In vitro and in vivo Methods for Anticancer Activity Evaluation and Some Indian Medicinal Plants Possessing Anticancer Properties: An Overview

Sumitra Chanda* and Krunal Nagani

1. Phytochemical, Pharmacological and Microbiological Laboratory,
2. Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India.
[E-mail- svchanda@gmail.com]

Cancer is a major public health burden in both developed and developing countries. Anticancer activity is the effect of natural and synthetic or biological and chemical agents to reverse, suppress or prevent carcinogenic progression. Several synthetic agents are used to cure the disease but they have their toxicity and hence the research is going on to investigate the plant derived chemotherapeutic agents. Therefore an attempt has been made to review different in vitro and in vivo methods for estimating anticancer properties of natural products from medicinal plants. In this review, 50 anticancer medicinal plants of Indian origin belonging to 35 families are reported along with detailed information regarding part used, extract used, type of the model used, types of tested cancer cell lines, etc. These plants continue to be used against various types of tumours such as sarcoma, lymphoma, carcinoma and leukemia. All these plants are potential candidates for in vivo studies since they are showing good in vitro anticancer activity.

Keyword: Anticancer Medicinal Plants, Indian origin, Tumours, in vitro and in vivo Methods.

1. Introduction
Ayurveda, a traditional Indian medical practice using plant drugs has been successful from very early times in using these natural drugs and preventing or suppressing various tumours with different lines of treatment[1]. In India, people of different ethnic groups inhabiting various terrains, possess their own distinct culture, religious rites, food habit and a rich knowledge of traditional medicine[2]. They practice herbal medicine to cure a variety of diseases. Natural products, especially plants have been used in the treatment of various diseases for thousands of years. Terrestrial plants have been used as medicines in Egypt, China, India and Greece from ancient times and an impressive number of modern drugs have been developed from them. The first written records on the medicinal uses of plants appeared about 2600 BC from the Sumerians and Akkaidians[3]. Cancer is a group of diseases caused by loss of cell cycle control. Cancer is associated with abnormal uncontrolled cell growth[4]. Cancer is caused by both external factors (tobacco, chemicals, radiation and infectious organisms) and internal factors (inherited mutations, hormones, immune conditions, and mutations that occur from metabolism). Cancer is a significant worldwide health problem generally due to the lack of widespread and comprehensive early detection methods, the associated poor prognosis of patients diagnosed in later stages of the disease and its increasing incidence on a global scale. Indeed, the struggle to combat cancer is one of the greatest challenges of mankind[5].
The National Cancer Institute collected about 35,000 plant samples from 20 countries and has screened around 114,000 extracts for anticancer activity[6]. Over 3000 species of plants with antitumour properties have been reported[7]. Cancer is one of the most prominent diseases in humans and currently there is considerable scientific and commercial interest in the continuing discovery of new anticancer agents from natural product sources[8].

Chemoprevention is recognized as an important approach to control malignancy and recent studies have focused on the search for desirable chemopreventive agents. Natural products, particularly dietary substances, have played an important role in creating new chemopreventive agents[9]. Interesting patterns of differential cytotoxicity have been associated with known classes of compounds, such as cardenolides, lignans or quassinoids[10]. In any cancer drug discovery program, a paradigm based on ethnobotanic and ethnopharmacological data would be more economical and beneficial in identifying potential anticancer molecules than mass screening of plant species[11]. Natural products have been regarded as important sources of potential chemotherapeutic agents and many anticancer drugs have originated from natural sources[12].

According to Cragg and Newman[13] over 50 % of the drugs in clinical trials for anticancer properties were isolated from natural sources or are related to them. Several natural products of plant origin have potential value as chemotherapeutic agents. Some of the currently used anticancer agents derived from plants are podophyllotoxin, taxol, vincristine and camptothecin[14]. The areas of cancer and infectious diseases have a leading position in utilization of medicinal plants as a source of drug discovery. Among FDA approved anticancer and anti-infectious drugs, drugs from natural origin have a share of 60 % and 75 % respectively[15].

A great number of in vitro and in vivo methods have been developed to measure the efficiency of natural anticancer compounds either as pure compounds or as plant extracts. In vitro methods like, Tryphan blue dye exclusion assay, LDH (Lactic dehydrogenase) assay, MTT assay, XTT assay and Sulforhodamine B assay are most commonly used for estimating anticancer properties of natural products from medicinal plants. Among all in vitro methods MTT and Sulforhodamine B assay most popular for estimating anticancer activity.

