Studies on variability and genetic parameters for yield and its contributing traits in rice (*Oryza sativa* L.)

Brijesh Kumar Maurya, Pooran Chand, Prakriti Tomar, Shive Kumar Singh, Rakesh Singh Sengar, Gopal Singh and Pankaj Kumar

Abstract

The present study was carried out using 29 parents (25 lines x four testers) and 100 hybrids with the aim of determining the genetic variability and genetic parameters for yield and yield related traits along with 16 traits in rice. The 29 parental genotypes and their 100 F$_1$s were evaluated for yield and its associated traits during Kharif 2018. The analysis of variance revealed highly significant mean sum of squares due to treatments, parents and crosses for all the sixteen characters. PCV was higher than the genotypic GCV for all the traits. High heritability coupled with high genetic advance was observed for leaf area, spikelets per panicle, grains per panicle, L:B ratio and grain yield per plant indicated that additive genetic control in the inheritance of these traits and selection pressure could be profitably applied on these characters for yield improvement in rice.

Keywords: Variability, correlation coefficients, heritability, genetic advance, rice

Introduction

Rice (*Oryza sativa* L.) is a monocotyledonous angiosperm belonging to the family Graminaceae, sub-family Bamboosoidae and tribe Oryzyae (Sarla and Swamy, 2005) [23]. It is diploid with 12 chromosomes (2n=24) (Garrise et al., 2005) [8]. The small genome of rice (430 Mb) made it a model plant for studying cereal genetics. After maize and sugarcane, it is the third (FAOSTAT, 2015) highly preferred potnet staple food crop all over the world and is the most widely consumed staple food for nearly half of the world’s population (FAO, 2017) [6] especially in Asian region. Over 2 billion people in Asia alone derive 80% of their energy needs from rice, which contains 80% carbohydrates, 7-8% protein, 3% fat, and 3% fibre (Juliano, 1985) [12]. Minerals such as calcium, magnesium and phosphorus are present in addition to some traces of iron, copper, zinc and manganese. In addition, rice is a good source of niacin, thiamine and riboflavin (Oko et al., 2012) [18]. India stands the fourth position in rice production having 110.15 million tones of rice (Anonymous, 2017) [2].

Due to continuous increment in the population throughout the world, the demand for rice will continue to increase in near future; therefore, rice breeders across the world aim at enhancing the grain yield in rice (Song et al., 2007) [27]. Grain yield is a complex polygenic quantitative trait which controlled by several genes and is highly influenced by the environment (Ashfaq et al., 2012) [3]. A better understanding of the relationship between grain yield and its component traits becomes necessary for making an efficient selection for the development of new varieties with improved economically important traits (Kumar et al., 2014) [14]. Any successful hybridization programme for varietal improvement mainly depends on the selection of parents having high variability, so that desired character combination may be selected to improve grain quality and higher grain yield. Moreover, knowledge of heritability is essential for selection based improvement as it indicates the transmissability of a character into future generations. Johnson et al., 1955 [11] suggested that heritability estimates along with genetic advance would be more useful in predicting grain yield under phenotypic selection than heritability estimates alone. Keeping in consideration, the above background information, this study was undertaken with an attempt to estimate the genetic variability, heritability for yield and its component traits in rice.

Materials and methods

Experimental material

This investigation was conducted at Crop research Centre of Sardar Vallabhbhai Patel University of Agriculture and Technology, Modipuram, Meerut.
The experimental material for this study consisted 25 lines and 4 testers and their 100 crosses which attempted through line x tester mating design during Kharif, 2017. The 100 crosses along with 29 parental lines check varieties Pusa Basmati 1509 were evaluated during Kharif, 2018. Single row plots of 3m length were used for transplanting single seedling per hill for each genotype (treatment) in each replication following intra and inter-row spacing of 15 cm and 20 cm, respectively. Recommended cultural practices were followed to raise a good crop. Sixteen characters included in the study viz., days to 50% flowering, days to maturity, plant height (cm), flag leaf area (cm²), panicle bearing tillers per plant, panicle length (cm), spikelets/panicle, grains/panicle, spikelet fertility (%), 1000-grain weight (g), biological yield/plant (g), harvest-index (%), kernel length (mm), kernel breadth (mm), L:B ratio and grain yield/plant (g).

