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Abstract 
Heat shock proteins (HSPs) are an important class of proteins which are expressed in cells during 
extreme biotic or abiotic stress conditions. Rapid identification of the HSPs is crucial in studies related to 
inducing plant tolerance to abiotic stresses using biotechnological approaches. In the present study we 
have presented a discrete model based on features of protein sequences namely sequence length along 
with (i) amino acid compositions (ii) di-peptide compositions and (iii) in combination and machine 
learning based classifiers viz. decision trees, nearest neighbour and Naïve Bayes for the identification of 
the heat shock proteins. A classifier for the classification of each class of heat shock proteins (HSP70, 
HSP90, HSP100 and sHSP) from the remaining sequences has been able developed. Based on the AUC 
measure, the Naïve Bayes algorithm has been found to be superior in identifying the heat shock proteins 
in all the classes. 
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Introduction 
Heat shock proteins, also known as stress proteins, are an important class of functionally 
related proteins which are expressed in the cells when they are exposed to conditions of stress 
like low/ high temperatures and help the organism to survive (Parsell and Lindquist, 1993) [30]. 
They are produced in all living organisms in response to the stress conditions. Several HSPs 
are known to function as "molecular chaperones," preventing aggregation and promoting the 
proper refolding of denatured proteins (Bukau et al. 2006) [5]. Although referred to as heat 
shock proteins, most of these proteins in fact are expressed at rather significant levels in all 
cells maintained under normal growth conditions and are essential for cellular growth at all 
physiologically relevant temperatures (Georgopoulos and Welch, 1993) [15]. Release of HSPs 
in plant cells following exposure to different stresses in plants has the character of an 
emergency response, being extremely rapid and very strong and they are induced at different 
induction temperatures being specific to the stress conditions for the organism (Parsell and 
Lindquist, 1993) [30]. Organisms induce HSP synthesis when their temperature increases above 
that which is specific for them, rather than at a universal temperature threshold. The induction 
of HSPs correlates with the induction of tolerance to extreme heat in a wide variety of cells 
and organisms (Li and Laszlo, 1985) [21]. The HSPs help the cells to cope up from damage to 
polypeptides in two ways – firstly by promoting degradation of abnormal proteins and 
secondly by reactivating stress-damaged proteins. In the plant system they are broadly divided 
into 5 families – HSP60, HSP70, HSP90, HSP100 and sHSP (small HSPs). Members of the 
HSP70 and HSP60 families for example, participate in protein folding, protein translocation, 
and perhaps higher ordered protein assembly while other members of the heat shock protein 
family, such as HSP90, play important roles in the regulation of certain transcription factors 
and protein kinases (Georgopoulos and Welch, 1993) [15]. The features that usher some stress-
damaged proteins along the degradation pathway and others along the renaturation pathways 
are not currently understood (Parsell and Lindquist, 1993; Bukau and Horwich, 1998) [30, 4]. 
Researchers are investigating the role of these proteins in conferring stress tolerance to 
hybridized plants which can help in combating drought and poor soil conditions.  
Identification of these HSPs is crucial in studies related to inducing plant tolerance to abiotic 
stresses using biotechnological approaches. Many methods of function prediction rely on 
identifying similarity in sequence and/or structure between a protein of unknown function and 
one or more known proteins (Whisstock, 2003) [40]. To get the desired results, the popular 
sequence- similarity-search-based tools, such as BLAST (Altschul, 1997; Wootton and 
Federhen, 1993) [1, 42] are usually utilized to conduct the prediction.  
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Other methods include identification of conserved patterns in 
members of a functionally uncharacterized family for which 
many sequences and structures are known (Whisstock, 2003) 
[40]. However, this kind of approach failed to work when the 
query protein does not have significant sequence similarity to 
any attribute-known proteins. Thus, various non-sequential 
models, or discrete models, were proposed by different 
workers. The simplest discrete model used to represent a 
protein sample is its amino acid composition (AAC) and the 
di-peptide compositions (DPC) (Nakashima et al., 1986; 
Chou, 2001) [28, 8]. In the present study, utility of the features 
of protein sequences namely length along with (i) amino acid 
compositions (ii) di-peptide compositions and (iii) in 
combination, with the help of three machine learning based 
classifiers namely, decision tree, nearest neighbour and Naïve 
Bayes have been evaluated for the identification of the heat 
shock proteins so as to come out with best approach. 
 