2. Screening methods of anticancer activity:
2.1 In vitro methods

2.1.1 Tryphan blue dye exclusion assay

The trypan blue dye exclusion assay is the most commonly utilized test for cell viability. In this assay, the cells are washed with HBSS (Hank's Buffered Salt Solution) and centrifuged for 10 - 15 min at 10,000 rpm. The procedure is repeated thrice. The cells are suspended in known quantity of HBSS and the cell count is adjusted to 2 x 10^6 cells /ml. The cell suspension is distributed into Eppendorf tubes (0.1 ml containing 2 lakhs cells). The cells are exposed to drug dilutions and incubated at 37 °C for 3 h. After 3 h, dye exclusion test, that is, equal quality of the drug treated cells are mixed with tryphan blue (0.4 %) and left for 1 min. It is then loaded in a haemocytometer and viable and non-viable count are recorded within 2 min. Viable cells do not take up colour, whereas dead cells take up colour. However, if kept longer, live cells also generate and take up colour[16]. The percentage of growth inhibition is calculated using the following formula:

\[
\text{Growth inhibition (\%) = } 100 \times \frac{\text{Total cells}-\text{Dead cells}}{\text{Total cells}}
\]

2.1.2 LDH (Lactic dehydrogenase) Assay[17]

Lactic dehydrogenase activity is spectrophotometrically measured in the culture medium and in the cellular lysates at 340 nm by analyzing NADH reduction during the pyruvate-lactate transformation. Cells are lysed with 50 mM Tris-HCl buffer, pH 7.4 + 20 mM EDTA + 0.5 % Sodium Dodecyl Sulfate (SDS), further disrupted by sonication and centrifuged at 13,000 X g for 15 min. The assay mixture (1ml final volume) for the enzymatic analysis consists of 33 µL of sample in 48 mM PBS, pH 7.5 + 1 mM pyruvate and 0.2 mM NADH. The percentage of
LDH released is calculated as percentage of the total amount, considered as the sum of the enzymatic activity present in the cellular lysate and that in the culture medium.

2.1.3 MTT assay

The MTT assay, based on the conversion of the yellow tetrazolium salt-MTT, to purple-formazan crystals by metabolically active cells, provides a quantitative determination of viable cells. Cells are plated on to 96 well plates at a cell density of 2×10^5 mL$^{-1}$ per well in 100 µL of RPMI 1640 and allowed to grow in CO$_2$ incubator for 24 h (37 °C, 5 % CO$_2$). The medium is then removed and replaced by fresh medium containing different concentrations of sample for 48 h. The cells are incubated for 24-48 h (37 °C, 5 % CO$_2$). Then, 20 µL MTT (3- (4, 5-dimethylthiazol-yl)-2, 5-diphenyltetrazolium bromide) stock solution (5 mg/mL in PBS) is added to each well and incubated for 5 h. The medium is removed and 200 µL DMSO is added to each well to dissolve the MTT metabolic product. Then the plate is shaken at 150 rpm for 5 min and the optical density is measured at 560nm. Untreated cells (basal) are used as a control of viability (100 %) and the results are expressed as % viability (log) relative to the control.

2.1.4 XTT assay

In order to measure the proliferation response, the (2,3-bis[2-Methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide inner salt (XTT) assay is used. The tetrazolium salt, XTT, is especially useful in quantifying viable cells. This assay is designed for the spectrophotometric quantification of cell growth and viability without the use of radioactive isotopes and is based on the cleavage of yellow tetrazolium salt, XTT, to form an orange formazan dye by metabolically active cells. XTT cleavages into an orange formazan dye by the mitochondrial enzyme, dehydrogenase, occurs exclusively in living cells. Cells are grown in growth medium plus 10 % FBS in 96-well plates until 70-80 % confluence. They are then treated with the appropriate drug sample for 24 h. An XTT assay is performed at the end of incubation. Briefly, 50 mL of XTT labeling mixture solution is add to each well, and the cells are incubated at 37 °C for 4 h. The formazan dye formed is soluble in aqueous solutions and the optical density at 450 nm is compared with that of control wells with a screening multiwell spectrophotometer enzyme-linked immunosorbent assay (ELISA) reader. The reference wavelength is 650 nm.

