Phytochemical Investigation of the Tender Shoot of *Bambusa bamboos* (Linn.) Voss

Saraswathy A\(^1\)\(^*\) and Vidhya B\(^1\)

1. Captain Srinivasa Murti Drug Research Institute for Ayurveda, Arignar Anna Hospital Campus, Arumbakkam, Chennai – 600 106, India. [Email: saraswathy20002004@gmail.com, Tel: +91-44-2621-4823; Fax: +91-44-2620-7566]

Phytochemical investigation of the ethyl alcohol extract of the tender shoot of *Bambusa bamboos* (Linn.) Voss yielded p-hydroxybenzaldehyde, p-hydroxybenzoic acid, p-hydroxyphenylacetic acid, β-sitosterol and β-sitosterol-β-D-glucopyranoside. All the compounds are reported for the first time from the tender shoot of *Bambusa bamboos*

Keyword: Mullumungil, Vansha, *Bambusa Bamboos*

1. **Introduction**

Mullumungil/ Mulgil/ Mangal is botanically equated to *Bambusa bamboos* (Linn.) Voss (Fam. Poaceae) syn. *Bambusa arundinaceae* (Retz.) Willd., *B. orientalis* Nees. and is known as Vansha in Sanskrit. A spinous bamboo, distributed throughout the moist parts of India, particularly near river banks, also cultivated in the plains of North-West India, and on the hills of Andhra Pradesh. Young shoot made into poultice is an efficacious application for dislodgement of worms from ulcers\(^1,2\). Young shoot is used for permanent sterilization\(^3,4\). Alcoholic extract of the tender shoot exhibited oestrogenic activity in ovariectomised rats\(^5\). Ethanolic extract of tender shoot caused a reduction in fertility of male rats. Ethanolic extract decreased male fertility index in rats\(^6,7\). Aqueous extract exhibited abortifacient activity in female rats. Further, the extract was reported to cause teratogenic effect in rats\(^8,9\). The raw, boiled and cooked shoots possess antithyroid activity as evidenced by *in vitro* inhibition of thyroid peroxidase activity (TPA). Further, a reduction of TPA, T\(_4\) and T\(_3\) levels and an increase in weight of rats following chronic feeding of shoot was also reported\(^10\). Earlier workers have reported the following chemical constituents from the stem of *Bambusa bamboos*; 2,6-dimethoxybenzoquinone, allantoin, *trans*-p-hydroxycinnamic acid, *p*-hydroxybenzaldehyde, fucosterol and 1,8-dihydroxy-3-methoxy-6-methylanthraquinone\(^11\). The seeds, tender shoot and fruits were reported to contain calcium, phosphorus, iron, carotene, thiamine, riboflavin, niacin. The mineral and trace elements were reported as magnesium, sodium, copper and chlorine\(^12,13\). The present study reports the isolation and identification of *p*-hydroxybenzaldehyde, *β*-sitosterol, *p*-hydroxybenzoic acid, *p*-hydroxyphenylacetic acid, *β*-sitosterol-β-D-glucopyranoside from the tender shoot of *B. bamboos*. *p*-hydroxybenzaldehyde were reported previously in the stem but so far no report on tender shoot.
All the compounds are reported for the first time from the tender shoot of B. bamboos. The structures of the compounds were determined by comparison of the physical and spectroscopic data with those reported in literature. Further the identity was confirmed by direct comparison with the authentic sample (m.p., m.m.p, co-TLC and superimposable IR).

2. Materials and Methods
2.1 Plant Collection
Tender shoot of B. bamboos was collected from Tirunelveli district and authenticated by Dr. V. Chelladurai Ex. Research Officer (Botany) of Survey of Medicinal Plants Unit of Central Council for Research in Ayurvedic Sciences at Palayamkottai, Tamil Nadu. A voucher specimen (no. 157B) was deposited in the Pharmacognosy department of the institute.

2.2 Instrumentation
IR spectra were recorded in KBr disc using FT-IR spectrophotometer. 1H and 13C NMR were recorded on Bruker instrument at 400 and 100.62 MHz respectively.

2.3 Material and reagents
AR grade n-hexane, chloroform, ethyl acetate, methanol and toluene were obtained from E. Merck, India.

2.4 Isolation and identification
Coarsely powdered tender shoot (2.3 kg) was extracted with ethyl alcohol by cold percolation method for 72 hours. The extraction was repeated and filtered. The combined extract was concentrated by distilling over a boiling water bath. The last traces of the solvent were removed under vacuum. Extract (16 gm.) was column chromatographed using silica gel (acme 100-200 mesh; 1:22) as the stationary phase and eluted with solvents of increasing polarity in the order n-hexane, chloroform, ethyl acetate and methanol and their mixtures. Earlier fractions gave waxy material. n-hexane- chloroform (2:1) eluates on concentration and crystallization yielded β-sitosterol (1) (m.p.131°C). It showed a single spot at Rf 0.42 in the mobile phase of Toluene: Ethyl acetate (9:1). The identity was confirmed by direct comparison with the authentic samples (m.p., m.m.p, co-TLC and superimposable IR).

