Preliminary phytochemical assessment and antioxidant activity of Neptunia triquetra

Ahmed Khaldoon Yasir, Suman Joshi DS Doddapaneni, Padmavathi CH, Luay Kadhim Hanoon, Satya Prasad M and Krishna Satya Alapati

Abstract
In the present study, preliminary phytochemical screening was carried out to the plant Neptunia triquetra which are commonly called as a yellow sensitive plant. This plant belongs to the Fabaceae family and Mimosaceae clade. The plant is native to India with wide distribution and well known medicinal properties. The various extracts of the leaves of the plant such as Hexane extract, Chloroform extract, Methanol extract and Aqueous extract (water) were subjected to preliminary phytochemical screening for qualitative and quantitative identification of diverse phytochemicals present. The extracts were also subjected to antioxidant activity using DPPH assay and FRAP assay. The results revealed that the Neptunia triquetra is the potential source for diverse phytochemicals. The Methanol crude extract exhibited potential high antioxidant activity when compared to other extracts. As phenols and flavonoids contribute to the major medicinal properties of the plant, these two phytochemicals were analyzed quantitatively.

Keywords: Preliminary phytochemical, assessment, Neptunia triquetra

1. Introduction
India is the land of biodiversity with abundant availability of medicinal plants which are best owed with traditional touch to heal the ill health. They have vast genetic diversity among the wide range of topology and climate [1]. Since the antique time medicinal plants made significant contribution to the primary health care of people as plants and plant products were used to treat humans and other animals for diverse diseases [2]. As per the World Health organization (WHO) report, 75-95% of the world population is mainly dependent on traditional therapies by using conventional medicine extracted from the plants as phytochemicals. Due to historic and traditional reasons the traditional medicine became primary approach to improve the health. Herbal medicines have been widely used in developing countries for the treatment and prevention of various diseases in the place where infectious disease are endemic and modern health facilities and services are insufficient [3]. Most interestingly, Natural products are extensively used in pharmaceutical research and drug developing sector which are isolated from the medicinal plants. Flavonoids, alkaloids, tannins, phenolic compounds etc., are some of the active constituents present in the plant extracts. With increase in world population followed by intensification and indiscriminate usage of antibiotics for treatment to human and animals leads to the development of antibiotic resistance and multidrug resistance in microbes [4]. Apart from this, side effects of several synthetic drugs, high cost of medicines, etc., contributed to the deterioration of usage of synthetic drugs. Always there is a strong need for developing diverse constituents originated from natural products that are capable of curing ill health without any side effects. On the other hand, Instead of synthetic medicine herbal medicine is safer as plant extract phytochemicals targets the biochemical pathway. The rational design of novel drugs from traditional medicine indeed offers new prospects in modern healthcare.

Oxidative stress generated as part of metabolism is the major reason behind generation of free radicals. Free radicals as well as other reactive oxygen species (ROS) were identified as agents associated with human aging, illness such as asthma, atherosclerosis, Alzheimer’s and Parkinson’s diseases, diabetes, hypertension, heart disease, and causes cancer [5,6]. Free radicals were also produced by many cells as a part of protective mechanism. Neutrophils produce them to destroy pathogens [7]. As free radicals play an important role in the diseases scenario of an individual, a thorough understanding of the various physiologically significant free radicals is of paramount importance. The free radicals and ROS were scavenged and ameliorated by certain compounds which are commonly called as antioxidants. The literature
revealed that some of the selected herbal drugs are known to possess antioxidant activity either by superoxide, or hydroxyl, or DPPH radical scavenging and lipid peroxidation inhibition activities. There is no detailed study on free radical scavenging activity on each plant. Hence, a detailed study was carried out on Hexane, Chloroform, Methanol, Aqueous (water) extracts of Neptunia triquetræa for scavenging activity of DPPH and FRAP radical.