2.1.5 Sulforhodamine B assay

Sulforhodamine B assay is a bright pink aminoxanthene dye that binds to basic amino acids in mild acidic conditions and dissociates under basic conditions. Cells are plated in 96-well flat bottom plates at 5000-10000 cell/well. The difference in cell numbers plated adjusts for differences in the growth rates of the various cell lines. Cells are allowed to adhere to the wells overnight, then the samples are added to triplicate wells in serial 3-fold dilutions. Water is added to the control wells at a 1:10 dilution in medium. These plates are incubated at 37 °C, 5 % CO$_2$ for 3 days, then assayed for growth inhibition using a sulforhodamine B (SRB) assay. The cells are fixed by the addition of cold 50 % trichloroacetic acid to a final concentration of 10 %. After 1 h incubation at 4 °C, the cells are washed five times with deionized water. The cells are then stained with 0.4 % SRB (Sigma) dissolved in 1 % acetic acid for 15-30 min and subsequently washed five times with 1 % acetic acid to remove unbound stain. After the plates are air dried at room temperature, the bound dye is solubilized with 10 mm Tris base and the plates are analysed on a microplate reader (Molecular Devices) at 595 nm.

The percent growth inhibition is calculated as:

\[
\text{Percent growth inhibition} = \frac{\text{Control-Sample}}{\text{Control}} \times 100
\]

2.2 In vivo model

2.2.1 Induction of Ehrlich ascites carcinoma

Antitumor activity of the test compounds is determined using Ehrlich ascites carcinoma (EAC) tumor model in mice. The ascitic carcinoma bearing mice (donor) are used for the study, 15 days after tumor transplantation. The animals are divided into groups of 12 animals each. ((a) Normal mice (b) Tumor-bearing mice,
(c) Tumor-bearing mice treated with standard drug. (d) Tumor-bearing mice groups treated with test drug. The ascitic fluid is drawn using an 18-gauge needle with sterile syringe. A small amount is testing for microbial contamination. Tumor viability is determine by Tryphan blue exclusion test and cells are counted using haemocytometer. The ascitic fluid is suitably diluted in normal saline to get a concentration of 10^6 cells/ml of tumor cell suspension. This is injected intraperitoneally to obtain ascitic tumor. The mice are weighed on the day of tumor inoculation and then once in three days thereafter. Treatment is started on the tenth day of tumor inoculation. Standard (one dose) is injected on tenth day intraperitoneally. After the administration of last dose followed by 18 h fasting, six mice from each group are sacrifice for the study of antitumor activity and hematological parameters. The remaining animals in each of the groups are kept to check the mean survival time (MST) of the tumor-bearing hosts. Antitumor effects of drug are assessed by observation of following parameters.

i. Percentage increase in weight as compared to day-0 weight

ii. Median survival time and increase in lifespan [% ILS]

iii. Hematological parameters

Table 1: List of Indian medicinal plants, their family, part used, solvents used for extraction and assay employed for anticancer studies.

