Proximate evaluation of *Azolla pinnata* as sustainable feed supplement for poultry

Iqra Khursheed, Sahar Masud, Asma Khan, Nazam Khan, Sandeep Kour, Sourab Dua and Ifra Khursheed

Abstract

Azolla is a free floating fern rich in proteins, essential amino acids, minerals, vitamins (Vitamin A, B12, Beta carotene), bioactive substances and biopolymers. An attempt was made to evaluate the proximate value of *Azolla pinnata* as a feed for poultry. Azolla was cultivated following the NARDEP method. After harvesting it was sundried and stored in polyethylene bags and was further analysed for proximate principles. The dry matter content was 90.03 %, 22.79 % crude protein, 3.59 % ether extract, 15.49 % crude fibre, 19.46 % total ash, 38.67 % NFE, 1.93 % calcium and 0.26 % phosphorus.

Keywords: Azolla, proximate evaluation, NARDEP method, poultry, feed supplement

Introduction

Azolla belonging to the family *Azollaceae* is an aquatic free floating fern, has many species which can be found all over the world especially in tropical and subtropical regions. It grows easily in stagnant water, canals, pond and marshy lands as it can grow easily in water having pH from 4-7. Pillai *et al*., 2002 [23] reported that it is one of the good sources of protein and contains most of the essential amino acids, minerals such as iron, calcium, magnesium, potassium, phosphorus, manganese etc, apart from appreciable quantities of vitamin ‘A’ precursor beta-carotene and vitamin B12. It is also contains probiotics and biopolymers. Thus, Azolla appears to be a potential source of nutrients and has a considerably high feeding value for livestock (Hossiny *et al*., 2008) [13]. It is considered to be the most promising because of the ease of cultivation, high productivity, good nutritive value and overall without any adverse effects like lipid per-oxidation of meat and meat products (Singh and Subudhi, 1978; Prabina and Kumar, 2010) [31, 33]. *Azolla pinnata* was used as feed in broiler chicken (Balaji *et al*., 2009) [30], laying hens (Alalade *et al*., 2007) [21], Juvenile Black Tiger Shrimp (Sudaryono, 2006) [32], goats (Tamang *et al*., 1993) [34] and buffalo calves (Indira *et al*., 2009) [14]. *Azolla filiculoides* was also used in diets for sows (Leterme *et al*., 2010) [16] and as partial replacement of protein source for growing-fattening pigs (Becerra *et al*., 1990; Duran, 1994) [9, 12]. It contains most of the nutrients which are required for all classes of livestock including poultry and fish. Pillai *et al*., (2002) [23] has also found that the nutrient constitution of Azolla is almost identical to that of commercial poultry feed, except that its protein content is high and calcium content is slightly low. In the view of the facts stated above, the present study was undertaken to explore the proximate composition of *Azolla* as a feed for poultry.

Materials and methods

Azolla pinnata was cultivated by Nardep method (Pillai *et al*., 2002) [23] with little modifications according to the availability of material. After removing all the roots, pebbles and stones in and around a temporary pit of 2m X 2m X 0.2m dimensions was made under the shade of a tree and covered with plastic sheet of 3m x 3m dimension. Care was taken that the floor of the pit was even and corner of the pit were at the same level to maintain a uniform water level. Surface of the pit was first covered by gunny bags before the layer of plastic sheet to prevent the roots of the nearby trees piercing the plastic sheet then covered with plastic sheet. The outer edges of the sheet were fixed with bricks so that it will not slip during the cultivation period. After making a thin layer soil with 15 kg of sieved soil uniformly spread over the plastic sheet, 2.5 kg of cow dung and 25 g of super phosphate in 10 litres of water was mixed and poured on the sheet slowly. More water was poured to make the water level reach about three forth level of the pit and was checked regularly to maintain this water level. A thorough mixing was done so that the mixture was spread evenly in the pit. After the complete preparation of the pits about 1kg of fresh Azolla was inoculated in the pit with light sprinkling...
of water over it. Azolla started to grow rapidly filled the pit within 15-20 days. A mixture of 20 g of Super Phosphate, 1.5 kg of cow dung and 5 g of mineral mixture (Rammix) was added after every 10 days. This was done to keep the Azolla in rapid multiplication phase, to avoid any nutrient deficiency. Azolla was harvested manually using aluminium mesh nets. After harvesting Azolla was washed thoroughly and sun dried for 2-3 days under shade such that it become crispy and green colour retained. The dried Azolla was collected and packed in plastic bags for further use. A sample of 100 g of sun dried Azolla meal was further used for analysis.

Proximate analysis of Azolla meal

Sun dried Azolla meal sample was analyzed for proximate composition (dry matter, crude protein, ether extract, total ash, crude fibre, calcium and phosphorus) as per standards using AOAC, 2012 [3]. While as Nitrogen Free Extract (NFE) was calculated using the formula: NFE (%) = 100 - (CP% + EE% + CF% + TA%) and calcium content was determined by the precipitation method.

Result and Discussion

Proximate Composition of Azolla

The values of proximate composition of sun dried Azolla sample are presented in (Table No.1). The dry matter (DM) content of sun dried Azolla meal was 90.03 percent, Crude protein (CP) was 22.79 percent, ether extract (EE) was 3.59 percent, crude fibre (CF) was 15.49 percent, total ash was 19.46 percent, NFE was 38.67 percent, 2.03 percent calcium and 0.48 percent phosphorus.