Neptunia triquetræa are small herb with yellow flowers. The plant is commonly called as “Yellow Sensitive Plant” whereas in telugu language called as “chinná nidra kanti”. The plant has characteristic features of small tiny shrub or herb while the leaves are tiny, small and are sensitive to touch (Thigmonasty). Flowers are yellow and small. This sensitive plant belongs to the Fabaceae (Touch-me-not) family. The other synonyms include Desmanthus triquetræis, Desmanthus triquetræus, Mimosa triquetræ. Yellow Sensitive Plant grows on land, even though it is a cousin of the sensitive water plant.

The plant has potential medicinal properties and a few of them include treatment to the Jaundice. The entire plant is edible and used for medicinal purposes. For instance, flowers were used to treat eye diseases [8]. As per the available research reports on the Neptunia triquetræa, it is revealed that the plant is less explored scientifically. Hence, in the present study, it is contemplated to screen the small herb Neptunia triquetræa, for qualitative and quantitative preliminary phytochemical screening followed by assessing its potential antimicrobial and anti-oxidant activities.

The image of plant along with its flowers and classification was represented in figure-1.

![Image](http://www.phytojournal.com)

Fig 1: Figure corresponds to the images of plant Neptunia triquetræa. Image (a) corresponds to the plant with flower Image (b) corresponds to the whole plant Image (c, d) corresponds to the stem of the plant.

2. Materials and Methods

Plant collection:

The plant Neptunia triquetræa was widely distributed in the state of Andhra Pradesh, India. The plant material was collected from in and around the surroundings of Guntur district, Andhra Pradesh, India. After authentication by taxonomist, a voucher specimen was deposited in herbarium. The collected plant material was washed thoroughly and shade dried. After several weeks of drying, the dried leaves were crushed and sieved through No. 22 sized mesh followed by labeling as Neptunia, stored in cool and dry place until further use.

Extraction of phytochemicals from Neptunia triquetræa

The Neptunia triquetræa leaves powder was taken in a Soxhlet apparatus and subjected to successive Soxhlet extraction. The various solvents such as Hexane, Chloroform, Methanol and Water were used for the extraction of phytochemicals. After loading approximately 100gms dry leaves powder in Soxhlet apparatus, the successive extraction was carried out with continuous heating and cooling for 30-40 cycles in apparatus and each extract was collected, rotary evaporated and labeled for further use.

Preliminary screening of phytochemicals of Neptunia triquetræa (Qualitative analysis)

All the reagents required for screening the presence of various phytochemicals were prepared as per the standard procedures and protocols. The reagents include Benedict’s reagent, Dragendorff’s reagent, Fehling’s solution A & B, Liebermann- Burchard reagent, Mayer’s reagent and Molisch’s reagent. Standard screening tests of plant extracts of Neptunia triquetræa were carried out to know the presence / absence of various secondary metabolites such as alkaloids, anthraquinones, flavonoids, phenolic compounds, saponins, steroidal compounds, and tannins etc.

Detection of alkaloids:

The availability of alkaloids in the extracts of medicinal plant Neptunia triquetræa was evaluated by using the tests a) Dragendorff’s reagent test and b) Mayer’s reagent test.

- **a) Dragendorff’s reagent test**: 0.5gms of each of the Neptunia triquetræa extract was warmed with 2% H₂SO₄ for few minutes. The contents were filtered and added with 2-3 drops of Dragendorff’s reagent, mixed well. Observation of Orange red precipitate indicates the positive test for the presence of alkaloids [9].

- **b) Mayer’s reagent test**: 5g of crude extract from Neptunia triquetræa was taken in a test tube, added with 1% aqueous HCl and heated on water bath at 60°C with stirring and then filtered. To the filtrate, few drops of Mayer’s reagent (Potassium Mercuric Iodide) were added, mixed well. Formation of buff-colored precipitate is considered as positive test for the alkaloids.

Detection of flavonoids:

The crude extract was dissolved in aqueous solvents, filtered and each filtrate was mixed with 5mL of diluted ammonia solution. Mixed well and further added with concentrated H₂SO₄. Appearance of a yellow colour confirms the presence of flavonoids [10].