<table>
<thead>
<tr>
<th>No.</th>
<th>Scientific name (vernacular name, family)</th>
<th>Part/s used</th>
<th>Extract</th>
<th>Type of the tested cancer cells and Method</th>
<th>Traditional and reported uses</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abrus precatorius L. (Chanothi, Fabaceae)</td>
<td>S</td>
<td>50 % ET</td>
<td>Dalton’s lymphoma ascites (DLA) cells, small cell lung carcinoma, Yoshida ascites sarcoma, Yoshida sarcoma, mouse fibro sarcoma / In vivo and In vitro / MTT,SRB test</td>
<td>Eye disease, jaundice, poisoning, fainting, arthritis and leucoderma</td>
<td>25,26</td>
</tr>
<tr>
<td>2</td>
<td>Allium sativum L. (Lasan, Liliaceae)</td>
<td>P</td>
<td></td>
<td>Oral cancer cell, sarcoma 180 cancer cell / In vivo</td>
<td>Antioxidant properties, anti-asthmatic, anticholesterole- mic, antiseptic, antiinflammatory, cancer, cholagogue, diaphoretic and diuretic</td>
<td>38,39</td>
</tr>
<tr>
<td>3</td>
<td>Alstonia scholaris L. (Saptaparna, Apocynaceae)</td>
<td>S</td>
<td>85 % EAL</td>
<td>HeLa, hepatocellular carcinoma, promyelocytic leukemia cells, epidermoid carcinoma cell line and breast adenocarcinoma cancer cell lines, Ehrlich ascites carcinoma / In vivo and In vitro / Pratt and Willis test</td>
<td>Antioxidant, diarrhoea, dysentery and treat malaria</td>
<td>27,28</td>
</tr>
<tr>
<td>4</td>
<td>Andrographis paniculata Bura.f. (Kariyatu, Acanthaceae)</td>
<td>AP</td>
<td>95 % ET</td>
<td>Lymphocytic, prostate, hepatoma, colon cancer cell lines/ In vitro / MTT test</td>
<td>Antifertility, antiepileptic, hepatoprotective, anti-thrombotic, immunostimulant, antihepatotoxic, antiplatelet aggregation, antihyper-glycaemic, antioxidiant, anti-Inflammatory and antimalarial</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>Annona reticulata L. (Ramfal, Annonaceae)</td>
<td>L</td>
<td>ME</td>
<td>Hepatocellular carcinoma, kidney</td>
<td>Antioxidant, antisynergic, and</td>
<td>70,71</td>
</tr>
<tr>
<td>No.</td>
<td>Plant Name</td>
<td>Part Used</td>
<td>Extraction Method</td>
<td>Tumor Type/Cell Line/Assay</td>
<td>Anticancer/Other Properties</td>
<td>Reference(s)</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-----------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>6</td>
<td>Asparagus racemosus Wild. (Shatavari, Liliaceae)</td>
<td>R</td>
<td>AQ</td>
<td>Carcinoma, colorectal carcinoma cancer cell lines / In vitro / MTT test</td>
<td>Antihelminthic</td>
<td>40,41</td>
</tr>
<tr>
<td>7</td>
<td>Azadirachta indica Juss. (Neem, Meliaceae)</td>
<td>L</td>
<td>80 % ET</td>
<td>Prostate cancer / In vivo</td>
<td>Immunomodulatory, anti-inflammatory, antitumor, antimicrobial, antibacterial, antiviral, antioxidant, antimutagenic and anticarcinogenic properties</td>
<td>57,58</td>
</tr>
<tr>
<td>8</td>
<td>Bacopa monniera L. (Brahmi, Scrophulariaceae)</td>
<td>WP</td>
<td>9 % ET</td>
<td>Mouse sarcoma Cell line/ In vitro / Trypan blue exclusion test</td>
<td>Mental disorders, tumors, ascites, antioxidant and inflammation</td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>Bauhinia variegata L. (Kanchanar, Caesalpinia)</td>
<td>S</td>
<td>95 % ET</td>
<td>Liver cancer cell, epithelial larynx cancer, human breast cancer / In vivo and In vitro line / MTT test</td>
<td>Bronchitis,leprosy, tumors ulcer, antibacterial, antifungal and antioxidant</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>Berberis vulgaris L. (Barberry, Berberidaceae)</td>
<td>RB</td>
<td>ME</td>
<td>Breast cancer / In vitro / SRB test</td>
<td>Antioxidant, diarrhoea, gallbladder, liver dysfunctions, leishmaniasis, malaria, stomach problems and urinary tract diseases</td>
<td>73</td>
</tr>
<tr>
<td>11</td>
<td>Beta vulgaris L. (Beet, Chenopodiaceae)</td>
<td>J</td>
<td>95 % ET</td>
<td>Skin and lung cancer / In vivo</td>
<td>Antioxidant, leukaemia, cancer such as breast, oesophagus, glands, head, intestines and leg</td>
<td>59,60</td>
</tr>
<tr>
<td>12</td>
<td>Bidens pilosa L. (Shemarho, Asteraceae)</td>
<td>WP</td>
<td>ME</td>
<td>Cervix carcinoma, nasopharyngeal epidermal carcinoma cancer cell lines / In vitro / MTT test</td>
<td>Antioxidant, wounds, colds, flu and acute or chronic hepatitis urinary tract infections</td>
<td>74,75</td>
</tr>
<tr>
<td>13</td>
<td>Calycophyton floribunda Lam. (Bukshi, Kokaraj Combretaceae)</td>
<td>L</td>
<td>DCM:ME (1:1)</td>
<td>Colon cancer cell line / In vitro / MTT test</td>
<td>Colic, antihelminthic, astringent laxative, diarrhoea and malaria</td>
<td>89</td>
</tr>
<tr>
<td>14</td>
<td>Catharanthus roseus L. (Sadabahar, barnachi Apocynaceae)</td>
<td>R,L</td>
<td>EA</td>
<td>Acute lymphocytic leukemia / In vivo, Colorectal Carcinoma cell line / In vitro / MTT test</td>
<td>Anti cancer, menorrhagia and antioxidant</td>
<td>42-44</td>
</tr>
<tr>
<td>15</td>
<td>Cedrus deodara G. Don (Deodar, Pinaceae)</td>
<td>W</td>
<td>-</td>
<td>Acute lymphoblastic leukemia, promyelocytic leukemia, prostate and lung cancer cell lines / In vitro / Trypan blue exclusion test</td>
<td>Astringent, antioxidant, antidiarrhoal febrifuge, and antiseptic</td>
<td>90,91</td>
</tr>
<tr>
<td>16</td>
<td>Citrus colosynthia L. (Iridwayan, Cucurbitaceae)</td>
<td>L</td>
<td>Glucosides</td>
<td>Breast cancer cell line / In vitro / MTT test</td>
<td>Cytotoxic, hepatoprotective, anti-inflammatory, cardiovascular, antioxidant and anti-diabetic effects</td>
<td>76,77</td>
</tr>
<tr>
<td>17</td>
<td>Crocus sativus L. (Kesar, Iridiaceae)</td>
<td>dry stigmas</td>
<td>75 % ET</td>
<td>Cervical epitheloid carcinoma cancer cell line / In vitro / MTT test</td>
<td>Antioxidant properties</td>
<td>78,79</td>
</tr>
<tr>
<td>18</td>
<td>Curculigo orchioides Gaertn. (Kalimusti, Amaryllidaceae)</td>
<td>R</td>
<td>HE, CH, AN and ME</td>
<td>Breast cancer cell line / In vitro / MTT test</td>
<td>Antioxidant, diarrhoea, jaundice, asthma and poultice for itch and skin diseases</td>
<td>80,81</td>
</tr>
<tr>
<td>19</td>
<td>Curcuma longa L. (Haldi, Zingiberaceae)</td>
<td>Rh</td>
<td>-</td>
<td>Colon Cancer Cells / In vitro / Lactate</td>
<td>Antimutagenic, anticarcino-genic</td>
<td>92,93</td>
</tr>
<tr>
<td>No.</td>
<td>Species</td>
<td>Test</td>
<td>Extract</td>
<td>Cell Line</td>
<td>Property</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Cymbopogon flexuosus (Steud.) Wats. (Lemon grass, Poaceae)</td>
<td>G</td>
<td>Colon, cervix, oral, prostate, promyelocytic and leukemia cancer cell lines / In vitro and In vivo</td>
<td>Stress-related disorders, antimicrobial and antioxidative properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Emblica officinalis Gaertn. (Amla, Euphorbiaceae)</td>
<td>DFr, ME</td>
<td>Liver cancer / In vivo</td>
<td>Liver protective activity, antiinflammatory, antioxidant, and antitumourogenic properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Ephedra sinica Stapf (Ephedra, Ephedraceae)</td>
<td>AP, ME</td>
<td>Marine melanoma cancer / In vivo</td>
<td>Colds, fever, flu, headaches, asthma, wheezing, and nasal congestion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Indigofera aspalathoides (Vahl, Papilionaceae)</td>
<td>S, 95% ET</td>
<td>Ehrlich's ascites carcinoma cancer / In vivo</td>
<td>Antioxidant, various skin disorders and cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Ipomoea aquatica Forskal. (Kalmisag, Convolvulaceae)</td>
<td>L, ME</td>
<td>Larynx epithelial carcinoma, small lung carcinoma cancer and normal African green monkey kidney cell line / In vitro / MTT and SRB test</td>
<td>Antioxidant properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Ipomoea squamosa (Cairo Morning Glory, Convolvulaceae)</td>
<td>L, -</td>
<td>Ovarian cancer cell line / In vitro</td>
<td>Skin diseases, antioxidant, ulcers, tumours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Jatropha curcas L. (Ratanjota, Huphorbiaceae)</td>
<td>S, ME</td>
<td>Skin cancer / In vivo</td>
<td>Antitumoral, antioxidant, antibacterial, and antihypertensive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Lantana camara L. (Glaneri, Verbenaceae)</td>
<td>F, Fr, L, R, S, ME</td>
<td>Lung carcinoma cell line / In vitro / MTT and SRB test</td>
<td>Antitumour, antiinflammatory, antiviral, antibacterial, analgesic, antidiarrheal, antiamoebic, spasmolytic, immunostimulant and immunomodulatory properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Mangifera indica L. (Keri, Anacardiaceae)</td>
<td>Fr, B, L</td>
<td>Lung cancer / In vivo</td>
<td>Antiparasitic activity, anthelmintic, antiinflammatory, antiallergic, and antiviral properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Melia azedarach L. (White Cedar, Meliaceae)</td>
<td>L, 70% ET</td>
<td>Lung cancer and glioma cancer cell line / In vitro / MTT test</td>
<td>Antiparasitic activity, anthelmintic, antitumour activity, and numerous others pharmacological uses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Morinda citrifolia L. (Noni, Rubiaceae)</td>
<td>R, Fr.</td>
<td>Colon cancer cell line / In vitro / MTT test</td>
<td>Antidiabetic, antiviral, antibacterial, analgesic, antiinflammatory, and antidiabetic properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Moringa oleifera L. (Saragavo, Moringaceae)</td>
<td>S, ME, ET, EA and CH</td>
<td>Skin cancer / In vitro and Natural red dye test</td>
<td>Antioxidant, antitumour, antiviral, and antitumourogenic activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Nigella sativa L. (Black seeds, Ranunculaceae)</td>
<td>S, 90% ET</td>
<td>Colon Cancer / In vivo</td>
<td>Antioxidant, antidiabetic, antihistaminic, antiepileptogenic, and antihypertensive properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Ocimum gratissimum L. (Dunno, Lamiaceae)</td>
<td>S, L, AQ</td>
<td>Breast cancer / In vivo and In vitro / MTT test</td>
<td>Chemopreventive, antitumourogenic, radioprotective and numerous others pharmacological uses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Species</td>
<td>Part Used</td>
<td>Test / Method</td>
<td>Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Ocimum sanctum L. (Tulsi, Lamiaceae)</td>
<td>L ET</td>
<td>Skin cancer / In vivo</td>
<td>Anti-stress, antioxidant, hepatoprotective, anti-inflammatory, antibacterial and radioprotective properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Phellinus rimosus (Berk, (Hymenochetaceae)</td>
<td>sporocarps</td>
<td>ME, AQE, Daltons lymphoma ascites, Ehrlich's ascites carcinoma / In vivo and In vitro / Trypan blue exclusion test</td>
<td>Antioxidant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Pinus resinosa Aiton (Pinaceae)</td>
<td>W</td>
<td>HE, DCM, ME and AQ, colorectal adenocarcinoma cell, lung carcinoma cell and normal skin Fibroblast cell lines / In vitro / Resazurin reduction test</td>
<td>Antioxidant, analgesic, antifungal and antibacterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Polyalthia longifolia Benth. & Hook. f. (Amaryllidaceae)</td>
<td>L ET</td>
<td>Colon cell and leukemia HL-60 cancer cell line / In vitro / SRB test</td>
<td>Antibacterial and antifungal activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Pristim gossypina L. (Jampal, Myrtaceae)</td>
<td>L AQ</td>
<td>Prostate carcinoma cell / In vitro / MTT test</td>
<td>Antioxidant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Punica granatum L. (Bhagwan, Lythraceae)</td>
<td>J,P</td>
<td>70 % AC, Prostate carcinoma cell / In vivo and In vitro / MTT test</td>
<td>Antioxidant and anti-inflammatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Tragia involucrata Linn. (Euphorbiaceae)</td>
<td>AP</td>
<td>HE, EA, Ehrlich's ascites carcinoma / In vivo</td>
<td>Antimicrobial, antifungal, antifertility activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Rubia cordifolia L. (Manjimitha, Rubiaceae)</td>
<td>R</td>
<td>80 % ME, Colon carcinoma, breast carcinoma and liver carcinoma / In vitro / MTT test</td>
<td>Antitumor, antioxidant, anti-inflammatory, urinary disorders, antistress, anti-microbial, hepatoprotective radio protective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Semecarpus anacardium L. (Bhallika, Anacardiaceae)</td>
<td>DFr</td>
<td>90 % ET and ME, Acute myeloblastic leukaemia, chronic myelogenic leukaemia, breast adenocarcinoma, cervical epithelial carcinoma and colon carcinoma cancer cell lines / In vitro / MTT test</td>
<td>Antioxidant, immunomodulatory, anti-inflammatory, analgesic, anti-pyretic and ulcerogenic activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Tephrosia purpurea Pers. (Sarapunkha, Fabaceae)</td>
<td>R</td>
<td>95 % ET, Oral squamous cell carcinoma / In vivo</td>
<td>Various inflammatory, liver, spleen and kidney disorders and antioxidant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Terminalia chebula Retz. (Karackaya, Combretaceae)</td>
<td>F ET</td>
<td>COLO-205 cell line / In vitro / MTT test</td>
<td>Digestive, diabetes, colic pain, chronic cough, sore throat, asthma, anti-oxidant, anti-inflammatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Tiliacora racemosa Coleb. (Tiliacora, Menispermaceae)</td>
<td>R</td>
<td>90 % ET, Acute myeloblastic leukaemia, chronic myelogenic leukaemia, breast adenocarcinoma and cervical epithelial cancer cell lines / In vitro / MTT test</td>
<td>General tonic, antioxidant, anti-inflammatory, anti-arthritis, anti-allergic, anti-malarial, anti-diabetic and aphrodisiac properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Tinospora cordifolia (Willd.) Hook. & Thom. (Guduchi, Menispermaceae)</td>
<td>S</td>
<td>PE, CH and DCM, Ehrlich's ascites carcinoma / In vivo</td>
<td>General tonic, antioxidant, anti-inflammatory, anti-arthritis, anti-allergic, anti-malarial, anti-diabetic and aphrodisiac properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Viscum album L. (Vando,)</td>
<td>L</td>
<td>CO2 gas, Ehrlich's tumour cell / In vivo</td>
<td>Nervine, hypotensive, cardiac depressant, antioxidant, vasodilator,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2.2 Anticancer Medicinal Plants of India