Table 1: Proximate composition of Azolla meal on DM basis

<table>
<thead>
<tr>
<th>S. No</th>
<th>Nutrient</th>
<th>% DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dry matter</td>
<td>90.3</td>
</tr>
<tr>
<td>2</td>
<td>Crude protein</td>
<td>22.79</td>
</tr>
<tr>
<td>3</td>
<td>Ether extract</td>
<td>3.59</td>
</tr>
<tr>
<td>4</td>
<td>Crude fibre</td>
<td>15.49</td>
</tr>
<tr>
<td>5</td>
<td>Total ash</td>
<td>19.46</td>
</tr>
<tr>
<td>6</td>
<td>Nitrogen free extract</td>
<td>38.67</td>
</tr>
<tr>
<td>7</td>
<td>Calcium</td>
<td>2.03</td>
</tr>
<tr>
<td>8</td>
<td>Phosphorous</td>
<td>0.48</td>
</tr>
</tbody>
</table>

In present study, it was found that the total ash percent obtained was 19.46 which were slightly similar to the findings of Sujatha et al., (2012) [33], Ara et al., (2015) [4] and Rout et al., (2017) [28] while as higher results were obtained by Pinkihan, (2013) [24] and Cherryl et al., (2014) [11]. The results which were lower than the value of present study were revealed by Basak et al., (2002) [7], Alalade and Iyayi (2006) [1], Balaji et al., (2009) [6], Indira et al., (2009) [14], Jeberlin and Kumar (2010) [15], Shinde et al., (2017) [29] and Joyowsal et al., (2018) [17].

The nitrogen free extract content of Azolla calculated in this study was 38.67 percent, which were more or less similar to the results of Basak et al., (2002) [7], Cherryl et al., (2014) [11], Ara et al., (2015) [4], Bhattacharyya et al., (2016) [10], Rout et al., (2017) [28] and Joyowsal et al., (2018) [17]. On the contrary to these findings, higher values were reported by Alalade and Iyayi (2006) [1], Jeberlin and Kumar (2010) [15], Pinkihan, (2013) [24] and Shinde et al., (2017) [29].

From the present study it was revealed that the calcium percent in dried Azolla is 2.03 which were closely similar to the findings of Parthasarathy et al., (2001) [21], Pinkihan (2013) [24], Ara et al., (2015) [4], Rana et al., (2017) [27], Joyowsal et al., (2018) [17] while as was lower than the result revealed by Cherryl et al., (2014) [11]. Lower values of Ca were reported by Rout et al., (2017) [28] and Alalade and Iyayi et al., (2006) [1]. In present study phosphorous level was 0.48 percent which were near to the values of Parthasarathy et al., (2001) [21], Balaji et al., (2009) [6], Kumar et al., (2012), Rana et al., (2017) [27], Rout et al., (2017) [28] and Shukla et al., (2018) [30], Joyowsal(2018) [17] while as higher values were reported by and Alalade and Iyayi et al., (2006) [1] and Cherryl et al., (2014) [11].

The variations which are found in present study of the proximate composition of A. pinnata in different studies may be due to agro climatic condition of the region, soil condition, stage of maturity, strains or variety, application of fertilizer and irrigation, genetics and method of analysis.

Management of Mosquito and Housefly population

Mosquito and house fly menace are some of the major problems faced by the poultry farmers in and near their poultry shed as poultry manure and stagnant water are their breeding places. There are various methods to manage them. Among them Azolla cultivation near poultry shed or growing Azolla in ponds under poultry sheds in poultry cum fish integration is one of the simplest and safest method. As
Azolla is a floating fern, it covers water surface thus preventing laying of mosquito eggs which reduces mosquito breeding and their development (Rajendran and Reuben, 1998) [20]. It is believed that reduction in the fly population may be due to the nitrogen fixing ability of Azolla in association with symbiotic blue green algae Anabaena azollae as reported by Becking, 1979, however, no literature is available signifying the exact explanation in the reduction of house fly population near Azolla cultivated pits. In present study also reduction in housefly and mosquito population near the pit was observed. This finding is in line with the results of Mahanthesh et al., (2018) [20].

Conclusion

Based on the results of proximate composition of Azolla in this study, it may be concluded that Azolla may be used as an unconventional feed in poultry diet due to its high protein content. Azolla cultivation may also help to reduce the housefly and mosquito population in and around the livestock farm particularly poultry. It may help to reduce the cost of production of poultry and making it more profitable.

Acknowledgement

Authors are deeply thankful to the Dean, Directors and Vice Chancellor of Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu for providing necessary funds especially Head, Division of Livestock Production and Management and Animal Nutrition for providing the facilities for proper execution of research work.

References

12. Duran AO. Raw palm oil as the energy source in pig fattening diets and Azolla filiculoides as a substitute for soya bean meal. Livestock Research for Rural Development. 1994; 6(1)
24. Pinkihan RW. Feeding value of Azolla (Azolla sp.) meal in broiler diets. Open science repository Agriculture, online (open-access). 2013
25. Prabina BI, Kumar K, Dried Azolla. As a nutritionally rich cost effective and immune-modulatory feed

32. Sudaryono A. Use of azolla (*Azolla pinnata*) meal as a substitute for defatted soybean meal in diets of juvenile black tiger shrimp (*Penaeus monodon*). Journal of Coastal Development. 2006; 9:145-154
