

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234

www.phytojournal.com JPP 2020; 9(5): 1194-1197 Received: 01-07-2020 Accepted: 03-08-2020

Vishal Kumar Gupta

Department of Genetics and Plant Breeding COA (IGKV), Raipur, Chhattisgarh, India

RK Yadav

Department of Genetics and Plant Breeding COA (IGKV), Raipur, Chhattisgarh, India

AP Agrawal

Department of Genetics and Plant Breeding, BTC CARS (IGKV), Bilaspur, Chhattisgarh, India

Roshan Parihar

Department of Genetics and Plant Breeding, BTC CARS (IGKV), Bilaspur, Chhattisgarh, India

Namita Singh

Department of Genetics and plant Breeding COA (IGKV), Raipur, Chhattisgarh, India

Prakriti Meshram

Department of Genetics and Plant Breeding COA (IGKV), Raipur, Chhattisgarh, India

Ashish Kumar Banjare

Department of Genetics and Plant Breeding COA (IGKV), Raipur, Chhattisgarh, India

Vipin Kumar Pandey

Department of Genetics and Plant Breeding COA (IGKV), Raipur, Chhattisgarh, India

Corresponding Author: Vishal Kumar Gupta Department of Genetics and Plant Breeding COA (IGKV), Raipur, Chhattisgarh, India

Genetic studies of parents and F₁ on terminal heat tolerance in wheat (*Triticum aestivum* L.) under late sown irrigated condition using Line X Tester design

Vishal Kumar Gupta, RK Yadav, AP Agrawal, Roshan Parihar, Namita Singh, Prakriti Meshram, Ashish Kumar Banjare and Vipin Kumar Pandey

Abstract

The present investigation entitled "Genetic studies of parents and F1 on terminal heat tolerance in wheat (Triticum aestivum L.) under late sown irrigated condition using Line X Tester design" was carried out during rabi 2017-18 and 2018-19 at the All India Co-ordinated Wheat and Barley Improvement Project, B.T.C. College of Agriculture and Research Station (IGKV), Bilaspur (C.G.). The experiment was conducted in RBD involving six lines, three testers and 18 F₁s hybrids of wheat with two replications for study of character associated with yield and yield contributing traits. Among the lines, CG 1015 (Chhattisgarh Gehu)-04 was found good in mean performance for days to 50% flowering, number of seed per spike, spike weight, canopy temperature depreciation and biological yield per plant and Raj 4238 was found good for the character of spike length, number of tillers per plant, number of spikelet per spike, 1000 seed weight and biological yield per plant. Among the testers, Halna was good in mean performance for the character of days to maturity, canopy temperature depreciation, and chlorophyll reflection index, Among the crosses, CG 1015 (Chhattisgarh Gehu-04) X HUW 661 was good in mean hybrid performance for days to50% flowering, canopy temperature depreciation and chlorophyll refection index. Raj 4238 X PHSL 10 was good in mean hybrid performance for plant height, number of tillers per plant and canopy temperature depreciation. HD 2285 X HUW 661 was good in mean hybrid performance for spike weight and yield per plant and crosses HD 2932 X Halna was good in mean hybrid performance for the character of 1000 seed weight.

Keywords: Wheat, line X tester, terminal heat tolerance, late sown irrigated condition

Introduction

Wheat (*Triticum aestivum* L.) is India's second biggest Staple raised food next to rice, it is widely cultivated. In the central region, bread wheat (Hexaploid 2n=42) and durum wheat (Tetraploid 2n=28) are mostly grown zone. Chhattisgarh comes under the central zone along with MP, Gujarat and some part of Rajasthan. Wheat is just the thermo-sensitive longer day crops, widely grown primarily in the developing countries densely populated tropical and subtropical regions. During the growing season the weather condition, specifically temperature, has a significant effect on wheat metabolic processes. Over the past two decades global warming has triggered temperature changes rapidly. The increased temperature of plant growth during reproductive process has emerged as important problems in many parts of the world. Growth and production of crops are greatly affected by climate change variants like temperature. Changing the atmosphere is the source of temperature rise in many parts of the world causing stagnation of cereal grain productivity and increased yield potential variability. Among different genetic techniques, the combining ability analysis developed by Kempthorne (1957)^[6]

Materials and Methods

The present research was conducted in two seasons of *rabi* in 2017-18 and 2018-19 at All India Co-ordinated Wheat and Barley Improvement Project at B.T.C. College of Agriculture and Research Station (Indira Gandhi Krishi Vishwavidyalaya), Bilaspur, Chhattisgarh, India. Nine wheat genotypes including six lines and three testers were crossed in a Line x Tester matting design and developed 18 F_1 hybrids during *rabi* 2017-18 (Table 1). The experiment was laid out with 18 hybrids and 9 parents in a randomized block design with two replication during *rabi* 2018-19.