Anticancer properties of many natural compounds isolated from different Indian plant extracts have been reported. Research is being carried out throughout the world to find a lead compound which can block the development of cancer in humans. Nature has always been a great contributor towards this goal. Plant-derived natural products such as flavonoids, terpenoids and steroids have received considerable attention due to their diverse pharmacological properties, which include cytotoxic and chemopreventive effects[22]. The isolation of the vinca alkaloids, vinblastine and vincristine from the Madagascar periwinkle, *Catharanthus roseus* introduced a new era in the use of plant material as anticancer agents. They were the first agents to advance into clinical use for the treatment of cancer[23].

The medicinal plants contain many antioxidants such as vitamins (A, C, E, K), carotenoids, flavonoids (flavones, isoflavones, flavonones, anthocyanins, catechins, isocatechins), polyphenols (ellagic acid, gallic acid, tannins), saponins, enzymes and minerals (selenium, copper, manganese, zinc, chromium, iodine, etc)[24].

In this review, 50 anticancer medicinal plants of Indian origin belonging to 35 families are reported along with detailed information regarding part used, extract used, type of the model used, types of tested cancer cell lines, etc. (Table-1). These plants continue to be used against various types of tumours such as sarcoma, lymphoma, carcinoma and leukemia. Many of these medicinal plants have been found to be very effective in experimental as well as clinical cases of tumours/cancers.

Some medicinal plants have been studied in various *in vivo* and *in vitro* experimental models of cancer and have shown significant inhibition of cancer cell proliferation. For eg. *Abrus precatorius* in Yoshida’s sarcoma, carcinoma and Dalton’s lymphoma ascites cancer[25,26]; *Alstonia scholaris* in Ehrlich ascites carcinoma[27,28]; *Cymbopogon flexuosus* in Ehrlich ascites carcinoma, leukemia and sarcoma 180[29]; *Ocimum gratissimum* in breast cancer[30]; *Phellinus rimosus* in lymphoma and carcinoma[31,32]; *Punica granatum* in prostate cancer[33]; *Zingiber officinale* in carcinoma[34, 35]; *Moringa oleifera* in skin cancer and Human multiple myeloma cancer[36,37]; *Allium sativum* in sarcoma 180[38,39]; *Asparagus racemosus* in liver cancer[40,41]; *Catharanthus roseus* in P-1534 leukemia[42-44]; *Indigofera aspalathoides* in Ehrlich’s ascites carcinoma[45,46]; *Mangifera indica* in lung cancer[47]; *Nigella sativa* in colon cancer[48,49]; *Tephrosia purpurea* in oral

