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Abstract 

A pot-culture experiment was undertaken to investigate the possible role of putative phytohormone 

Methyl jasmonate (MeJA) (10μM and 15μM) through seed hardening and Zinc (15mg/Kg soil) as basal 

dose in extenuating the salinity effects in chickpea genotype BG-362 on the earlier vegetative growth 

stage subjected to 100mM salinity stress. The results on evaluation of the effects of methyl jasmonate 

(MeJA) and Zinc on physio-biochemical attributes, antioxidant enzyme activity were observed 

significant. The application of both MeJA and Zn was found to improve the chlorophyll content, length 

of shoot, shoot dry weight, relative water content and antioxidant enzyme activity like catalase and 

minimizes the accumulation of Hydrogen Peroxide (H2O2) in salt-fed seedlings. However, all these 

parameters were significantly reduced under alone treatment of 100mM salinity. Observations on 

different parameters were recorded at four intervals of 30, 60, 90 and 120 days after salt exposure. From 

the above parameters we summarize our results that MeJA and Zn showed mitigating effects by ROS 

scavenging through antioxidant defense machinery, increase in measure of plant water solution i.e., 

relative water content, chlorophyll content and growth parameters under salinity stress. 

 

Keywords: Salinity stress, methyl Jasmonates, antioxidant enzyme catalase, chlorophyll content, shoot 

length, relative water content, H2O2 content 

 

Introduction 

Pulses forms its significant position in vegetarian diet due to its high protein content in its 

grains. Among pulses chickpea shows its imperative role in sustainable agriculture by 

maintaining soil fertility through biological nitrogen fixation and its outstanding nutritive 

properties. The instability in productivity of chickpea in previous years was due to abiotic 

stresses. Abiotic stress like salinity is known to disturb the physiological balance and create 

osmotic stress in cells leading to production of Reactive oxygen species (ROS). 

Salinity stress resulted in heavy flower drop, pod shedding, poor seed set which ultimately 

lowered the productivity of chickpea in country. About 45 million ha of irrigated land 

predictable to about 20% producing one-third of the world’s food, is salt-affected (srivastava et 

al 2015). Ion cytotoxicity and osmotic stress due to excessive ion concentration (Na+, Cl-, SO4) 

are the adverse effects of salinity on plant growth (Zhu, 2002) [39]. Metabolic imbalances 

caused by ion toxicity, osmotic stress and nutritional deficiency under saline conditions may 

also lead to oxidative stress (Zhu, 2002) [39]. A high NaCl concentration in tissues is toxic for 

growth of glycophytes (Glenn et al., 1999) [14]. The tolerance or susceptibility of plant to 

salinity stress may depend upon the alterations in the levels of endogenous phytohormones 

such as abscisic acid (Jin et al. 2000) [20], salicylic acid (Hoyos and Zhang 2000) [18], and 

jasmonates (Chao et al. 1999; Thaler 1999) [7, 35] which ultimately induced many proteins of 

tolerance or susceptibility. To alleviate the salinity stress certain novel phyto hormones 

technology or tools are used in biotechnological, plant breeding and plant physiology fields.  

Phyto hormones have a leading role in various physiological and developmental processes in 

plants (Rohwer and Erwin, 2008; Ashraf et al., 2010; Kumar et al., 2014) [33, 3, 22] An important 

phytohormone methyl jasmonate ubiquitously found in the plant kingdom are derivatives of 

the fatty acid metabolism (Kupper et al., 2009; Gao et al., 2011; Jalalpour et al., 2014) [23, 13, 19] 

MeJA are believed to play an active role in a variety of JA-induced plant growth, senescence 

developmental and physiological activities have been reported including fertility, biotic and 

abiotic stress tolerance, sex determination, storage organ formation, reproductive processes, 

root elongation, fruit ripening and senescence, oxidative defense, and interaction with other 

hormones.  
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Nutrient balance and nutrient uptake is a matter of great 

concern in salinity affected soils the uptake is greatly affected 

in saline soils result in deficiency of significant nutrients in 

plants the increase in sodium and chloride ions in soil solution 

may lead to depletion of major and minor nutrients like 

phosphorous, zinc, potassium, calcium etc. Pulses are the 

heavy feeder of minor nutrients like Zn, Ca, Mo, Co, B, and 

Cu. Deficiency of any element may show severe symptoms 

under salinity stress. Zinc is found to be an important nutrient 

involved in activation of several enzymes and is directly 

involved in the biosynthesis of growth regulators such as 

auxin, which promotes production of more plant cells and 

biomass that will be stored in the plant organs especially in 

seeds besides this zinc was found to be the component of 

several antioxidant enzymes role in reducing ROS 

accumulation. 

The current study was undertaken to evaluate the role of 

exogenously applied MeJA in counteracting salinity stress in 

chickpea genotype BG-362. We examined the effect of 

exogenous MeJA on growth parameters, chlorophyll content, 

relative water content, catalase activity, and H2O2 content in 

salt-stressed chickpea plants. 

 

Materials and Methods 

The present-investigation was undertaken during 2016-2017 

in polyhouse of the Institute of Agricultural Sciences, Banaras 

Hindu University, Varanasi. Seeds of chickpea genotype BG-

362 were procured from Pulse Research Laboratory, I.A.R.I, 

New Delhi. Seeds were surface sterilized with 0.1% HgCI2 

treatment for 5 min and then washed with sterile distilled 

water followed by seed hardening treatment. Plastic pots of 

uniform size (30x30cm) were filled with 10 kg of air-dried 

soil and farmyard manure in 6:1 ratio. Salinity stress was 

induced after plants were established well in pots in 

polyhouse. Potassium sulfate was evenly added @10mM for 

inducing salinity stress with NaCl. Methyl jasmonate 

(C13H20O3) was applied at the rate of 10 and 15μM in 

combination with or without zinc under salinity stress. 

Potassium sulfate was evenly added @10mM for inducing 

salinity stress with NaCl. The growth parameters were 

examined after 30, 60, 90 and 120 days of salt exposure. The 

experiment was arranged in a Completely Randomized 

Design (CRD) with three replicates.  

 

Total Chlorophyll content 
The chlorophyll content was estimated as per protocol of 

Hiscox and Isrealstam (1979) by non-maceration method 

using dimethyl sulphoxide (DMSO). Total chlorophyll was 

calculated according to Arnon (1949) 

Chl a = {(12.7 x A 663) - (2.69 x A 645)} x V/1000 W (mg/g 

fresh wt.) 

Chl b = {(22.9 x A 645) - (4.68 x A 663)} x V/1000 W (mg/g 

fresh wt.) 

Total chl = {(20.2 x A 645) - (8.02 x A 663)} x V/1000 W 

(mg/g fresh wt.) 

Where, 

V = volume of solvent, 

W = weight of sample 

 

Hydrogen peroxide  

Hydrogen peroxide was assayed as per the protocol of 

Mukherjee and Choudhary (1983) [28].  

 

Catalase activity 

Catalase was assayed by measuring the disapperance of H2O2 

as per protocol of Teranishi et al. (1974) [34]. 

 

Relative water content (RWC) 
Relative water content was estimated in the leaves of plants 

grown under optimum controlled and salinity stressed plants. 

The RWC was calculated using the formula proposed by 

Weatherly (1950) [37] 

 

Fresh weight- Dry weight 

RWC = –––––––––––––––––––––– X 100 

Turgid weight- Dry weight 

 

Results and Discussion 

Plant Height  

 
Table 1: Effect of Methyl jasmonates and zinc on plant height (cm) in chickpea genotype BG-362 under induced salinity at different stages of 

growth 
 

Treatments 
30 DAS 60 DAS 90 DAS 120 DAS 

2016 2017 2016 2017 2016 2017 2016 2017 

T0 12.99 13.91 26.42 27.20 39.33 40.75 43.37 44.83 

T1 6.82 8.58 14.73 15.32 22.14 22.94 24.41 25.23 

T2 13.65 14.56 27.68 28.63 41.65 45.56 48.16 50.11 

T3 12.75 13.77 25.98 26.88 39.12 39.83 43.81 43.82 

T4 15.99 16.61 32.12 33.21 50.82 52.65 56.04 57.92 

T5 9.12 10.56 19.10 19.72 29.63 30.70 32.67 33.77 

T6 7.78 9.47 16.55 17.29 24.44 25.32 28.28 27.86 

T7 15.98 16.60 32.10 33.19 48.38 50.46 53.68 55.51 

T8 15.91 16.45 31.96 32.84 47.21 48.91 52.06 53.81 

T9 11.41 12.68 23.43 24.45 35.93 38.97 41.29 42.87 

T10 9.19 10.64 19.22 19.91 30.48 32.62 34.28 35.68 

SEm± 0.68 0.62 1.28 1.39 1.73 2.04 2.01 2.39 

LSD (p=0.05) 1.98 1.83 3.75 4.07 5.08 5.97 5.90 7.00 

T0: Control; T1: 100mM; T2: 10μM MeJA; T3: 15μM MeJA; T4: Zn; T5: 100mM NaCl+10μM MeJA; T6: 100mM NaCl+10μM MeJA; T7: 

Zn+10μM MeJA; T8: Zn+15μM MeJA; T9: Zn+10μM MeJA+100mM NaCl; T10: Zn+15μM MeJA+100mM NaCl 
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Leaf number per plant  

 
Table 2: Effect of Methyl jasmonates and zinc on number of leaves per plant in chickpea genotype BG-362 under induced salinity at different 

stages of growth 
 

Treatments 
30 DAS 60 DAS 90 DAS 120 DAS 

2016 2017 2016 2017 2016 2017 2016 2017 

T0 81.57 82.57 129.39 135.00 208.21 238.54 225.63 260.73 

T1 39.93 45.31 62.67 79.58 102.78 109.08 111.38 113.19 

T2 82.21 84.87 130.40 138.42 209.88 241.91 227.44 266.44 

T3 76.26 82.45 120.88 134.82 198.26 235.62 214.85 259.51 

T4 92.27 100.13 146.53 161.11 240.33 281.56 260.44 312.11 

T5 57.10 63.89 90.17 107.21 147.89 150.37 160.27 205.37 

T6 47.86 48.68 75.37 84.60 123.62 127.85 125.96 129.25 

T7 90.91 98.34 144.35 158.45 236.75 276.92 256.56 305.00 

T8 84.70 90.81 134.40 147.25 220.44 257.35 238.88 283.45 

T9 69.74 69.62 110.43 115.73 185.11 197.26 195.60 217.27 

T10 60.46 65.98 95.57 110.33 156.74 157.81 161.86 171.81 

SEm± 3.03 4.53 4.85 6.74 8.69 12.78 10.24 15.00 

LSD (p=0.05) 8.88 13.30 14.23 19.78 25.48 37.49 30.03 43.99 

T0: Control; T1: 100mM; T2: 10μM MeJA; T3: 15μM MeJA; T4: Zn; T5: 100mM NaCl+10μM MeJA; T6: 100mM NaCl+10μM MeJA; T7: 

Zn+10μM MeJA; T8: Zn+15μM MeJA; T9: Zn+10μM MeJA+100mM NaCl; T10: Zn+15μM MeJA+100mM NaCl 

 

Data pertaining to plant height and number of leaves as 

influenced by salinity at four stages of plant growth i.e. 

vegetative, flowering and pod initiation and pod formation 

was observed and is presented in table 1 and 2 plant height 

was known to be an important index of plant growth in abiotic 

stress. Salinity stress adversely affects the plant height and 

number of leaves. Plants become stunted and rate of leaf 

emergence and its growth was significantly affected under 

salinity stress. In general, an increasing trend in plant height 

was observed with advancement in crop age in chickpea. 

Plant height was differed significantly up to maturity among 

different treatments. Combined treatment of 10 μM MeJA + 

100mM salinity stress + Zn showed minimum reduction in 

plant height and number of leaves compared with alone 

treatment of salinity however the combined treatment of 10 

μM MeJA + 100mM salinity stress was statically at par with 

alone treatment of salinity. The highest plant height and 

number of leaves was recorded in only Zn treated plants and 

was found at par with control and alone dose of 10 μM MeJA. 

A decrease in plant height and number of leaves per plant 

with increasing salinity has, been reported in many crop 

plants viz rice (EI-Shouny, 1976) [10], cotton (Malofeev et al., 

1979) [24], wheat, barley (Bhardwaj, 1960) [5], brassica 

(Ansari, 1972) [1] and cowpea (Gomes et al., 1983) [15] 

 

Total Chlorophyll content  

 
Table 3: Effect of Methyl jasmonates and Zinc on total chlorophyll content (mg-1 g-1 fresh weight) in chickpea genotype BG-362 under induced 

salinity at different stages of growth 
 

Treatments 
30 DAS 60 DAS 90 DAS 120 DAS 

2016 2017 2016 2017 2016 2017 2016 2017 

T0 4.235 4.555 4.614 4.858 5.622 5.793 4.814 5.039 

T1 2.672 3.118 2.986 3.220 3.722 3.703 2.875 2.842 

T2 4.244 4.622 4.623 4.934 6.016 5.984 4.957 5.154 

T3 4.224 4.603 4.602 4.911 5.528 5.699 4.797 4.898 

T4 4.848 5.364 5.252 5.778 6.282 6.249 5.274 5.353 

T5 3.763 4.153 4.122 4.399 5.322 5.361 4.468 4.562 

T6 3.438 3.836 3.784 4.038 5.023 4.997 4.092 4.178 

T7 4.570 5.175 4.963 5.563 6.182 6.216 5.190 5.299 

T8 4.439 4.813 4.826 5.150 6.022 5.990 5.087 5.194 

T9 4.157 4.537 4.532 4.837 5.512 5.650 4.659 4.757 

T10 3.773 4.339 4.133 4.611 5.428 5.400 4.557 4.653 

SEm± 0.229 0.227 0.238 0.259 0.332 0.349 0.249 0.259 

LSD (p=0.05) 0.672 0.667 0.699 0.759 0.974 1.023 0.732 0.760 

T0: Control; T1: 100mM; T2: 10μM MeJA; T3: 15μM MeJA; T4: Zn; T5: 100mM NaCl+10μM MeJA; T6: 100mM NaCl+10μM MeJA; T7: 

Zn+10μM MeJA; T8: Zn+15μM MeJA; T9: Zn+10μM MeJA+100mM NaCl; T10: Zn+15μM MeJA+100mM NaCl 

 

Relative water content (RWC %) 

 
Table 4: Effect of Methyl jasmonates and zinc on relative water content (RWC %) in leaves of chickpea genotype BG-362 under induced 

salinity at different stages of growth 
 

Treatments 
30 DAS 60 DAS 90 DAS 120 DAS 

2016 2017 2016 2017 2016 2017 2016 2017 

T0 63.38 66.42 76.19 78.61 78.36 80.41 75.42 78.83 

T1 42.18 43.10 52.14 52.42 55.18 55.68 54.18 55.72 

T2 63.42 66.46 76.34 78.78 78.42 80.47 75.63 79.06 

T3 62.18 65.10 75.24 77.58 77.42 79.41 74.36 77.67 

T4 72.38 76.32 86.34 89.67 89.43 92.22 84.42 88.62 
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T5 51.18 53.00 67.38 69.02 68.13 69.49 64.18 66.60 

T6 42.48 43.43 52.43 52.74 55.38 55.89 54.38 55.94 

T7 72.18 76.10 84.92 88.12 88.63 91.37 82.38 86.40 

T8 71.48 75.33 84.56 87.73 88.28 90.99 82.18 86.18 

T9 61.43 64.27 75.19 77.53 77.13 79.10 74.16 77.46 

T10 51.38 53.22 67.42 69.06 68.23 69.60 64.23 66.65 

SEm± 2.02 2.22 2.46 2.68 2.91 3.11 3.22 3.50 

LSD (p=0.05) 5.92 6.51 7.22 7.86 8.54 9.11 9.44 10.27 

T0: Control; T1: 100mM; T2: 10μM MeJA; T3: 15μM MeJA; T4: Zn; T5: 100mM NaCl+10μM MeJA; T6: 100mM NaCl+10μM MeJA; T7: 

Zn+10μM MeJA; T8: Zn+15μM MeJA; T9: Zn+10μM MeJA+100mM NaCl; T10: Zn+15μM MeJA+100mM NaCl 

 

Perusal of the table 3 and 4 revealed that chlorophyll contents 

and Relative water content (%) are maximum in leaves of 

only zinc treated plants followed by combination of zinc with 

methyl jasmonate. Whereas the lower values were recorded in 

salinity treated plants compared with control. Combined 

treatment of methyl jasmonate (10μM) + salinity (100mM) + 

Zn (15mg/Kg soil) showed significantly higher values 

compared with only salinity stressed plants. The total 

chlorophyll content and Relative water content (%) decreased 

with increasing age of plant and recorded highest at 90DAS. 

Slightly higher concentration of MeJA under salinity stress 

(15μM MeJA + 100mM) showed inhibitory effects and was 

found statistically at par with alone treatment of salinity. 

However the 10μM MeJA dose performed better under 

salinity stress as compared with 15μM MeJA. Relative water 

content reflects the metabolic activity in tissues affected by 

various types of stresses as it is an alternative measure of 

plant water solution and also responsible for the activation of 

various enzymes in cells. The chlorophyll content decreased 

in salinity treated plants. Low chlorophyll, content causes 

reduction in light absorption by leaves (Evans; 1996), and 

consequently reduces the biosynthesis of carbohydrates. 

Marked reduction in chlorophyll content at 100 and 150 mM 

NaCI over the control in stem and leaves of green gram was 

observed by (Muthukumarswamy and Panneerselvam, 1997) 
[29], in cucumber by (Kaya and Higgs, 2002) [21] and in cotton 

by (Meloni et al., 2003) [26]. 

 In abiotic stress the RWC decreased with the increase in 

levels of stress. In present study the RWC content 

considerably decreased in salinity stressed plants these results 

are in line with the study of Tipirdamaz and Cakirlar 1990 [36] 

who reported decrease RWC in chickpea by salinity stress. 

Harinasut et al., 1996) [17]. Significant decrease in relative 

water content (RWC) occurred in rice seedlings, subjected to 

salinity stress the lower dose of MeJA was comparable with 

control plants however the higher dose of 15μM MeJA 

showed similar results like the alone dose of salinity the JA 

induced decline in RWC and chlorophyll content has also 

been reported by various workers (Weidhase et.al., 1987; 

Parthier 1990) [38, 31]. 

 

Catalase activity  

 
Table 5: Effect of Methyl jasmonates and Zinc on catalase activity (nmol.g-1fresh weight min-1) in chickpea genotype BG-362 under induced 

salinity at different stages of growth 
 

Treatments 
30 DAS 60 DAS 90 DAS 120 DAS 

2016 2017 2016 2017 2016 2017 2016 2017 

T0 153.39 154.68 160.18 158.47 167.33 167.23 165.12 165.39 

T1 155.26 157.59 162.17 161.46 169.49 170.09 165.00 166.72 

T2 153.34 154.63 160.13 158.42 167.28 167.13 165.02 165.29 

T3 153.44 154.73 160.23 158.52 167.22 167.28 165.63 164.44 

T4 150.79 152.03 157.42 155.74 164.34 165.08 160.14 163.26 

T5 158.04 159.43 165.13 163.36 172.70 173.38 168.78 170.87 

T6 156.30 159.49 163.28 163.42 170.70 170.18 165.19 168.31 

T7 151.51 152.76 158.18 156.49 165.16 165.12 160.23 163.30 

T8 151.70 152.95 158.38 156.69 165.38 165.32 160.42 162.20 

T9 161.06 165.27 168.34 169.38 176.19 176.42 171.43 174.15 

T10 158.14 161.42 165.23 165.41 172.81 174.03 169.28 171.45 

SEm± 0.516 0.639 0.549 0.659 0.728 0.677 0.249 0.692 

LSD (p=0.05) 1.514 1.875 1.610 1.933 2.135 1.986 0.732 2.030 

T0: Control; T1: 100mM; T2: 10μM MeJA; T3: 15μM MeJA; T4: Zn; T5: 100mM NaCl+10μM MeJA; T6: 100mM NaCl+10μM MeJA; T7: 

Zn+10μM MeJA; T8: Zn+15μM MeJA; T9: Zn+10μM MeJA+100mM NaCl; T10: Zn+15μM MeJA+100mM NaCl 
 

Catalase activity differed and influenced significantly by 

various treatments at different stages of plant growth table 5. 

A comparable increase in Catalase activity was recorded upto 

90 DAS in salinity treated plants after that, very insignificant 

variations were observed at 120 DAS. The highest mean 

catalase activity was recorded in combination of treatments 

10µM MeJA +100mM NaCl + Zn 15mg/Kg soil compared 

with only salinity treated plants. However the alone dose of 

Zinc recorded the lowest mean catalase activity compared 

with only salinity stressed plants. A marked stimulation of 

CAT activity was recorded in methyl jasmonate and zinc 

treated plants under salinity stress. The lower dose of MeJA 

(10µM MeJA) performed better than the slightly high dose 

i.e., 15µM MeJA. Thus, it was observed that MeJA had 

positive effects on CAT activity and ameliorates the adverse 

effect of salinity stress in chick pea genotype. ROS affects the 

normal functioning of cell by disturbing membranes integrity 

damage to protein, DNA and lipids (Apel and Hirt, 

2004; Foyer and Noctor, 2005). (Hao et al., 2006) [2, 12, 16]. 

Data of our work are in line with the findings of (Ashraf and 

Harris, 2004; Chawla et al., 2013) [8] A burst in oxidative 

stress was observed due to elevated levels of Na+ are in 

different plants and tissues 

 Chen et al., 2014 [9] evinces application of JA minimizes the 

production of ROS,) followed by decrease in MDA activity in 

Kandelia obovata under Cd stress. The augmentation in CAT 
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activity in MeJA and Zn treated plants in present investigation 

was in accordance with the conclusion of (Mayak et.al., 1983 

and Naik et.al., 2002) Chen et al. (2014) [25, 30, 9] also observed 

that JA enhanced the CAT and APX activities in K. obovata 

seedlings subjected to Cd stress. 

The current study clearly demonstrated that exogenous MeJA 

may not only be involved in the defense mechanism against 

wounding and pathogen stress, but also in alleviating the 

detrimental effect of salt stress, although the magnitude was 

comparatively lower in chickpea as compared to other plants. 

MeJA application before exposure of plants to salinity stress 

may results in alleviation of certain endogenous 

phytohormones and their signaling components for tolerance 

or susceptibility to various abiotic stresses. The outstanding 

role of Jasmonates in various physiological and reproductive 

processes in plants draws attention of researchers in fields of 

plant breeding, biotechnology and plant physiology to 

develop tolerant genotypes to stress. Various evidences 

cleared JAs play a role from germination up to senescence. 

However various genes involved in growth regulation at 

different stages of development, are yet to be identified. But 

there is limited information available in the literature on how 

these plant processes like activation of antioxidant defense 

machinery, activation of genes related to endogenous 

phytohormones vary from species to species with JA 

application. 

 

Conclusion 

 From aforesaid discussion we concluded that salinity stress 

affects the certain important traits, manifested by decline in 

chlorophyll content, RWC, plant height, catalase activity and 

increase in H2O2 accumulation in chickpea genotype due to its 

susceptibility to salinity. Both salinity and slightly higher 

dose of MeJA treatment significantly affected the indices of 

vegetative growth. The results suggest that Methyl jasmonate 

worked effectively in alleviating the negative influences of 

salinity stress at concentration 10 μM in chickpea genotype 

and this 10 μM concentration could be utilized for the 

induction of plant defensive system that will enable the plant 

to withstand many biotic and abiotic stresses. Further 

investigations on methyl jasmonate threshold concentrations 

on other crops need to be studied to recognize the further role 

at molecular levels. it is therefore appears from above 

investigation that MeJA can generally be used as a growth 

regulator to enhance germination and plant growth. 
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