Statistical analysis
The mean values of the observation recorded were subjected to statistical analysis. SPSS (version 16) software was used for the descriptive statistical analysis and analysis of variance (ANOVA) of yield and its component traits. Analysis of variance was carried out for each of the characters studied as per Panse and Sukhatme (1967) [19]. For computation of genotypic and phenotypic coefficient of variations (GCV & PCV) was according to Burton and de Vane (1953) [4]; for heritability in broad sense Hanson (1963) [9] and genetic advance and the genetic advance in per cent of mean Johnson et al. (1955) [11] were followed. General mean (X) = Sum of observations of selected plants in each genotype/Number of plants selected
Range = the minimum and maximum values for each trait within a genotype

Anova
The analysis of variance was supported the subsequent linear model of Fisher (1918) [7].

\[Y_{ij} = \mu + g_i + r_j + e_{ij} \]

Where, \(i = 1, 2, \ldots \ldots \text{r (replication)}, j = 1, 2, \ldots \ldots t \) (treatment), \(Y_{ij} \) = phenotypic observation of the ith genotype in the jth replication, \(\mu \) = general mean, \(g_i \) = effect of ith genotype, \(r_j \) = effect of jth replication, \(e_{ij} \) = random error associated with the ith genotype in the jth replication

GCV and PCV
GCV\%= \(\frac{(\sigma^2 g/X) \times 100}{\sigma^2 p} \)

PCV\% = \(\frac{(\sigma^2 p/X) \times 100}{\sigma^2 p} \)

where, \(\sigma^2 g \) = genotypic standard deviation \(\sigma^2 p \) = phenotypic standard deviation, \(X \) = general mean of the characters. The PCV and GCV are classified as follow as suggested by Sivasubramanian and Madhavamenon (1973) [28]. It is as follows > 25% - high, 10-25% - moderate and < 10% - low.

Heritability
Heritability in a broad sense is the ratio expressed in the percent of genetic variation to total phenotypic variance.

\[h^2b (\%) = \frac{\sigma^2 g}{\sigma^2 p} \times 100 \]

Where, \(\sigma^2 g \) = Genotypic variance and \(\sigma^2 p \) = Phenotypic variance. The estimates of heritability in broad sense were categorized according to Johnson et al. (1955) [11]. It is as follows: <30% - low, 30-60% - moderate and >60% and above - high.

Genetic advance and Genetic advance as per cent of mean
The expected genetic advance (GA) and Genetic advance as per cent of mean (GAM) were estimated using formula suggested by Johnson et al. (1955) [11] as; \(GA = h^2b \times \sigma_p \times k \) and \(GAM = GA / \bar{X} \times 100 \), Where, \(h^2b \) = heritability in broad sense, \(\sigma_p \) = phenotypic standard deviation, \(k \) = selection differential (k=2.06) at 5% selection intensity (Lush, 1949) [15], \(GA = \) expected genetic advance and \(\bar{X} = \)mean of the character. The range of genetic advance as percent of mean is classified as suggested by Johnson et al., (1955) [11]. It is as follows: 0-10% - low, 10-20% - moderate and 20% and above - high.

Results and Discussion
The 25 lines and 4 testers along with their 100 hybrids were evaluated for yield and its component traits during the year 2018. The analysis of variance revealed highly significant mean sum of squares due to treatments, parents and crosses for all the sixteen characters indicating the existence of significant amount of variability among the characters studies. The presence of significant amount of variability in the initial breeding material assures the production of component traits (Table 1). The similar results were found by Sandeep et. al. (2018) [22]. Very wide range of variation in mean performance of genotypes was observed for all the 16 characters under study i.e. days to 50% flowering (82.00-94.00), days to maturity (109.00-124.00), plant height (90.37-132.68cm²), Flag leaf area (23.05-49.08cm²), panicle bearing tillers/plant (11.66-17.70), panicle length (23.16-32.77cm), spikelets/panicle (109.95-274.57), grains/ panicle (82.44-230.69), spikelet fertility (71.83-91.95%), 1000 grain weight (20.33-31.21), biological yield/plant (44.35-73.98g), harvest index (31.05-46.65%), kernel Length (7.95-11.98mm), kernel Breadth (2.20-3.11mm), L : B ratio (2.62-5.44) and grain yield/plant (16.15-29.85g). The comparison of mean performance of rice genotypes for 16 traits using critical differences revealed existence of very high level of variability in the rice genotypes evaluated in the present study.
A wide range of phenotypic coefficient of variation (3.03 – 18.04%) and genotypic coefficient of variation (2.52 – 17.97%) was observed for the traits studied (Table 2). Phenotypic coefficient of variation (PCV) was higher than the genotypic coefficient of variation (GCV) for all the traits, but little difference were recorded between PCV and corresponding GCV for all the traits. Grains per panicle, spikelets per panicle, grain yield per plant, flag leaf area and L:B ratio displayed moderate phenotypic and genotypic coefficient of variance. The similar results were found by Devi et al., 2017; Pragnya et al. 2018 and Manjunatha et al. 2019 [5, 20, 10].
Table 1: Analysis of variance for 15 characters in parents and their F$_1$ generation of rice