- **a) Alkaline reagent test**: The crude extract was dissolved in distilled water, mixed well and filtered. To the filtrate 2 mL of 2.0% NaOH was added and was mixed well. Formation of yellow color was observed. It became colorless when added with few drops of diluted HCl. This result indicates the positive test for the presence of flavonoids.

- **b) Shinoda’s test**: To the aqueous crude extracts of Neptunia triquetræa, few pieces of magnesium crystals and Conc. HCl were added, mixed well. After few minutes of incubation formation of pink colour is observed, which indicates the positive test for flavonoids.
Detection of anthraquinones (Bornträger’s test): Few grams of Neptunia triquetra extract was taken in a dry test tube and added with 15 mL of Chloroform. The test tube was heated in boiling water bath for 5 minutes. The obtained extract was filtered and equal volume of 10% ammonia solution was added. The contents were mixed well and observed for colour change. Appearance of bright pink colour on the surface indicates the positive test for the presence of Anthraquinones [12].

Detection of steroids: 0.5 gms of Neptunia triquetra extract was taken in a dry test tube and added with 10 mL of Chloroform, mixed well and filtered. The obtained filtrate was divided in to two parts and used for testing. The presence of steroids was assessed using different tests such as a) Liebermann-Burchard’s test and b) Salkowski’s test.

a) Liebermann-Burchard’s test: To the few mL of filtrate, 1 mL of acetic anhydride (C₄H₆O₃) was added and mixed well. To this 1 mL of conc. sulfuric acid (H₂SO₄) was added carefully along the sides of test tube. Appearance of green colour indicates the positive test for the steroids.

b) Salkowski’s test: To the filtrate conc. Sulfuric acid (H₂SO₄) was added carefully along the walls of the test tube to form a lower layer. A reddish brown color at the interface indicates the presence of a steroid ring.

Detection of tannins: The presence of tannins was evaluated using different tests such as a) Ferric chloride test, b) Lead Acetate test, and c) Potassium Dichromate test.

a) Ferric chloride test: To the 2 mL of Neptunia triquetra extract dissolved in water, added with 2 mL of 10% Ferric chloride solution and mixed well. Appearance of blackish blue colour infers the presence of gallic tannins and appearance of green-blackish colour indicates the positive test for the catechol tannins.

b) Lead acetate test: To the 2 mL of Neptunia triquetra extract dissolved in water, added with few mL of 10% Lead acetate [Pb(C₆H₅O₂)₂] solution and mixed well. Formation of yellow precipitate indicates the positive test for the presence of tannins.

c) Potassium dichromate test: The Neptunia triquetra extract was dissolved in distilled water and to it potassium dichromate (K₂Cr₂O₇) solution was added. Yellow colour precipitate indicates presence of tannins and phenolic compounds.

Detection of Phlobatannins: Approximately 200 mg of Neptunia triquetra extract was dissolved in 10 mL of double distilled water and mixed well. To this few drops of 1% HCl was added and boiled. Appearance of red precipitate indicates the positive test for the presence of Phlobatannins [13].

Detection of saponins (Froth test): The Neptunia triquetra extract was added with 20 mL of distilled water and was shaken in a graduated cylinder for 10 minutes. Allowed for incubation for 5 minutes and observed. Formation of a layer of “honey comb” froth indicates the positive test for the presence of saponins.

Detection of anthocyanins: To the 2 mL of Neptunia triquetra extract, equal volume of 2 N HCl was added and mixed well. The appearance of pink-red colour was observed. It turns into purplish blue colour after addition of ammonia. It indicates the positive test for the presence of anthocyanins [14].

Detection of leucoanthocyanins: The Neptunia triquetra extract was added to 5 mL of Isoamyl alcohol and mixed well. Appearance of red colour on the upper layer indicates the positive test for the presence of leucoanthocyanins.