Five competitive plants were randomly selected to record the observation on 15 characters *viz.* days to 50% flowering, days to maturity, plant height, peduncle length, spike length, number of tillers, number of spikelet per spike, number of seeds per spike, spike weight, yield per plant, 1000 seed weight, canopy temperature depreciation, chlorophyll reflection index, biological yield per plant and harvest index. Kempthorne (1957) ^[6]

Result and Discussion

Mean performance of female (line) parents

Among the lines, CG 1015 Chhattisgarh Gehu 04 was found good in mean performance for days to heading, number of seed per spike, spike weight, canopy temperature depreciation and biological yield per plant. Raj 4238 was found good for the character of spike length, number of tillers per plant, number of spikelet per spike, 1000 seed weight and biological yield per plant (Table 2). Similar results observed by Gupta *et al.*, (2017) ^[2].

Mean performance of male (tester) parents

Among the testers, Halna was good in mean performance for the character of days to maturity, canopy temperature depreciation, and chlorophyll reflection index (Table 2). Similar results observed by Singh *et al.*, (2012)^[7].

Mean performance of hybrids (crosses)

Among the crosses, CG 1015 (Chhattisgarh Gehu-04) X HUW 661 was good in mean hybrid performance for days to heading, canopy temperature depreciation and chlorophyll refection index. Similar results observed by Joshi *et al.* (2003) ^[5]. Raj 4238 X PHSL 10 was good in mean hybrid performance for plant height, number of tillers per plant and canopy temperature depreciation. Similar results observed by Gothwal *et al.*, (2006) ^[3]. HD 2285 X HUW 661 was good in mean hybrid performance for spike weight and yield per plant. Similar results observed by Jatav *et al.* (2014) ^[4]. crosses HD 2932 X Halna was good in mean hybrid performance for the character of 1000 seed weight (table-3). Similar results obtained by barot *et al.*, (2014) ^[1].

Conclusion

Among the line (female) CG 1015 Chhattisgarh Gehu-04 and Raj 4238 was found good in mean performance for more number of characters. Among the tester (male) Halna was found good in mean performance for more number of characters. Among the hybrids (crosses) CG 1015 (Chhattisgarh Gehu-04) X HUW 661, Raj 4238 X PHSL 10, HD 2285 X HUW 661 and HD 2932 X Halna were good in mean hybrid performance for more number of traits. The findings of the experiment could be helpful in wheat breeding programmes under late sown irrigated and terminal heat stress condition.

Table 1: Details of parents used in study

S. N	Genotypes	Notification year	Parentage	Released by	Farming condition
	Male/tester				
1	Halna	2002	HD 1982/K816	SVRC	Late sown
2	HUW 661	2016-17	NASN 2016-17(32)	-	-
3	PHSL 10	2016-17(83)	NASN 2016-17(83)	-	-
	Female/ Line				
1	Chhattisgarh Genhu 4 (CG-1015)	2017	NI 908/BL 1986	SVRC	Late sown
2	HD-2932	2008	KAUZ/STAR//HD2643	CVRC	Late sown
3	HD-2864	2004	DL 509-2/DL 377-8	CVRC	Late sown
4	Raj-4238	2013	HW 2021/RAJ 3765	CVRC	Late sown
5	MP-3336	2013	HD 2402/GW 173	CVRC	Late sown
6	HD 2285	1984	HD 1918/HD 1592/HD 1962/E 4870/K-65/4/HD 2160/5/HD 2180	CVRC	Late sown