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>Days to 50% Flowering</th>
<th>Days to Maturity</th>
<th>Plant Height</th>
<th>Flag leaf Area</th>
<th>Panicle bearing Tillers/Plant.</th>
<th>Panicle Length</th>
<th>Spikelets/ Panicle</th>
<th>Grains/ Panicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>2</td>
<td>7.02</td>
<td>7.02</td>
<td>4.64</td>
<td>0.25</td>
<td>0.08</td>
<td>0.42</td>
<td>15.55</td>
<td>3.27</td>
</tr>
<tr>
<td>Treatment</td>
<td>128</td>
<td>18.45**</td>
<td>18.45**</td>
<td>183.42**</td>
<td>82.23**</td>
<td>3.92**</td>
<td>13.70**</td>
<td>3846.63**</td>
<td>2969.00**</td>
</tr>
<tr>
<td>Error</td>
<td>256</td>
<td>2.24</td>
<td>2.24</td>
<td>1.66</td>
<td>0.13</td>
<td>0.22</td>
<td>0.17</td>
<td>6.39</td>
<td>7.38</td>
</tr>
</tbody>
</table>

Table 2: Estimation of genetic parameters of variability for various traits studied in rice

<table>
<thead>
<tr>
<th>Characters</th>
<th>Mean</th>
<th>Range (Min - Max)</th>
<th>GCV (%)</th>
<th>PCV (%)</th>
<th>Heritability (%)</th>
<th>Genetic Advance</th>
<th>GA as % means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to 50% flowering</td>
<td>85.69</td>
<td>82.00-94.00</td>
<td>2.71</td>
<td>3.23</td>
<td>70.69</td>
<td>4.03</td>
<td>4.70</td>
</tr>
<tr>
<td>Days to maturity</td>
<td>116.26</td>
<td>109.00-124.00</td>
<td>2.52</td>
<td>3.03</td>
<td>68.98</td>
<td>5.01</td>
<td>4.31</td>
</tr>
<tr>
<td>Plant height</td>
<td>112.06</td>
<td>90.37-132.68</td>
<td>6.95</td>
<td>7.04</td>
<td>97.37</td>
<td>15.83</td>
<td>14.12</td>
</tr>
<tr>
<td>Flag leaf area</td>
<td>38.43</td>
<td>23.05-49.08</td>
<td>13.61</td>
<td>13.65</td>
<td>99.52</td>
<td>10.75</td>
<td>27.97</td>
</tr>
<tr>
<td>Panicle bearing tillers/plant</td>
<td>14.82</td>
<td>11.66-17.70</td>
<td>7.49</td>
<td>8.14</td>
<td>84.59</td>
<td>2.10</td>
<td>14.19</td>
</tr>
<tr>
<td>Panicle length</td>
<td>27.82</td>
<td>23.16-32.77</td>
<td>7.63</td>
<td>7.78</td>
<td>96.36</td>
<td>4.30</td>
<td>15.44</td>
</tr>
<tr>
<td>Spikelets/panicle</td>
<td>208.6</td>
<td>109.95-274.57</td>
<td>17.15</td>
<td>17.19</td>
<td>99.51</td>
<td>73.53</td>
<td>35.24</td>
</tr>
<tr>
<td>Grains/ panicle</td>
<td>174.84</td>
<td>82.44-230.69</td>
<td>17.97</td>
<td>18.04</td>
<td>99.27</td>
<td>64.49</td>
<td>36.88</td>
</tr>
<tr>
<td>Spikelet fertility</td>
<td>83.69</td>
<td>71.83-91.95</td>
<td>4.39</td>
<td>4.74</td>
<td>85.55</td>
<td>6.99</td>
<td>8.36</td>
</tr>
<tr>
<td>1000 grain weight</td>
<td>26.47</td>
<td>20.33-31.21</td>
<td>7.52</td>
<td>7.61</td>
<td>97.59</td>
<td>4.05</td>
<td>15.29</td>
</tr>
<tr>
<td>Bio. yield/plant</td>
<td>57.75</td>
<td>44.35-73.98</td>
<td>9.65</td>
<td>11.94</td>
<td>65.36</td>
<td>9.28</td>
<td>16.08</td>
</tr>
<tr>
<td>Harvest index</td>
<td>40.44</td>
<td>35.04-45.6</td>
<td>5.82</td>
<td>10.25</td>
<td>52.52</td>
<td>2.75</td>
<td>6.81</td>
</tr>
<tr>
<td>Kernel Length</td>
<td>9.33</td>
<td>7.95-11.98</td>
<td>8.70</td>
<td>8.83</td>
<td>97.24</td>
<td>1.65</td>
<td>17.68</td>
</tr>
<tr>
<td>Kernel Breadth</td>
<td>2.55</td>
<td>2.20-3.11</td>
<td>7.33</td>
<td>7.56</td>
<td>93.89</td>
<td>0.37</td>
<td>14.63</td>
</tr>
<tr>
<td>L : B ratio</td>
<td>3.68</td>
<td>2.62-5.44</td>
<td>13.38</td>
<td>13.63</td>
<td>96.36</td>
<td>1.00</td>
<td>27.06</td>
</tr>
<tr>
<td>Grain yield/plant (g)</td>
<td>23.22</td>
<td>16.15-29.85</td>
<td>12.02</td>
<td>13.98</td>
<td>73.94</td>
<td>4.94</td>
<td>21.29</td>
</tr>
</tbody>
</table>

Heritability of a trait is an index of transmission of characters from parents to its progeny. The estimates of heritability help the plant breeder in selection of elite genotypes from diverse genetic population, hence prior knowledge about the heritability of the traits is a prerequisite for the selection programme (Singh et al., 2011) [24]. Broad sense heritability describes both fixable (additive) and non-fixable (dominant and epistatic) variances which helps in estimating the inheritance of a character (Nirmala devi et al., 2015) [17]. The present study in this context exhibited that an estimate of heritability (broad sense) was high (> 60%) for all traits flag leaf area, (99.52), spikelets per panicle, (99.51), grains per panicle (99.27), 1000-grain weight (97.59), plant height (97.37), kernel length (97.24), panicle length (96.36), L:B ratio (96.36), kernel breadth (93.89), spikelet fertility (85.55), panicle bearing tillers per plant (84.59), grain yield per plant (73.94), days to 50% flowering (70.69), days to maturity (68.98) and biological yield per plant (65.36) except harvest index (52.25) which exhibited moderate heritability. High or moderate heritability estimates for most of the traits studied, have been reported earlier by Venkanna et al. (2014), Kahani and Hittalmani (2015), Hefena et al. (2016) and Abebe et al. (2017) [29, 10, 11]. For an effective selection, the knowledge alone on the estimates of heritability is not sufficient and genetic advance if studied along with heritability is more useful. High heritability coupled with high genetic advance was observed for leaf area, spikelets per panicle, grains per panicle, L:B ratio and grain yield per plant indicated that additive genetic control in the inheritance of these traits and selection pressure could be profitably applied on these characters for yield improvement. Similar findings also reported earlier by Sala Santhi et al. (2016), Devi et al. (2017) and Pragniya et al. (2018) [21, 5, 20]. High heritability with moderate or low genetic advance for days to 50% flowering, plant height, panicle baring tillers per plant, panicle length, 1000 grain weight, biological yield per plant, kernel length and kernel breadth the importance of dominance and epistatic effects in the inheritance of these traits and selection for these characters would be less effective and also reported by Singh and Singh (2005) [23] and Venkanna et al. (2014) [29].

Conclusion
Presence of genetic variability in a crop is a foremost requirement for the improvement of economically important traits like yield in rice. From this study, we conclude that the genotypes possessed adequate amounts of variability for yield and its associated traits. High heritability coupled with high genetic advance was observed for leaf area, spikelets per panicle, grains per panicle, L:B ratio and grain yield per plant indicated that additive genetic control in the inheritance of these traits and selection pressure could be profitably applied on these characters for yield improvement.

Acknowledgement
Student support, provided by the Sardar Vallabhbhai University of Agriculture & Technology to conduct present work as part of Ph.D. thesis, is duly acknowledged.

References