Materials and Methods 
The primary sequences of non-redundant protein sequences 
have been utilized for the study. Important features have been 
derived from the protein sequences and have been utilized for 
development of classification model.  
 
Source of data 
The primary sequences of the proteins have been utilized for 
the study. The protein sequences have been downloaded from 
the SwissProt (Berman et al., 2000; Boeckmann et al., 2003) 
[2, 3] protein database of NCBI (NCBI, 2014) [29] which 
contains non-redundant sequences. The protein sequences 
were downloaded in fasta format. The protein sequences not 
belonging to any of the groups- HSP60, HSP70, HSP90, 
HSP100, sHSP have been termed as non-HSP. 
 
Input data representation 
The sequences were converted from fasta to tabular format 
and stored in Excel files for further analysis. Identical 
sequences were identified and only one copy of the sequence 
was retained. A protein sequence is a chain of amino acids, 
which are 20 in number. The following features of all the 
proteins have been computed to be used as input features for 
the development of classification models – length, AAC (20) 
and DPC (400). A protein sequence denoted by ‘P’ of length 
‘N’ can be represented as a sequence X1X2….XN, where X1, 
X2,…., XN are the amino acids. AAC and DPC for the amino 
acids and di-peptides in ‘P’ have been computed using the 
following formulae: 
 Amino	acid	composition	of	P = Number	of	occurences	of	P in	PN  

 Di − peptide	composition	of	PP = Number	of	occurences	of	PP 	in	PN − 1  

 , 1 ≤ , ≤ 20 
 
Matlab (Guide, 1998) [16] scripts were developed for the 
computation of AAC and DPC frequencies. Three different 
combinations of the features (Len + AAC, Len + DPC, Len + 
AAC + DPC) were used as input features for the development 
of classification models for the identification of important 
classes of plant heat shock protein sequences (HSP70, HSP90, 
HSP100 and sHSP).  
 
 
 

Generation of Training and testing sets 
10-fold cross-validation method has been followed for 
generating the training and testing sets for fitting and 
evaluation of classification models. Each dataset was 
randomly partitioned into 10 subsets of approximately equal 
size so that each class of protein is represented equally in each 
subset. 9 parts were used as the training set for fitting the 
classification model and the remaining part was used for 
testing the model. This process was performed over all the 10 
possible combinations of training and testing datasets and the 
classifier efficiency parameters were evaluated for each set. 
 
Model fitting 
The classifiers namely J48 decision tree, Naïve Bayes and IB1 
nearest neighbor models were fitted to the 10 sets of training 
and testing sets obtained in the previous step for development 
of the classification models. The parameters for the various 
models are as given in Table 1.  
 

Table 1: Parameter values of the models J48 and nearest neighbor 
implemented in the study 

 

Model Parameter Value 

J48 Confidence threshold for pruning 0.25 
Minimum instance for each leaf 2 

IB1 Distance measure Normalized 
Euclidean distance 

 
Performance evaluation 
The classification models obtained based on J48 decision tree, 
Naïve Bayes and nearest neighbor were compared based on 
the performance measures. For each classification algorithm, 
the performance of the classifier was obtained based on the 
measures of accuracy, precision, recall (sensitivity), F-
measure and area under the receiver operating characteristic 
(ROC) curve (AUC). Accuracy is the proportion of the 
proteins which have been classified accurately to its 
respective class by the classification model. Precision is the 
fraction of retrieved instances that are relevant while recall is 
the fraction of relevant instances that are retrieved. F-measure 
is the harmonic mean of precision and recall. The above 
parameters have been calculated based on the formulae: 
 Accuracy = TP + TNTP + TN + FP + FN 
 Precision	(p) = TPTP + FP 
 Recall	(r) = TPTP + FN 
 F −measure = 2prp + r 
 
where, TP: number of true positives, TN: number of true 
negatives, FP: Number of false positives and FN: number of 
false negatives. 
 