| Viscaceae) | | | | | |
|---|---|---|---|---|
| 48 | *Withania somnifera* L. (Ashwagandha, Solanaceae) | R | 70 % EAL | Forestomach and skin carcinoma cancer / *In vivo* | Antitumor, radiosensitizer, antioxidant, antistressor, immunomodulatory, anti-inflammatory and anti-bacterial |
| 49 | *Woodfordia fruticosa* Salisb. (Dhavdi, Lythraceae) | F | 70 % AC | Sarcoma 180 cancer / *In vivo* | Antipyretic, antioxidant, Anti-inflammatory, hepato-protective, antibacterial activity |
| 50 | *Zingiber officinale* Rosc. (Adu, Zingiberaceae) | Rh | 50 % ET | Prostate cancer cell line / *In vitro and In vivo* / MTT test | Carminative, antioxidant, diaphoretic, antispasmodic, expectorant, peripheral circulatory stimulant, astringent, appetite stimulant, anti-inflammatory agent, diuretic and digestive |

cancer [50]; Tinospora cordifolia in Ehrlich’s ascites carcinoma [51,52]; Withania somnifera in skin carcinoma [53,54]; Woodfordia fruticosa in sarcoma [55,56]; Azadirachta indica in prostate cancer [57,58]; Beta vulgaris in skin and lung cancer [59,60]; Emblica officinalis in liver cancer [61,62]; Ephedra sinica in Murine melanoma [63]; Ocimum sanctum in skin cancer [64]; Viscum album in Ehrlich’s carcinoma [65,66]; Jatropha curcas in skin cancer [67,68]; Andrographis paniculata in breast cancer [69,70,71]; Bacopa monniera in sarcoma [72]; Berberis vulgaris in breast cancer [73]; Bidens pilosa in cervix cancer [74,75]; Citrullus colocynthis in breast cancer [76,77]; Crocus sativus in cervical epithelioid carcinoma cancer [78,79]; Curcuma longa in lymphoma and carcinoma [80,81]; Ipomoea floribunda in colon cancer [82]; Lantana camara in lung carcinoma [83]; Pinus resinosa in Colorectal adenocarcinoma cell, lung carcinoma cell and normal skin Fibroblast [84,85]; Rubia cordifolia in carcinoma [86,87]; Tiliacora racemosa in leukaemia and carcinoma [88]; Calycoperis floribunda in colon cancer [89]; Cedrus deodara in acute lymphoblastic leukemia, prostate and lung cancer [90,91]; Curcuma longa in colon cancer [92,93]; Ipomoea squamosa in ovarian cancer [94]; Melia azedarach in lung cancer and glioma cancer [95,96]; Morinda citrifolia in colon cancer [97,98]; Polyalthia longifolia in colon and leukemia HL-60 cancer [99]; Psidium guajava in prostate carcinoma cancer [100]; Tragia involucrata in carcinoma cancer [101]; Semecarpus anacardium acute myeloblastic leukaemia, chronic myelogenic leukaemia, breast adenocarcinoma, cervical epithelial carcinoma and colon carcinoma cancer [102]; Terminalia chebula in colon cancer [102].

This review provides information on a number of plants which show promising anticancer activity. It lists various methods for evaluating anticancer activity so it will be easy for the experimenter. It emphasizes that in vitro anticancer assays have been carried out for most of the plants, but in vivo remains to be done in majority of them.

3. Conclusion
In this review, some anticancer medicinal plants of Indian origin have been presented. These medicinal plants possess good antioxidant properties, leading to anticancer activities. The aim of this study was to give an overview on the progress of anticancer medicinal plant research around the continental India, focusing on the most important findings of scientists in this field. We have tried to explore the discovered plants components with proved anticancer activity both in vitro and in vivo. India is one of the most promising regions for discovering novel biologically-active substances from its flora. More efforts are needed to explore potent anticancer plants from the mother earth and save humans around the world from cancer.

4. References
Medicinal Agents from Plants; 1993; 15 pp. 218-227.
64. Rastogi S, Shukla Y, Paul BN, et al., Protective effect of Ocimum sanctum on 3-methylcholanthrene,