Table 2: Mean performance of parents

	P	arents	Days to 50%	Days to	Plant	Peduncle	Spike	Number of	Number of	Number of
S. No.	Lines/ Testers		flowering	maturity	height	length	length	tillers (per	spikelet's per	seed per
			(days)	(days)	(cm)	(cm)	(cm)	plant)	spike	spike
1	CO	G 1015	54.50	94.50	78.42	30.72	8.18	5.50	17.34	62.00
2	HI	D 2864	59.50	94.50	73.22	31.90	10.53	6.84	17.00	50.00
3	HI	D 2932	61.50	92.00	84.40	26.32	8.75	5.50	18.12	49.27
4	RA	J 4238	58.50	92.50	74.82	25.73	7.98	10.82	14.33	50.74
5	М	P 3336	66.50	95.50	78.90	29.70	10.03	5.17	19.64	53.00
6	HD2285		70.50	98.00	65.25	24.83	8.65	6.00	16.50	54.00
	Average		61.83	94.50	75.83	28.20	9.02	6.63	17.15	53.16
1	H	Halna	60.50	90.50	73.86	26.55	10.30	5.61	18.00	53.72
2	HU	JW 661	55.50	90.50	84.40	25.89	9.85	6.16	18.17	56.00
3	PH	ISL 10	59.00	92.50	74.35	24.88	9.95	6.14	15.67	49.00
	A	verage	58.33	91.16	77.53	25.77	10.03	5.97	17.28	52.90
	Overa	ll average	60.66	93.33	76.40	27.39	9.35	6.41	17.19	53.08
	Danga	Minimum	54.50	90.50	65.25	24.88	7.98	5.17	14.33	49.00
	Range	Maximum	70.50	98.00	84.40	31.90	10.53	10.83	19.64	62.00
	SE(m)+		1.77	1.22	5.78	2.38	0.84	0.8	3.86	3.21
	CD (5%)		4.99	3.46	16.46	6.87	2.42	2.24	11.02	9.11
	C	V (%)	4.1	1.88	11.5	10.55	10.85	14.7	10.22	8.57

S. No.	Parents	Spike weight (g)	Yield per plant (g)	1000 seed weight (g)	Canopy temperature	Chlorophyll reflection index	Biological yield/ plant (gm)1	Harvest index (%)
	Lines/ Testers	weight (g)	plant (g)		depreciation (°C)			
1	CG 1015	1.82	9.33	39.69	1.21	47.85	10.27	41.43
2	HD 2864	2.40	16.08	40.10	1.47	48.25	26.80	56.75
3	HD 2932	2.60	9.52	40.27	1.54	49.70	18.98	50.49
4	RAJ 4238	2.80	12.27	55.35	2.42	53.50	29.64	47.33
5	MP 3336	2.30	9.59	22.30	2.76	58.30	27.35	33.58
6	HD2285	2.31	9.76	39.71	2.69	56.45	20.40	41.66
	Average	2.37	11.09	39.57	2.01	52.34	22.24	45.20
1	Halna	1.97	8.52	34.42	3.61	63.05	18.62	40.78
2	HUW 661	1.97	8.57	29.19	3.60	47.05	24.52	43.25
3	PHSL 10	2.32	9.38	31.71	3.21	55.25	27.50	44.99
	Average	2.08	8.82	31.77	3.47	55.11	23.54	43.00
	Overall average	2.27	10.33	36.97	2.50	53.26	22.67	44.47
	Banga Minimum	1.82	8.52	22.30	1.21	47.05	10.27	33.58
	Range Maximum	2.80	16.08	55.35	3.61	63.05	29.64	56.75
	SE(m)+	0.24	1.09	3.84	0.29	3.04	2.11	5.19
	CD (5%)	0.67	3.2	10.95	0.86	8.65	6.01	14.76
	CV (%)	14.87	13.64	14.52	14.93	8.14	13.58	14.27