Detection of coumarins: 3 mL of 10% NaOH was added to the Neptunia triquetra extract and mixed well. Appearance of a yellow colour indicates the positive test for the presence of coumarins.

Tests for carbohydrates: The presence of carbohydrates was tested using different tests such as a) Molisch’s test, b) Barfoed’s test (for detecting mono saccharides), c) Fehling’s test ”(To assess the presence of free reducing sugars), d) Test for ketones and e) Test for pentoses.

a) Molisch’s test: The extract was dissolved in distilled water and 2 mL of this was taken and added with few drops of Molisch's reagent. Few mL of conc. sulfuric acid (H₂SO₄) was also added along the walls of test tube. The interface of two layers was observed for the appearance of purple colour which infers the positive test for the presence of carbohydrates.

b) Barfoed’s test: The extract was dissolved in distilled water and 2 mL of this was taken in a test tube. To this 2 mL of Barfoed’s reagent was added and mixed well. The contents after mixing were placed in a boiling water bath for 10 minutes and observed for the colour change. Formation of red colour precipitate at the bottom of test tube indicates the positive test for the presence of mono saccharides.

c) Fehling’s test: The extract was dissolved in distilled water and 2 mL of solution was taken in a test tube. To this 5 mL of Fehling’s solution A and 5 mL of Fehling’s solution B was added and mixed well. The contents were boiled in a boiling water bath for 5 minutes. Appearance of brick red colour indicates the positive test for the presence of free reducing sugars.

d) Test for ketones: The extract was dissolved in 2 mL of distilled water and added with few crystals of resorcinol (C₆H₅O₂). To this equal volume of HCl was added and mixed well. The contents were heated using a spirit lamp and observed for the colour change. Appearance of pink red colour indicates the positive test for the presence of ketones.

e) Test for pentoses: The extract was dissolved in 2 mL of distilled water and added with 2 mL of HCl and few drops of phloroglucinol (C₆H₅O₃). The contents were mixed well and heated using a spirit lamp for few minutes. The contents were observed for colour change and appearance of red colour is indicative for the positive test for the presence of pentoses.

Quantitative estimation of phyto constituents from Neptunia triquetra

The presence of various phyto constituents were further tested for the quantitative estimation. For this purpose total phenol content and total flavonoid content were estimated as per the
Determination of total phenol content
The amount of total phenol content, in different solvent extracts of Neptunia was determined by Folin-Ciocalteu’s reagent method. For this purpose, 0.5 mL of the extract was mixed with 0.1 mL of 0.5 N Folin-Ciocalteu’s reagent. The contents were mixed well and were incubated at room temperature for 15 minutes. Then 2.5 mL of saturated sodium carbonate solution was added and further incubated for 30 minutes at room temperature and the absorbance was measured at 760 nm using UV-Visible spectroscopy (Thermo Scientific, USA). Gallic acid was used as a positive control. Total phenol content was expressed in terms of Gallic acid equivalent (mg/g of extracted compounds).

Determination of total flavonoid content:
The amount of flavonoid content in different solvent extracts of Neptunia triquetra was estimated by aluminum chloride colorimetric method. The reaction mixture was made by adding 1 mL of extract with a concentration of 1 mg/mL, 0.5 mL of 1.5% aluminum chloride, and 0.5 mL of 120 mM potassium acetate. The contents were mixed well and were incubated at room temperature for 30 minutes. The absorbance of all samples was measured at 415 nm using UV-Visible spectroscopy. Rutin was used as a positive control. The flavonoid content is expressed in terms of rutine equivalent (mg/g of extracted compound).

Anti-oxidant activity
The anti-oxidant activity was assessed by studying the diphenyl picrylhydrazine (DPPH) radical scavenging ability and ferric reducing antioxidant power (FRAP) assay.