Fractions eluted with chloroform-ethylacetate (19:1) gave a colourless solid which on crystallization from methanol yielded compound (2) (m.p.119°C). It showed a single spot at Rf 0.61 in the mobile phase of Toluene: Ethyl acetate (4:1), answered ferric reaction for phenol. IR νmax (KBr) cm\(^{-1}\): 3448 (hydroxyl), 2933, 1675 (aldehyde carbonyl), 1597, 1447, 1285, 1217, 1159, 833. 1H NMR, δppm CDCl\(_3\) (400 MHz): 7.0 (2H, d, J= 8.4 Hz, H-3 & H-5), 7.81 (2H, d, J= 8.4 Hz, H-2 & H-6), 9.84 (1H, s, CHO). 13C NMR δppm CDCl\(_3\) (100.62 MHz): 116.12 (C-3 & C-5), 129.48 (C-1), 132.65 (C-2 & C-6), 162.25 (C-4), 191.59 (CHO).

Elution of the column with chloroform-ethylacetate (9:1) gave a colourless solid which on crystallization from ethanol yielded a compound (3) (m.p. 212-214°C). It showed a single spot at Rf 0.38 in the mobile phase of Toluene: Ethyl acetate (1:1), and gave positive reaction for phenol. It was soluble in sodium hydroxide and gave effervescence with sodium carbonate. IR νmax (KBr) cm\(^{-1}\): 3393 (hydroxyl), 2980, 2667, 2550, 1685 (α, β-unsaturated carboxylic acid), 1609, 1596, 1424, 1364, 1381, 1291, 1170. 1H NMR, δppm CDCl\(_3\) (400 MHz): 6.86 (2H, ddd, J=6.8, 2.0, 2.4 Hz, H-3 & H-5), 7.92 (2H, ddd, J= 6.8, 2.0, 2.4 Hz, H-2 & H-6), 9.79 (1H, brs, -OH). 13C NMR δppm CDCl\(_3\) (100.62 MHz): 115.25 (C-3 & C-5), 121.64 (C-1), 132.01 (C-2 & C-6), 161.71 (C-4), 169.04 (-COOH).

Elution of the column with chloroform-ethyl acetate (4:1) gave a colourless solid which on crystallization from methanol yielded a compound (4) (m.p.149-150°C). It showed a single spot at Rf 0.27 in the mobile phase of Toluene: Ethyl acetate (1:1). It was soluble in sodium hydroxide and gave effervescence with sodium carbonate. IR νmax (KBr) cm\(^{-1}\): 3264 (hydroxyl), 1708 (acid carbonyl), 1611, 1609. 1HNMR, δppm CDCl\(_3\) (400 MHz): 6.8 (2H, d, J=8 Hz, H-3 & H-5), 7.1 (2H, d, J=8 Hz, H-2 & H-6), 7.0 (2H, d, J=8 Hz, H-4 & H-5), 7.92 (2H, d, J=8 Hz, H-2 & H-4).
Further elution of the column with ethyl acetate led to the isolation of β-sitosterol-β-D-glucopyranoside (5) (m.p. 284°C). It showed a single spot at Rf 0.38 in the mobile phase of chloroform: methanol (9:1). The identity was confirmed by direct comparison with the authentic samples (m.p., m.m.p, co-TLC and superimposable IR). The physical and spectroscopic data were comparable with those reported in literature.

2. Results and Discussion

The molecular formula of compound (2) is C13H16O2, m.p. 119°C. IR spectrum showed the presence of hydroxyl (3448), acid carbonyl (2933, 1675), aromatic (1597, 1447) cm⁻¹. In ¹H NMR there were doublets corresponding to two protons each at δ 7.81 (H-2 & H-6) and 8.0 (H-3 & H-5) with J=8.4 Hz respectively. The aldehyde proton appeared as a singlet corresponding to one proton at δ 9.84. The ¹³C NMR data were also in confirmative with the reported data. These data suggested the compound as p-hydroxybenzaldehyde (2). The physical and spectroscopic data were comparable with those reported in the literature [14,15].

The molecular formula of compound (3) is C7H6O3, m.p. 212-214°C. IR spectrum showed the presence of hydroxyl (3393), α, β-unsaturated carboxylic acid (1685), aromatic (1596, 1424) cm⁻¹. In ¹H NMR there were doublet of doublet (ddd) corresponding to two protons each at δ 7.92 (H-2 & H-6) and 6.86 (H-3 & H-5) with J=6.8, 2.0, 2.4 Hz respectively. The ¹³C NMR
data were also in confirmative with the reported data. These data suggested the compound as p-hydroxybenzoic acid (3). The physical and spectroscopic data were comparable with those reported in the literature \[16,17\].

The molecular formula of compound (4) is C8H8O3, m.p.149-150°C. IR spectrum showed the presence of hydroxyl (3264), acid carbonyl (1708), aromatic (1611, 1609) cm\(^{-1}\). In \(^1\)H NMR there were two doublets corresponding to two protons each at \(\delta 6.8\) (H-3 & H-5) and 7.1 (H-2 & H-6) with \(J=8.0\) Hz respectively. The \(^13\)C NMR data were similar to compound (2) excepting the presence of CH2 carbon. These data suggested the compound as p-hydroxyphenylacetic acid. The physical and spectroscopic data were comparable with those reported in the literature \[18\].

4. Acknowledgment
Authors are thankful to ICMR, New Delhi for financial assistance and Director General, CCRAS, New Delhi for providing facilities.

5. Conflict of Interest
The authors have no conflict of interest.

6. References: