Physicochemical properties of tank silt of Latur and Osmanabad district


Abstract

The present investigation entitled “Economic assessment of tank silt and tank silt hybridized soils of Latur and Osmanabad district” were carried out to study the total nutrients status of already collected tank silt samples from 25 different tanks (0-150 cm depth). The tank silt of the study area was found alkaline in nature (7.3 to 8.1), low to high organic carbon (0.41 to 7.13) and medium to highly calcareous in nature (3.8-22.5). The total macronutrients status viz. Total N, P, K and S varies from 0.046 to 0.094, 0.027 to 0.073, 0.11 to 1.12 and 0.199 to 0.619 per cent respectively with the mean values 0.065, 0.042, 0.506 and 0.29 per cent respectively. Total micronutrients status in tank silt for total Fe, total Zn total Mn and total Cu range between 4.05 to 7.56, 0.0064 to 0.0124, 0.001 to 0.159 and 0.0014 to 0.0138 per cent respectively with the mean values 5.43, 0.00777, 0.092 and 0.00917 per cent respectively.

Keywords: Tank silt, total macronutrient, total micronutrient

1. Introduction

In agriculture the removal of tank silt and its application on agricultural lands is traditional activity done by the villagers for the benefits of better crop growth. Poor management practices of catchment have resulted in silting of most of these water bodies and significant reduction of storage capacity. Silt deposit has not only reduced the storage capacity but also groundwater recharge, eutrophication of tanks and most importantly higher release of carbon to atmosphere through silt mediated anaerobic decomposition of organic carbon. Good practices such as desilting and application of silt to agricultural fields have been abandoned. Continued mining by crops and reduced application of organic manures has resulted in deficiency of several nutrients particularly that of micronutrients. Recycling of tank silt provides a win-win situation to both, improvement in soil health and renovation of the tank (Osman et al. 2009)[13]. Runoff water carries along nutrients and fine organic matter particulates from agricultural lands. Often the sources and pathways of nutrients moved by sediments in the runoff are difficult to fully identify. For rainfed farming system there is a need to capture significant amount of rainwater, which is generally lost as runoff and deep drainage. This stored water can be used for supplemental irrigation, increasing crop productivity and resource-use efficiency. However, deposition of sediment in tanks reduces its capacity and also hampers the additional water storage in the rainfed areas. Hence, removal of sediments from tanks is a relevant approach for rainfed farming systems.

The tank sediment contained 50 to 71 per cent silt and clay. The organic carbon (C) content varied from 5.4 g C kg⁻¹ to 27.2 g C kg⁻¹ suggesting large variation in the eroded material. The N content in the sediment samples varied from 340 mg N kg⁻¹ to 1760 mg N kg⁻¹ sediment with an average N content of 719 mg N kg⁻¹ sediment. This value is almost double of the soil N content in the nearby fields. Similarly, the P content, microbial counts, organic C and microbial biomass C of the sediment varied across the tanks. Based on the economic value of N and P plant nutrients returned to the fields, the average benefit-cost (B/C) ratio of desilting works was calculated to be 1.17. Addition of sediments back to the agricultural lands not only returns back the nutrient-rich fine fractions with high C values but also restores the soil microbial biodiversity in the system (Padmaja et al. 2003) [14]. The nutrient deficiency in soils, the increased demand for food production, increased use of synthetic fertilizers and increasing market price of the same makes the process of tank desilting and application of silt to cropland soil a sustainable farm practice. Application of sediment desilting from the water tanks to agricultural fields appears to be an economically viable option for returning nutrients back to the soil. The methodology used for extrapolation could be up scaled and used for computing sediment yield, nutrient content and their economic value and their economic value and their economic value and their economic value.
value. There is need for further studies in order to understand the parameters involved in such nutrient substitutions, the sedimentation and evaluation of the value.

2. Material and Methods

The present investigation on tank silt and tank silt hybridized soil of Osmanabad and Latur district located between 18°05' to 18°25' N latitude and 76°25' to 77°25' longitude and 18°28' to 19°28' North latitude and 76°25' to 77°25' East longitude respectively. The area is covered by the basaltic lava-flows. Same layer of the lava-flow are hard and compact while other are soft. These basaltic flows are the result of intense volcanic activity during cretaceous Eocene period (almost seventy million year ago). When the lava flows were ejected through long narrow fissures on the earth surface. The area has very shallow cover of gravelly sediments over a hard basaltic Lithic or paralithic contact within 50 cm of the surface. These soils were treated with tank silt at different rate (0-6000 m³/ha) from adjoining tank and mixed (hybridized) with underlined murrum layer of very shallow soil by deep ploughing and intercultural operation. This investigation was carried out to study the physico-chemical characteristics and total nutrients status of already collected 25 tank samples of different tanks of Osmanabad and Latur district.

The bulk density of tank silt was determined by clod coating technique (Black, 1965) \(^2\). pH of 1:2.5 soils (tank silt): water suspension was determined electrometrically using pH meter as per method described by Jackson, (1973) \(^8\). Electrical conductivity of 1:2.5 soils (tank silt): water suspension as per the method describe by Jackson, (1973) \(^8\). The calcium carbonate was estimated by rapid titration method as described by Piper (1950) \(^17\). Modified Walkley and Black’s rapid titration method was followed for estimating the organic carbon content (Jackson, 1958) \(^7\). The total nitrogen was estimated by micro-kjeldhal distillation method after digestion of the tank silt samples with sulphuric acid and digestion mixture (K₂SO₄, CuSO₄ and selenium in 100:20:1 ratio respectively) (Page et al., 1982) \(^15\). The total phosphorus was estimated by Vanadomolybdate phosphoric yellow colour methods after perchloric acid digestion (Page et al., 1982) \(^15\). The total potassium was estimated by using flame photometer after HF and HClO₄ digestion method (Page et al., 1982) \(^15\). Total sulphur was estimated in diacid digestion mixture (Chapman and Pratt, 1961) \(^3\) from the di acid extract of soil, total sulphur was determine by turbidimetric methods as described by Chesnin and Yein (1951) \(^4\). The total micronutrients (Fe, Cu, Zn, Mn) were estimated by using atomic absorption spectrophotometer after HF and HClO₄ digestion method (Page et al., 1982) \(^15\).

3. Result and Discussion

The present investigation was carried on an economic evaluation of tank silt of Twenty five tanks of Osmanabad and Latur district. The tank silt samples were analyzed for total nutrient status.

3.1 Properties of tank silt.

The bulk density of tank silt varies from 1.2 to 1.4 Mg m\(^{-3}\) with an average value 1.3 Mg m\(^{-3}\) (Table 1). The low bulk density of tank silt comparatively than the soil of adjoining area. The pH of tank silt showed ranges between 7.3 to 8.1, with an average value 7.7. The tank silt soils are slightly to moderately alkaline in reaction. Similar result was also reported by Vaidya and Dhawan (2015) \(^19\) and Palwade et al. (2016) \(^16\). The EC of tank silt ranges between 0.10 to 0.62 dSm\(^{-1}\) with an average value 0.28 dSm\(^{-1}\) (Table 1) which is in normal range of EC which is well within a safe limit designated for normal soils (Richards, 1954), Krishnappa et al.(1998) \(^9\) reported that the similar result i.e. EC of tank sediments varied from 0.04 to 0.1 dSm\(^{-1}\) and also reported by Vaidya and Dhawan (2015) \(^19\) and Palwade et al. (2016) \(^16\). The calcium carbonate content in tank silt varied from 3.8 to 22.5 per cent (Ambi Tank) which is correspond to low to very high with an average value 10.9 per cent. The high amount of calcium carbonate in tank silt due to water stagnation which favors to precipitation of CaCO₃ (Wely, 1961 and Lyle 1971) \(^21, 11\) and accumulation of CaCO₃ in tank silt during dry period and on the other hand many organism utilized calcium and carbonate ion to form CaCO₃ skeletons, shells and teeth and they do so mainly on the surface of tank. The high calcium carbonate in soil affects the available water holding capacity of soil which has a great influence on crop production under rainfed conditions. The organic carbon content showed that most of the tank silt were low to high organic carbon. Tank silt showed organic carbon range from 0.41 to 1.00 per cent (Bangarwadi Talaw) with average value 0.70 per cent, which is higher than the adjoining area of soil. Vaidya and Dhawan (2015) \(^19\) and Palwade et al. (2016) \(^16\).

3.2 Total nutrients status in tank silt.

The total nitrogen in tank silt maximum at Hangarga talaw (0.094 per cent) and minimum at Benita prakalp (0.046 per cent). Similar results were also reported by Padmaja et al. (2003) \(^14\) total nitrogen content in tank silt of Madak district of Andhra Pradesh varies from 0.034 to 0.176 per cent and Binita (2006) \(^1\) reported that 0.052 to 0.112 per cent in North Karnataka. The maximum total phosphorus content was noticed at Sukni talaw (0.073 per cent) and minimum at Bangarwadi talaw (0.027 per cent). Similar result also reported by Padmaja et al. (2003) \(^14\) the total P content in tank silt varies from 0.008 per cent to 0.112 per cent in Madak district of Andhra Pradesh. The total potassium in tank silt varied in the range between 0.11 to 1.12 per cent with the mean value 0.506 per cent. The maximum total potassium content was noticed at Jakekur (1.12 per cent) and minimum at Sakul prakalp (0.11 per cent). Similar result also quoted by Binita (2006) \(^1\) the total K content in tank silt of North Karnataka varies from 0.21 to 0.26 per cent. The maximum total sulphur content in tank silt was noticed at Bhosga talaw (0.619 per cent) and minimum at Hwra talaw (0.199 per cent). Similar result was recorded by the Gajbhiye and Bhoye (2014) the total sulphur content soils of Lohara talahsil of Osmanabad in Vertisols varied widely from 544.00 (0.054%) to 3489.00 (0.34%) mg kg\(^{-1}\) with a mean value of 1862.14 (0.18%) mg kg\(^{-1}\). The total sulphur content in tank silt higher than the soil of adjoining area. This may be due to tank silt having high amount of organic matter and soil biota (Vaidya and Dhawan, 2015, Palwade et al., 2016) \(^19, 16\). The iron in tank silt varied in the range between 4.05 (Sukni talaw) to 7.56 (Bangarwadi talaw) per cent with the mean value 5.43 per cent. Similar result was recorded by the Malewar and Randhawa (1978) \(^12\) the total iron in soils of Marathwada ranged from 3.25 to 6.08 per cent in calcaereous soil and 3.69 to 7.04 per cent in non-calcaereous soils. The total iron in the tank silt was observed higher than the soil of adjoining area. The total zinc in tank silt varied in the range between 0.0064 (Bhosga talaw) to 0.0124 (Hwra talaw) per cent with the mean value 0.00777 per cent. Similar results were also reported by the Binita (2006) \(^1\) and Sharma et al. (2006) \(^18\). The total Zn in tank silt of North Karnataka varied from 0.005
4. Conclusions

The tank silt of the study area was found slightly alkaline in nature (7.3 to 8.1), low to high organic carbon (0.41 to 7.13) and medium to highly calcareous in nature (3.8-22.5). The total macro nutrients status viz. total N, P, K and S varies from 0.046 to 0.094, 0.027 to 0.073, 0.11 to 1.22 and 0.199 to 0.619 per cent respectively with the mean values 0.065, 0.042, 0.056 and 0.29 per cent respectively. Total micronutrient status in tank silt for total Fe, total Zn total Mn and total Cu range between 4.05 to 7.56, 0.0064 to 0.0124, 0.001 to 0.159 and 0.0014 to 0.0138 per cent respectively, with the mean values 5.43, 0.00777, 0.092 and 0.009917 per cent respectively. The total nutrients status in tank silt varied in the range between 0.0014 to 0.0138 per cent with the mean value 0.009917 per cent. Similar observation also recorded by the Binitha (2006) [1] and Sharma et al. (2006) [3] the silt content total Cu varies from 0.0096 to 0.0147 per cent in North Karnataka.

5. References

3. Chapman HD, Pratt PF. Methods of available for soils, plants and waters, University of California, Division Agriculture Science. California, 1961
13. Padmaja KV, Wani SP, Agarwal L, Sahrawat KL. Economic assessment of desilted silt in terms of plant nutrients equivalent: A case study in the Medak district of


17. Sharma BD, Mukhopadhayay SS, Katyal JC. Distribution of total and dtpa- extractable zinc, copper, manganese, and iron in vertisols of India. Journal Communications in Soil Science and Plant Analysis. 2006; 37(5, 6):653-672