DPPH (2, 2-diphenyl-1-picryl hydrazyl) radical scavenging assay
The antioxidant activity of the plant extracts was estimated using the DPPH radical scavenging assay. DPPH solution (0.004% w/v) was prepared in 95% ethanol and allowed for overnight incubation in the dark for generation of DPPH radical. A stock solution of Hexane, Chloroform, Methanol, Aqueous (water) extracts of Neptunia triquetra and standard ascorbic acid were prepared in the concentration of 100 mg/100 mL. From each stock solution 1 mL, 2 mL, 3 mL, 4 mL & 5 mL of this solution were taken in five test tubes respectively. With the same solvent made the final volume of each test tube up to 10 mL whose concentration was then 100 μg/mL, 200 μg/mL, 300 μg/mL, 400 μg/mL & 500 μg/mL respectively. 2 mL of freshly prepared DPPH solution (0.004% w/v) was added in each of these test tubes. The reaction mixture was incubated in the dark for 15 minutes and thereafter the optical density was recorded at 517 nm against the blank. For the control, 1 mL of DPPH solution in ethanol was mixed with 10 mL of ethanol and the optical density of the solution was recorded after 30 minutes. The assay was carried out in triplicate. The decrease in optical density of DPPH on addition of test samples in relation to the control was used to calculate the antioxidant activity, as percentage inhibition (%) of DPPH radical. The capability of scavenging DPPH radical was calculated using the following equation

\[
\text{DPPH Scavenged (\%)} = \frac{(A \text{ control} - A \text{ test})}{(A \text{ control})} \times 100
\]

Where “A control” is the absorbance of the control reaction and “A test” is the absorbance of the sample of the extracts. IC₅₀ values denote the concentration of sample, which is required to scavenge 50% of DPPH free radicals. All the experiments were repeated for three times and mean values were taken and IC₅₀ values were calculated and represented in results.

FRAP ferric reducing antioxidant power assay
The 20 μL of different extracts of Neptunia triquetra with a concentration of 0.5 mg/mL was taken in a test tube and mixed with 20 μL of 0.2 M potassium phosphate buffer (pH 7.2). The contents were mixed well and added with potassium ferricyanide (1% w/v, 20 μL). The contents were boiled in water bath at 50°C for 25 minutes. After cooling TCA (10% w/v, 20 μL), distilled water (75 μL) and ferric chloride (0.1% w/v, 20 μL) were added and the reaction mixture was further incubated for 30 minutes at room temperature. Absorbance was measured at 700 nm. Ascorbic acid was used as standard. The results were represented as ascorbic acid equivalents per mg sample (μg AAЕ/mg).

\[
\text{FRAP scavenging activity (\%)} = \left(\frac{(A_0 - A_s)}{A_0} \right) \times 100
\]

Where, A₀ is the absorbance of the control and As is the absorbance of the plant sample.

Concentration of working extract is 1 mg/mL.
All the experiments were repeated for three times and mean values were taken and IC₅₀ values were calculated and represented in results.

3. Results
Phytochemical analysis
Qualitative analysis
The Neptunia triquetra is the richest source for diverse phytochemicals. The alkaloids were present in all the extracts except Hexane extract. Similar characteristic feature of presence was exhibited by flavonoids. There are no traces of appearance of anthocyanins, coumarins and leuco anthocyanins class of phytochemicals in any of the crude extracts of Neptunia triquetra. The carbohydrates were present in aqueous extract. The phytochemical evaluation of Hexane, Chloroform, Methanol and Aqueous extracts of Neptunia triquetra, leaves were given in table-1.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the phytochemical screened</th>
<th>Hexane Extract</th>
<th>Chloroform Extract</th>
<th>Methanol extract</th>
<th>Aqueous (Water) extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>Detection of Alkaloids</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>a) Dragendorff’s reagent test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Mayer’s reagent test</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>02.</td>
<td>Detection of Flavonoids</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>a) Alkaline reagent test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Shimoda’s test</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Table 1: Comparative Analysis of Phytochemical Analysis of Neptunia triquetra leaves.
Detection of Anthraquinones (Borntrager’s test)	Negative	Negative	Negative	Negative
Detection of sterols
 a) Liebermann-Burchard’s test | Positive | Positive | Positive | Positive
 b) Salkowski’s test | Positive | Positive | Positive | Positive
Detection of Tannins
 a) Ferric chloride test | Negative | Negative | Positive | Positive
 b) Lead Acetate test | Negative | Negative | Positive | Positive
 c) Potassium Dichromate test | Negative | Negative | Positive | Positive
Detection of Phlobatannins | Positive | Positive | Positive | Negative
Detection of Saponins (Froth Test) | Negative | Negative | Negative | Negative
Detection of Anthocyanins | Negative | Negative | Negative | Negative
Detection of Leucoanthocyanins | Negative | Negative | Negative | Negative
Detection of Coumarins | Negative | Negative | Negative | Negative
Tests for carbohydrates
 a) Molisch’s test | Negative | Negative | Negative | Positive
 b) Barfoed’s Test | Negative | Negative | Negative | Positive
 c) Test for ketones | Negative | Negative | Negative | Positive
 d) Test for pentoses | Negative | Negative | Negative | Positive

Quantitative analysis
Based upon the preliminary phytochemical analysis qualitative determination of phyto constituents were carried out for various extracts of *Neptunia triquetra* by various standard methods and found that high amount of total phenols and total flavonoids. These two phytochemicals appeared highest concentration in Methanol extract and concentration increased with increase in extracts. For 500µg/mL of crude extract % of phenol content µg GAE/µg was 74.33±0.26. For similar concentration of Methanol extract total flavonoid content was 42.37±0.22 which is equal to µg rutin/µg. The results of total phenol content are represented in table-2 and whereas for the total flavonoid content were represented in table-3 respectively.

<table>
<thead>
<tr>
<th>Concentration of extracts (µg/mL)</th>
<th>Hexane Extract</th>
<th>Chloroform Extract</th>
<th>Methanol Extract</th>
<th>Water Extract</th>
<th>% of Phenol content µg GAE/µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>16.27±0.23</td>
<td>19.40±0.42</td>
<td>24.31±0.40</td>
<td>22.44±0.39</td>
<td>50.90±0.27</td>
</tr>
<tr>
<td>200</td>
<td>24.28±0.26</td>
<td>28.43±0.28</td>
<td>36.40±0.30</td>
<td>32.39±0.25</td>
<td>59.32±0.28</td>
</tr>
<tr>
<td>300</td>
<td>35.41±0.27</td>
<td>40.55±0.41</td>
<td>49.41±0.30</td>
<td>45.31±0.35</td>
<td>64.29±0.19</td>
</tr>
<tr>
<td>400</td>
<td>40.44±0.43</td>
<td>49.45±0.41</td>
<td>61.52±0.35</td>
<td>56.44±0.38</td>
<td>74.33±0.26</td>
</tr>
<tr>
<td>500</td>
<td>46.27±0.33</td>
<td>56.35±0.30</td>
<td>74.33±0.26</td>
<td>65.35±0.32</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Total Flavonoid content *Neptunia triquetra* leaves

<table>
<thead>
<tr>
<th>Concentration of extracts (µg/mL)</th>
<th>Hexane extract</th>
<th>Chloroform extract</th>
<th>Methanol extract</th>
<th>Aqueous (water) extract</th>
<th>% of flavonoid content µg rutin/µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.04±0.03</td>
<td>10.16±0.14</td>
<td>12.25±0.19</td>
<td>10.12±0.12</td>
<td>65.35±0.32</td>
</tr>
<tr>
<td>200</td>
<td>1.15±0.07</td>
<td>14.29±0.20</td>
<td>18.31±0.18</td>
<td>15.29±0.14</td>
<td>74.33±0.26</td>
</tr>
<tr>
<td>300</td>
<td>2.17±0.14</td>
<td>22.39±0.25</td>
<td>26.32±0.21</td>
<td>22.39±0.18</td>
<td>83.35±0.22</td>
</tr>
<tr>
<td>400</td>
<td>5.48±0.20</td>
<td>28.26±0.16</td>
<td>34.53±0.25</td>
<td>29.48±0.21</td>
<td>92.25±0.24</td>
</tr>
<tr>
<td>500</td>
<td>6.23±0.14</td>
<td>36.31±0.18</td>
<td>42.37±0.22</td>
<td>10.12±0.12</td>
<td></td>
</tr>
</tbody>
</table>