Results  
Frequency of HSP sequences 
The sequences of different type of HSPs available in 
SwissProt have been tabulated (Table 2). The frequency of 
HSP70 was highest while that HSP60 was least among all 
HSPs. The number of proteins was highest in Arabidopsis 
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thaliana and Oryza sativa in the HSP70, HSP90 and HSP100 
families while the reverse trend was observed in sHSP family. 
 
Table 2: Frequency of the different type of HSP sequences present 

in SwissProt database 
 

Protein type # available in different plant species Total 

HSP60 Arabidopsis thaliana (1), Solanum 
tuberosum (1), Zea mays (1) 3 

HSP70 

Arabidopsis thaliana (103), Oryza sativa 
Japonica group (27), Oryza sativa Indica 

group (12), Solanum tuberosum (16), 
Nicotiana tabacum (14), etc. 

226 

HSP90 

Arabidopsis thaliana (52), Oryza sativa 
Japonica group (23), Oryza sativa Indica 
group (11), Pisum sativum (4), Glycine 

max (4), etc. 

139 

HSP100 Arabidopsis thaliana (7), Oryza sativa 
Japonica group (6), Pisum sativum (1) 14 

sHSP Arabidopsis thaliana (1), Oryza sativa 
Japonica Group (23) 24 

 

Average amino acid composition in different protein types  
The average amino acid compositions were computed for the 
proteins of the HSP families as well as the non-HSPs (Table 
3). Further distribution of amino acid frequencies in different 
classes of HSP were also depicted (Fig 1 (a-f)). In HSP60 and 
HSP70 families the frequency of Alanine, was highest while 
that of Tryptophan was lowest. In HSP90 and HSP100 
families frequency of Leucine was highest while that of 
Tryptophan was lowest. In the sHSP family, frequency of 
Arginine and Glutamic acid was found to be highest while 
that of Cysteine was lowest. Thus a trend appeared to be 
present in distribution of AA in HSPs especially presence of 
lowest concentration of tryptophan. Tangchum et al. [16] 

showed that the three richest amino acids in HSP70 of all 
origins like heated cultured human leukemia cancer cell line 
K562, rabbit liver, rat liver and heart, and mouse liver were 
Glycine, Glutamic acid and Aspartic acid, except that of rat 
heart which was rich in Glycine, Phenylalanine and Glutamic 
acid. Additionally, Lysine, Valine, Leucine and Alanine were 
also found very rich in HSP70. 

 
Table 3: Average amino acid composition in the different protein types 

 

Amino acid Symbol 
Protein type 

HSP60 HSP70 HSP90 HSP100 sHSP Others 
Alanine A 0.120 0.082 0.076 0.085 0.108 0.073 
Cysteine C 0.006 0.011 0.014 0.007 0.005 0.019 

Aspartic acid D 0.054 0.059 0.062 0.055 0.070 0.048 
Glutamic acid E 0.078 0.080 0.079 0.086 0.086 0.059 
Phenylalanine F 0.018 0.034 0.038 0.031 0.038 0.046 

Glycine G 0.104 0.077 0.062 0.077 0.083 0.071 
Histidine H 0.003 0.019 0.022 0.015 0.017 0.022 
Isoleucine I 0.061 0.058 0.053 0.061 0.027 0.060 

Lysine K 0.093 0.068 0.069 0.063 0.061 0.060 
Leucine L 0.082 0.081 0.095 0.101 0.063 0.094 

Methionine M 0.037 0.030 0.030 0.024 0.024 0.025 
Asparagine N 0.035 0.036 0.038 0.030 0.023 0.042 

Proline P 0.023 0.045 0.043 0.040 0.064 0.048 
Glutamine Q 0.035 0.034 0.037 0.038 0.021 0.035 
Arginine R 0.042 0.050 0.051 0.075 0.086 0.055 

Serine S 0.036 0.071 0.076 0.071 0.061 0.078 
Threonine T 0.048 0.055 0.049 0.048 0.038 0.053 

Valine V 0.112 0.070 0.073 0.071 0.101 0.068 
Tryptophan W 0.002 0.008 0.010 0.004 0.016 0.013 

Tyrosine Y 0.012 0.031 0.023 0.020 0.008 0.031 
 

 
 

(a) HSP60 
 

 
 

(b) HSP70 
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(c) HSP90 
 

 

(d) HSP100 
 

 
 