Table 3: Mean performance of hybrid

S. No.		Crosses	Days to 50%	Days to maturity	Plant height	Peduncle	Spike length
5. INO.		Crosses	flowering (days)	(days)	(cm)	length (cm)	(cm)
1	CG10	015 X Halna	57.00	93.00	80.68	32.42	9.23
2	CG101	5 X HUW661	54.00	92.00	69.48	29.80	9.09
3	CG1015 X PHSL10		53.00	92.00	68.22	29.88	7.63
	A	Verage	55.33	92.33	72.79	30.7	8.65
4	HD 2	864 X Halna	56.00	94.50	80.40	30.51	9.13
5	HD 286	54 X HUW661	59.00	95.50	70.64	31.68	9.98
6	HD 28	64 X PHSL10	60.00	94.50	78.47	29.23	11.00
	A	Average	58.33	94.83	76.50	30.47	10.03
7	HD 2	932 X Halna	60.50	90.00	80.81	25.65	9.91
8	HD 293	32 X HUW661	63.50	90.00	75.48	27.37	8.98
9	HD 29	32 X PHSL10	63.50	89.00	72.41	25.90	9.05
	Average		62.5	89.66	76.23	26.30	9.31
10	RAJ4	238 X Halna	58.50	91.50	79.85	31.95	10.13
11	RAJ423	38 X HUW661	59.50	92.00	74.72	30.97	8.69
12	RAJ42	38X PHSL10	61.00	91.00	83.09	31.37	8.18
	A	Average	59.66	91.5	79.22	31.43	9
13	MP3	336 X Halna	61.50	91.50	82.13	30.54	10.95
14	MP333	6 X HUW661	59.00	94.00	79.66	26.64	10.68
15	MP333	36 X PHSL10	59.50	93.50	76.12	26.42	10.77
	A	Verage	60	93	78.97	27.86	10.8
16	HD 2	285 X Halna	65.50	94.50	68.00	21.73	9.43
17	HD228	5 X HUW661	62.00	95.00	67.49	23.15	9.34
18	HD228	85 X PHSL10	61.50	94.50	64.55	22.87	8.10
	A	Average	63	94.66	66.68	22.58	8.95
	Over	all Average	59.80	92.66	75.06	28.22	9.45
	Danga	Minimum	54	89	64.55	21.73	7.63
	Range	Maximum	65.5	95.5	83.09	32.42	11
	1	SE(m)+	1.76	1.23	5.79	2.39	0.84
	(CD (5%)	4.99	3.47	16.46	6.8	2.412
		CV (%)	4.10	1.86	11.10	11.55	11.85

S. No.	Crosses	No.of tillers/ plant	No. of spikelets/spike	No. of seedr/ spike	Spike weight (g)	Yield per plant (g)
1	CG1015 X Halna	7.67	15.50	48.50	1.56	9.53
2	CG1015 X HUW661	7.50	17.16	53.00	1.98	10.46
3	CG1015 X PHSL10	6.17	14.00	43.25	2.32	7.39
	Average	6.11	15.55	48.25	1.95	9.12
4	HD 2864 X Halna	6.50	15.50	47.75	1.77	12.74
5	HD 2864 X HUW661	7.34	19.16	60.50	2.53	15.17
6	HD 2864 X PHSL10	9.50	16.63	50.75	2.28	14.55
	Average	7.78	17.09	53	2.19	14.15
7	HD 2932 X Halna	6.67	18.50	58.25	2.02	10.11
8	HD 2932 X HUW661	6.50	19	57.50	2.16	12.32
9	HD 2932 X PHSL10	7.37	18	56.00	2.02	9.58
	Average	6.84	18.5	57.25	2.06	10.67

10	RAJ42	238 X Halna	6.95	16.33	50.75	1.71	13.06
11	RAJ4238 X HUW661		7.17	14.16	43.25	1.98	15.16
12	RAJ423	38X PHSL10	9.83	13.33	41.00	2.51	11.48
	A	verage	7.98	14.60	45	2.06	13.23
13	MP33	36 X Halna	7.67	19.16	59.00	1.42	9.47
14	MP3336	5 X HUW661	5.33	19.83	61.25	1.58	10.44
15	MP333	6 X PHSL10	4.84	20.33	62.75	1.92	9.57
	Average		5.94	19.77	61	1.64	9.82
16	HD 2285 X Halna		5.34	17.16	53.00	2.25	11.33
17	HD2285	5 X HUW661	5.33	16.00	50.00	2.80	15.63
18	HD228	5 X PHSL10	5.50	15.83	48.50	2.33	8.69
	A	verage	5.39	16.33	50.5	2.46	11.88
	Overa	all Average	6.84	16.97	52.5	2.06	11.48
	Domas	Maximum	4.84	13.33	41	1.42	7.39
	Range	Maximum	9.83	20.33	62.75	2.8	15.63
	SE(m)+		0.8	3.85	3.24	0.21	1.09
	CD (5%)		2.27	11.02	9.12	0.65	3.1
	0	CV (%)	14.64	10.26	8.57	14.82	13.65

