Clinical manifestation in animals
Dogs reveal no indication of heartworm infection during the six-month prepatent period prior to the worm’s maturation and modern diagnostic tests for the presence of microfiliae or antigens cannot identify prepatent infections. Rarely, migrating heartworm larvae get lost and end up in unusual sites, such as the eye, brain, or an artery in the leg, which results in unusual symptoms such as blindness, seizures and lameness, but usually, until the larvae mature and congregate inside the heart, they produce no symptoms or signs of illness. Clinical signs such as coughing, exercise intolerance, unthriftiness, dyspnea, cyanosis, hemoptyisis, syncope, epistaxis, and ascites (right-side CHF) may occur. The frequency and severity of clinical signs correspond to lung pathology and level of animal activity. Signs are often not observed in sedentary dogs, even though the worm load may be relatively high. Infected dogs undergoes a dramatic increase in activity, such as during hunting seasons, may develop overt clinical signs. Moreover, worm death and thromboemboli precipitate clinical signs. In the most advanced cases where many adult worms have built up in the heart without treatment, signs progress to severe weight loss, fainting, coughing up blood and finally, congestive heart failure. Acute heartworm disease in cats can end in shock, vomiting, diarrhea, fainting, and sudden death. Chronic infection can induce loss of appetite, weight loss, lethargy, exercise intolerance, coughing and difficulty breathing. The signs of heartworm-associated respiratory disease can continue even after the complete exclusion of the heartworm infection (Yin, 2007) [44].

Diagnosis
Surgical excision of the worm and biopsy aids in both diagnosis and treatment. The morphological examination has flaws in the classification of the exact species as a huge
number of zoonotic *Dirofilaria* species have been reported that share morphologic features with *D. repens* (Poppert et al., 2009) [22]. Distinguishing its characteristic longitudinal cuticular ridges by wet mount study or histopathological examination in conjunction with the characteristic clinical features is usually adequate for diagnosis in most of the cases (Orhiel and Eberhard, 1998; Khurana et al., 2010) [28, 17]. Laboratory diagnosis of dirofilariasis in live animals is constantly at the forefront in terms of demonstration and identification of microfilariae in the tested blood sample. Radiography and cardiography aid in the diagnosis of *D. immitis*, but the confirmatory and reliable diagnosis for heartworm disease is dependent on serology and molecular tests. Sometimes, in circulating blood of heartworm-infected dogs microfilariae are absent and such condition is termed as “Occult infection.” In this case, obviously microscopy and PCR give false negative results. Several commercial ELISA based test kits are ready to diagnose heartworm in dogs but these kits are not extensively used in India. DNA based techniques contribute an alternative approach that is very sensitive and specific for identification of the filarial parasites (Rishiniv et al., 2006) [36]. The real attention of the medical profession is the lack of stable, non-invasive methods for the diagnosis of human dirofilariasis, particularly in the case of pulmonary lesions. It is difficult to distinguish radiologically a nodule by *Dirofilaria* from a likely malignant tumour (Genchi et al., 2005) [13]. Definitive diagnosis is normally made with wedge biopsy, video-thoracoscopy or very rarely by fine needle biopsy (Milanez de Campos et al., 1997) [23].

Treatment

The ultimate treatment of *Dirofilaria* infection in humans is the surgical removal of lung granulomas and subcutaneous nodules; this treatment is also curative. Chemotherapy is not recommended for human dirofilariasis (Simón et al., 2012) [41]. The most crucial feature in the management of human dirofilariasis is its differentiation from other causes of nodules susceptible to being removed by surgery (Simón et al., 2005) [40]. The symbiotic relationship between *Wolbachia* and numerous species of filariae, including *D. immitis* and *D. repens*, has provided promising new options for the treatment of filariasis using *Wolbachia* as a therapeutic target (Taylor et al., 2001) [42] and these symbiotic *Wolbachia* bacteria are extremely sensitive to tetracyclines (McCall et al., 2008) [21]. In case of canines, adulticidal therapy performed an important breakthrough in the management of heartworm infection is the adulticide melarsomine, an organoarsenical superior in safety and efficacy to thiacetarsamide (Knight et al., 1992) [20]. Corticosteroids are indicated as ancillary therapy in heartworm infection only in the face of pulmonary parenchymal complications to treat or prevent adverse reactions to microfilaricides and possibly to reduce tissue reaction to melarsomine (Rawlings et al., 1983) [34]. Microfilaria is efficiently and immediately cleared with ivermectin or with milbemycin (Nelson et al., 2005) [27].

Prevention and control

Preventing infection in dogs can be done by daily administration of diethylcarbamazine during and after heartworm season. The introduction of the macrolide agents such as ivermectin, milbemycin, moxidectin and selamectin has provided the veterinary profession with effective heartworm preventatives in a variety of formulations. Such agents, because they interrupt larval development during the first two months after infection, have a large window of efficacy and are administered monthly or less frequently and these agents are superior to diethylcarbamazine (McCall et al., 1996) [22]. Macrocyclic lactone is a parasiticide that prevents heartworm as well as other intestinal and external parasites. This reduces new infections by reducing the number of microfilariae circulating in peripheral blood of canines available for consumption by vectors. Dirofilariasis can be prevented by avoiding mosquito bites in areas where vectors may be infected with *Dirofilaria* larvae. The risk of such mosquito bites can be reduced by leaving as little skin exposed as possible, by the use of insect repellent when exposed to vectors and by sleeping under an insecticide-treated bed net in areas where *Dirofilaria*-infected vectors bite at night and have access to sleeping areas (CDC, 2012) [7]. Walking dogs earlier in evening before mosquitoes become active also reduces the number of bites. Reduce mosquito vector populations in urban areas by using mosquito larvicides or biological control like larvae-eating fish species.

Conclusion

Animal and human health is united today into a One Health concept, which concentrates on zoonotic pathogens emerging from companion animals, domestic animals and wildlife. An alarming increase in the trend of dirofilariasis in the past few years points towards a call for the required action to be taken towards the control of this infection. Succeeding of canine vector-borne diseases requires a One Health approach and precise control of arthropod-transmitted pathogens to both human beings and animals. This strategy is only achievable when clinicians and researchers from multi sectors should act together. Developing suitable molecular diagnostic tools for identification of species, systematic epidemiological surveys and concentrated studies on natural hosts, vectors and environmental factors will support in the appraisal of the exact prevalence of this emerging zoonotic dirofilariasis and in devising relevant control measures.

References