Anti-oxidant activity
On the basis of phytochemical investigation, all extracts (Hexane, Chloroform, Methanol and Aqueous) were chosen for the antioxidant studies. DPPH Radial Scavenging Activity of *Neptunia* was represented in table-4 and table-5 respectively.

Table 4: DPPH radical scavenging antioxidant activity of *Neptunia triquetra* leaves

<table>
<thead>
<tr>
<th>Conc. (µg/mL)</th>
<th>Hexane</th>
<th>IC50</th>
<th>Chloroform</th>
<th>IC50</th>
<th>Methanol</th>
<th>IC50</th>
<th>Water extract</th>
<th>IC50</th>
<th>Standard % of inhibition (Ascorbic acid)</th>
<th>IC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>29.20±0.24</td>
<td>30.27±0.18</td>
<td>36.18±0.22</td>
<td>34.38±0.23</td>
<td>305.25± 1.64</td>
<td>51.23±0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>32.61±0.64</td>
<td>36.55±0.28</td>
<td>44.27±0.20</td>
<td>41.21±0.21</td>
<td>52.45±0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>41.46±0.20</td>
<td>48.51±0.38</td>
<td>55.35±0.22</td>
<td>55.34±0.32</td>
<td>78.21±0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>46.37±0.23</td>
<td>52.49±0.18</td>
<td>69.43±0.28</td>
<td>52.44±0.25</td>
<td>82.23±0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>52.43±0.27</td>
<td>57.49±0.37</td>
<td>88.41±0.29</td>
<td>34.38±0.23</td>
<td>92.25±0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: FRAP radical scavenging antioxidant activity of *Neptunia triquetra* leaves

<table>
<thead>
<tr>
<th>Conc. µg/ml</th>
<th>Hexane</th>
<th>IC50</th>
<th>Chloroform</th>
<th>IC50</th>
<th>Methanol</th>
<th>IC50</th>
<th>Aqueous</th>
<th>IC50</th>
<th>Ascorbic Acid</th>
<th>IC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>16.23±0.22</td>
<td>17.30±0.20</td>
<td>22.55±0.23</td>
<td>19.16±0.18</td>
<td>45.38±0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>19.42±0.20</td>
<td>21.51±0.32</td>
<td>28.32±0.22</td>
<td>26.23±0.20</td>
<td>50.51±0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>28.53±0.38</td>
<td>29.53±0.11</td>
<td>38.79±3.11</td>
<td>38.52±0.23</td>
<td>66.39±0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>36.23±0.21</td>
<td>38.37±0.23</td>
<td>49.42±0.28</td>
<td>46.33±0.23</td>
<td>75.56±0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>42.47±0.20</td>
<td>43.53±0.25</td>
<td>64.29±0.19</td>
<td>59.32±0.25</td>
<td>83.35±0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Conclusion
From the ethno pharmacognosy point of view Neptunia triquetra is the potential medicinal plant with wide range of medicinal properties. A large number of diseases and illness were combated with the extracts of this plant. However, there is lack of scientific evidence for the key ingredients and diverse class of phytochemicals present in this plant. Hence, in the present study preliminary phytochemical screening for the crude extracts of Neptunia triquetra was carried out and as per our results, the plant is the richest source for the diverse class of phytochemicals. Both qualitative and quantitative analysis was performed in the present study. However, the chemical structure of all these phytochemicals needs to be elucidated. The Neptunia triquetra also have the anti-oxidant activity as demonstrated from the results of DPPH radical scavenging assay and FRAP assay.

5. References