(e) sHSP 
 

 

(f) Other (other than HSP60, HSP70, HSP90, HSP100 and sHSP) 
 

Fig 1(a-f): Distribution of average amino acid frequencies in different classes of HSP proteins 
 
Performance of the classification models  
The performance metrics were obtained for all the 10 sets in 
all the four models and the average performance metrics of 
the classifiers over all the ten sets was computed for all the 
feature sets (Table 4 (a-d)). In case of model for identification 
of HSP70 sequences, the value of AUC is higher in the case 
of Naïve Bayes classification algorithm (0.865, 0.873 and 
0.874) compared to the case of the other two classifiers for all 

the three cases considering different feature sets. In the case 
of HSP90 also the AUC values were higher in the case of 
Naïve Bayes in all the three data sets (0.885, 0.888 and 
0.885). Similar trend was observed in HSP100 and sHSP, 
with the Naïve Bayes classifier having highest AUC values 
(0.951, 0.892 and 0.928 in HSP100; 0.999, 0.793 and 0.797 in 
sHSP).  

 
Table 4(a-d): Performance metrics of the classification models for identification of different classes of HSP sequences 

 

a. HSP70 
 

Attributes Model 
Performance metrics* 

Sensitivity (HSP70) Sensitivity (others) Accuracy False Positive Rate F measure AUC 

AAC 
IB1 0.617 0.998 0.995 0.381 0.995 0.807 
J48 0.299 0.999 0.995 0.697 0.994 0.73 

Naïve Bayes 0.654 0.892 0.89 0.344 0.936 0.865 

DPC 
IB1 0.72 0.997 0.995 0.279 0.996 0.858 
J48 0.397 0.999 0.995 0.599 0.994 0.746 

Naïve Bayes 0.864 0.717 0.718 0.136 0.83 0.873 

AAC + DPC 
IB1 0.734 0.997 0.996 0.265 0.996 0.866 
J48 0.383 0.998 0.994 0.613 0.994 0.734 

Naïve Bayes 0.86 0.721 0.722 0.141 0.832 0.874 
 

b. HSP90 
 

Attributes Model 
Performance metrics* 

Sensitivity (HSP90) Sensitivity (others) Accuracy False Positive Rate F measure ROC 

AAC 
IB1 0.644 0.998 0.997 0.354 0.997 0.821 
J48 0.341 0.999 0.997 0.657 0.996 0.815 

Naïve Bayes 0.778 0.896 0.895 0.222 0.941 0.885 

DPC 
IB1 0.748 0.994 0.993 0.251 0.994 0.871 
J48 0.43 0.999 0.997 0.568 0.997 0.776 

Naïve Bayes 0.867 0.721 0.722 0.134 0.835 0.888 

AAC + DPC 
IB1 0.741 0.995 0.997 0.354 0.997 0.821 
J48 0.437 0.999 0.997 0.657 0.996 0.815 

Naïve Bayes 0.867 0.73 0.895 0.222 0.941 0.885 
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c. HSP100 

 

Attributes Model Sensitivity (HSP100) Sensitivity (others) Accuracy False Positive Rate F measure ROC 

AAC 
IB1 0.571 1 1 0.429 1 0.786 
J48 0.286 1 0.999 0.714 0.999 0.685 

Naïve Bayes 0.857 0.995 0.995 0.143 0.997 0.951 

DPC 
IB1 0.714 1 0.999 0.286 0.999 0.857 
J48 0.214 1 0.999 0.785 0.657 0.657 

Naïve Bayes 0.714 0.999 0.998 0.286 0.999 0.892 

AAC + DPC 
IB1 0.714 1 0.999 0.286 1 0.857 
J48 0.143 1 0.999 0.857 0.999 0.655 

Naïve Bayes 0.786 1 0.999 0.214 1 0.928 
 

d. sHSP 
 

Attributes Model Sensitivity (sHSP) Sensitivity (others) Accuracy False Positive Rate F measure AUC 