S. No.	Crosses	1000 seed weight	CTD(°C)	Chlorophyll reflection index	Biological yields /plant (gm)	Harvest index (%)
1	CG1015 X Halna	36.84	1.88	52.50	18.21	49.24
2	CG1015 X HUW661	37.55	1.77	59.60	18.65	65.14
3	CG1015 X PHSL10	41.07	1.79	56.60	19.98	47.80
	Average	38.48	1.81	56.23	18.94	54.06
4	HD 2864 X Halna	37.54	3.37	57.30	21.23	61.47
5	HD 2864 X HUW661	36.00	2.67	50.27	23.54	70.15
6	HD 2864 X PHSL10	31.53	2.65	52.50	24.65	53.38
	Average	35.02	2.89	53.35	23.14	61.66
7	HD 2932 X Halna	43.67	3.78	52.84	16.54	41.91
8	HD 2932 X HUW661	38.54	2.45	53.30	19.54	55.70
9	HD 2932 X PHSL10	37.87	3.12	48.10	21.54	55.24
	Average	40.02	3.11	51.41	19.20	50.95
10	RAJ4238 X Halna	37.03	3.70	50.42	28.41	47.00
11	RAJ4238 X HUW661	43.40	3.47	54.40	19.54	55.59
12	RAJ4238X PHSL10	39.17	3.90	48.35	20.56	48.88
	Average	39.86	3.69	51.05	22.83	50.49
13	MP3336 X Halna	34.84	3.28	53.70	28.41	35.80
14	MP3336 X HUW661	39.27	3.28	51.10	26.54	42.24
15	MP3336 X PHSL10	25.88	2.85	50.60	24.21	44.00
	Average	33.33	3.13	51.8	26.38	40.68
16	HD 2285 X Halna	38.22	2.84	47.95	21.54	48.18
17	HD2285 X HUW661	37.47	3.78	49.55	22.54	58.40
18	HD2285 X PHSL10	32.97	2.29	51.65	23.45	42.34
	Average	36.22	2.97	49.71	22.15	49.64
	Overall Average	37.15	2.93	52.26	22.17	51.24
	Range Minimum	25.88	1.77	47.95	16.54	35.8
	Maximum	43.67	3.9	59.6	28.41	70.15
	SE(m)+	3.84	0.29	3.05	2.12	5.19
	CD (5%)	10.95	0.83	8.67	6.01	14.74
	CV (%)	14.51	14.92	8.11	13.57	14.27

References

- 1. Barot HG, Patel MS, Sheikh WA, Patel LP, Allam CR. Heterosis and combining ability analysis for yield and its component traits in wheat [*Triticum aestivum* (L.)]. Electronic Journal of Plant Breeding, 2014; 5(3):350-359
- 2. Gupta VK, Agarwal AP, Minz MG. Combining abilitystudy in wheat under timely sown irrigated condition. International journal of bio-resource and stress management. 2017; 8(6):784-789
- Gothwal DK. Genetic studies on high temperature tolerance at post anthesis in wheat (*Triticum aestivum* L. em. Thell). Unpubl. Ph.D. Thesis, RAU, Bikaner, Campus-Jobner, 2006.
- 4. Jatav *et al.* genetic and combining ability analysis in wheat. Bhartiya Krishi Anushandhan Patrika, 2014; 29(2):55-58.

- 5. Joshi SK, Sharma SN, Singhania DL, Sain RS. Genetic analysis of yield and its components traits in spring wheat. Acta Agron. Hung. 2003; 51:139-147.
- 6. Kempthorne O. An introduction to Genetic Statistics. John Wiley and Sons Inc., New York; Champman Hall, London, 1957.
- Singh K, Sharma SN, Sharma Y, Tyagi BS. Combining ability for high temperature tolerance and yield contributing traits in bread wheat. J Wheat Res. 2012; 4(1):29-37.