AAC 
IB1 0.304 1 0.999 0.696 0.999 0.652 
J48 0.217 1 0.999 0.782 0.999 0.628

Naïve Bayes 0.87 0.998 0.998 0.13 0.999 0.999 

DPC 
IB1 0.391 1 0.999 0.608 0.999 0.696 
J48 0.174 1 0.999 0.826 0.999 0.612 

Naïve Bayes 0.522 0.981 0.98 0.478 0.989 0.793 

AAC + DPC 
IB1 0.348 1 0.999 0.286 1 0.857 
J48 0.261 1 0.999 0.739 0.999 0.575 

Naïve Bayes 0.609 0.986 0.986 0.391 0.992 0.797 
 

Comparison of the performance of the Naïve Bayes 
classifier with IB1 and J48 
Wilcoxon matched pairs rank sum test (Wilcoxon, 1945) [41] 
was used to rank the different classifiers Naïve Bayes, IB1 
and J48 (Table 5). Very interesting results were obtained. For 
the first feature set (Len, AAC) Naïve Bayes classifier got the 

highest rank compared to the others across all the four groups 
of HSPs. However, DPC resulted in similar rank for Naïve 
Bayes and IB1 for HSP 70 and HSP 100. Similarly, 
AAC+DPC resulted in similar rank for Naïve Bayes and IB1 
for HSP 70 and HSP 100. 

 
Table 5: Comparison of the Naïve Bayes classifier with IB1 and J48 using Wilcoxon matched-pair s rank sum test 

 

HSP Method 
AAC DPC AAC + DPC 

Rank sum (+, -) p-value Rank sum (+, -) p-value Rank sum (+, -) p-value 
HSP70 IB1 (55,0) 0.002 (33, 12) 0.063* (27.5, 8.5) 0.222* 

 J48 (55,0) 0.002 (55, 0) 0.002 (55, 0) 0.002 
HSP90 IB1 (55,0) 0.002 (36, 0) 0.008 (36, 0) 0.008 

 J48 (55,0) 0.002 (55, 0) 0.002 (55, 0) 0.002 
HSP100 IB1 (55,0) 0.002 (21, 7) 0.297* (27, 1) 0.031* 

 J48 (55,0) 0.002 (55, 0) 0.002 (55, 0) 0.002 
sHSP IB1 (55,0) 0.002 (55, 0) 0.002 (55, 0) 0.002 

 J48 (55,0) 0.002 (45, 0) 0.004 (55, 0) 0.002 
 

Discussion 
Many methods of function prediction rely on identifying 
similarity in sequence and/or structure between a protein of 
unknown function and one or more known proteins while 
other methods include identification of conserved patterns in 
members of a functionally uncharacterized family for which 
many sequences and structures are known (Whisstock et al., 
2003) [40]. However, these approaches failed to work when the 
query protein does not have significant sequence similarity to 
any attribute-known proteins. For instance, using publicly 
available gene expression data and predicted secondary 
structures, Waters et al. (2008) [39] have found that the sHSPs 
are a dynamic protein family in angiosperms which are far 
more diverse in sequence, expression profile, and in structure 
than had been previously known. 
Thus, various non-sequential models, or discrete models, were 
proposed by different workers. The simplest discrete model 
used to represent a protein sample is its amino acid (AAC) 
composition or the di-peptide compositions (Nakashima et al., 
1986; Chou, 2001) [28, 8]. 
In our study we have used the features of protein sequences 
namely the amino acid compositions and developed machine 

learning models for the identification of the proteins. 
Numerous studies have been reported for the classification/ 
identification of different types of proteins. Models has been 
developed for the prediction of cyclin proteins (Mohabatkar, 
2010) [25], secretory proteins (Garg and Raghava, 2008) [13], 
protein functional class (King et al., 2000) [19], RNA binding 
sites (Kumar et al., 2008) [20], DNA binding proteins (Zhao et 
al, 2012) [43], subcellular localization of proteins (Garg et al., 
2005; Mooney et al., 2011; Lin et al., 2008) [12, 26, 23], protein 
structural class (Cai et al., 2001; Lin and Li, 2007) [6, 22], the 
seed storage class of seed storage proteins (Radhika and Rao, 
2015) [31], enzyme function (Syed and Yona, 2009) [35], 
protein-coding from non-coding RNAs (Liu et al., 2006) [24], 
protein enzymatic class (Volpato et al., 2013) [37]. So far, no 
study has been done on prediction of HSPs based on machine 
learning methods. However, few databases have been 
developed for HSP60 family (Hill et al, 2004) [18] and HSPs in 
general (Nagarajan et al, 2012) [27]. In this paper we have 
attempted to develop classification models for the 
identification of heat shock proteins viz. HSP70, HSP90, 
HSP100 and sHSPs.  
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Tangchun et al. (1998) [36] showed that the three richest amino 
acids in HSP70 of all origins like heated cultured human 
leukemia cancer cell line K562, rabbit liver, rat liver and 
heart, and mouse liver were Glycine, Glutamic acid and 
Aspartic acid, except that of rat heart which was rich in 
Glycine, Phenyl alanine and Glutamic acid. Additionally, 
Lysine, Valine, Leucine and Alanine were also found very 
rich in HSP70. Thus, there appeared to be variations in amino 
acid composition of HSPs of different origins. HSP70 is one 
of the most abundant and best characterized HSP families, 
expressed in response to stress and plays crucial roles in 
environmental stress tolerance and adaptation (Gupta et al. 
2013) [17]. Enhanced HSP70 expression may be a response to 
stressful environments and may improve cell survival by 
protecting proteins from degradation and facilitating their 
refolding (Dangi et al. 2014) [10]. Chaurasiya et al. (2010) [7] 
found that in the four major classes of proteins namely 
Globins, Homeoboxes, Heat Shock proteins (HSP) and 
Kinase the frequency of twenty naturally occurring amino 
acids, hydrophobic content of protein, molecular weight of 
protein, isoelectric point of protein, secondary structure 
composition of amino acid residues as helices, coils and 
sheets and the composition of helices, coils and sheets in the 
secondary structure topology plays a significant role in 
correctly classifying the protein into its corresponding class or 
family as indicated by the overall efficiency of Nearest 
Neighbor Classifier as 84.92%. Sangster et al. (2008) [32] 
demonstrated that HSP90-dependent alleles occur in 
continuously distributed, environmentally responsive traits 
and are amenable to quantitative genetic mapping techniques 
in Arabidopsis thaliana and also found that HSP90 
modulation has both general and allele-specific effects on 
developmental stability. However, effects of revealed 
variation on trait means outweigh effects of decreased 
developmental stability, and the HSP90-dependent trait 
alterations could be acted on by natural election. Thus, HSP90 
may centrally influence canalization, assimilation, and the 
rapid evolutionary alteration of phenotype through the 
concealment and exposure of cryptic genetic variation.  
The transcription factor ZAT12, a member of stress-
responsive C2H2 type zinc finger protein (ZFP) has been 
reported to control the expression of stress-activated genes 
mediated via ROS in plants (Shah et al, 2013) [34]. BcZAT12-
transformed tomato cv. H-86, var. Kashi vishesh (lines ZT1-
ZT6) over-expressing the gene product has been demonstrated 
to be tolerant to heat-shock (HS)-induced oxidative stress 
indicating that the use of HS-tolerant tomato lines could 
possibly be used for tomato cultivation in the areas affected 
by sudden temperature changes. 
There are many reports about the correlation between small 
molecular heat-shock protein (sHSP) and the acquirement of 
chilling tolerance. However, Wang at al. (2005) [38] has 
reported that sHSP confers enhanced chilling tolerance to 
plant. In their study, a DNA construct, including tomato 
chloroplast-localized small molecular heat-shock protein 
(CPsHSP) cDNA under the control of cauliflower mosaic 
virus 35S (35SCaMV) promoter, was introduced into the 
genome of tomato plants and the chilling tolerance of the 
transgenic tomato lines and the non-transgenic tomato was 
evaluated. After exposure to chilling stress, the transgenic 
plants exhibited lighter chilling-injured symptoms, and the 
results indicated consistently that transgenic tomato plants 
had stronger chilling tolerance. These characters are ascribed 
to constitutive expression of cpshsp and lead to the conclusion 
that HSP can enhance chilling tolerance in plant. 

High-level accumulation of the target recombinant protein is a 
significant issue in heterologous protein expression using 
transgenic plants. Miraculin, a taste-modifying protein, was 
accumulated in transgenic tomatoes using an expression 
cassette in which the miraculin gene was expressed by the 
cauliflower mosaic virus (CaMV) 35S promoter and the heat 
shock protein (HSP) terminator (MIR-HSP) (Douglas at al., 
2016) [41]. Further they demonstrated that the accumulation 
level of the target protein was comparable to levels observed 
with chloroplast transformation.  
In our study, the dataset is highly skewed, the number of 
proteins belonging to the HSP classes being very low in 
comparison to the number of other proteins (Table 2). Of the 
three classifiers J48 was found to be least sensitive to the 
minor class (namely HSP70, HSP90, HSP100 and sHSP 
classes) while Naïve Bayes exhibited higher sensitivity to the 
minor classes. Similarly AUC values were higher in the case 
of Naïve Bayes across all the feature sets in all the four 
experiments. Very minor difference has been found in the 
values of AUC for the Naïve Bayes classifier for the three 
feature sets in the case of HSP70 and HSP90. While higher 
values of AUC were obtained for the Naïve Bayes classifier 
for the first feature set (Len, AAC) in the case of HSP100 and 
sHSP. Only for the first feature set (Len, AAC) Naïve Bayes 
classifier got the highest rank compared to the others across 
all the four groups of HSPs, thus it is superior. Hence, the 
classifier based on the feature set – length and AAC and the 
Naïve Bayes classifier can be recommended for the 
identification of heat shock proteins. This methodology can 
be used in conjunction with the traditional methods for the 
identification of heat shock proteins of the four classes as 
above. 
Geng et al. (2015) [14] creatively used a 181-dimension protein 
sequence feature vector as input to the Naive Bayes Classifier 
based method to predict interaction sites in protein-protein 
complexes interaction. The prediction of interaction sites in 
protein interactions is regarded as an amino acid residue 
binary classification problem by applying NBC with protein 
sequence features. Independent test results suggested that 
Naive Bayes Classifier-based method with the protein 
sequence features as input vectors performed well. They 
claimed that it facilitate better understanding of biological 
mechanism of protein interaction which contributes to the 
understanding of metabolic, signal transduction networks and 
indicates directions in drug designing. 
Douglass et al. (2016) [11] used a number of properties to 
construct the classifier, including sequence length, number of 
observations, existence of detectable predicted miRNA 
sequences, the distribution of nearby reads and mapping 
multiplicity for application to small RNA sequence data from 
soybean, peach, Arabidopsis and rice and provide 
experimental validation of several predictions in soybean by 
probabilistic method for ranking putative plant miRNAs using 
a naïve Bayes classifier and its publicly available 
implementation. The approach performed well overall and 
strongly enriches for known miRNAs over other types of 
sequences.  
Cui et al. (2011) [9] reported a computational framework for 
predicting Arabidopsis mitochondrial proteins based on Naive 
Bayesian Network, which integrates genomic data generated 
from eight bioinformatics tools, multiple orthologous 
mappings, protein domain properties and co-expression 
patterns using 1,027 microarray profiles. Through this 
approach, they predicted 2,311 candidate mitochondrial 
proteins with 84.67% accuracy and 2.53% FPR performances. 



 

~ 3543 ~ 

Journal of Pharmacognosy and Phytochemistry 
Schwacke et al. (2007) [33] used Naïve Bayes method for in 
silico-based screening of transcription factors from 
Arabidopsis and rice with the aim of identifying putative N-
terminal chloroplast and mitochondrial targeting sequences. 
In both species, transcription factors from a variety of protein 
families that possess putative N-terminal plastid or 
mitochondrial target peptides as well as nuclear localization 
sequences, were found. 
 
Conclusion 
In this study we have utilized few machine learning 
algorithms for the classification of stress protein sequences 
available in the public domain (NCBI). The amino acid 
compositions of the protein sequences have been used as 
input features. Classification model based on nearest 
neighbour algorithm has been able to classify the stress 
proteins more accurately. A classifier for classification of 
each class of heat shock proteins, HSP70, HSP90, HSP100 
and sHSP) versus the remaining sequences has been able to 
predict the heat shock proteins. Based on the AUC 
performance measure, the classifiers based on Naïve Bayes 
method are superior in comparison to the remaining classifiers 
for identifying the heat shock proteins of all the classes as 
above. 
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