

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2017; 6(5): 1796-1798 Received: 02-09-2017 Accepted: 08-10-2017

Dinesh Pandey

Scientist, Department of Agronomy, BTC College of Agriculture & Research Station, Bilaspur, Chhattisgarh, India

A review paper on agriculture: Trends, challenges, and pathways to sustainability

Dinesh Pandey

Abstract

Agriculture underpins human survival and economic development, supplying food, fiber, feed, and ecosystem services. Over the last century, productivity growth has been driven by technological change—ranging from improved germplasm and fertilizers to mechanization, digitization, and precision agriculture. Yet the sector faces compounding pressures: climate change, land degradation, water scarcity, biodiversity loss, volatile markets, and social inequities. This review synthesizes historical trajectories, the current global and Indian agricultural landscape, emerging technologies (with emphasis on micro-irrigation and digital tools), sustainability frameworks, policy architectures, and future directions. We argue that a just, climate-resilient transformation hinges on context-specific intensification, inclusive value chains, stronger risk management, and governance innovations that align farm-level incentives with landscape-scale outcomes.

Keywords: Agriculture, food systems, micro-irrigation, precision farming, sustainability, climate change, value chains, India

1. Introduction

Agriculture comprises crop and livestock production, fisheries, and forestry, and connects upstream (inputs, credit, advisory) and downstream (aggregation, processing, logistics, retail) segments into food systems. Historically, the sector's contributions to GDP decline as economies diversify; however, its roles in livelihoods, nutrition, climate mitigation/adaptation, and rural development remain central. Contemporary agriculture must simultaneously (i) raise productivity and incomes, (ii) reduce environmental footprints, and (iii) strengthen resilience to shocks (climate, market, and health). This triple mandate frames current debates on sustainable intensification and climate-smart agriculture.

1.2 Objectives of this review: (1) trace the evolution of agricultural systems; (2) summarize present trends globally and in India; (3) assess emerging technologies and their adoption barriers/enablers; (4) synthesize sustainability practices and policy instruments; and (5) outline actionable pathways for the next decade.

2. Historical Background of Agriculture

2.1 Early domestication and traditional systems

The Neolithic domestication of cereals (e.g., wheat, barley, rice) and livestock enabled settled societies. Centuries of farmer-led selection created diverse landraces adapted to local ecologies. Traditional systems—millet-based dryland agriculture, mixed crop-livestock, shifting cultivation, and agroforestry—optimized risk spreading and nutrient recycling but were constrained by labor and yield ceilings.

2.2 The Green and Gene Revolutions

The mid-20th century Green Revolution (semi-dwarf varieties, fertilizers, irrigation, plant protection, and extension) dramatically increased yields of rice, wheat, and maize, averting famines in Asia. Subsequent advances—hybrid crops, tissue culture, marker-assisted breeding, and genetic engineering—enhanced traits such as yield potential, disease resistance, and abiotic stress tolerance. However, externality costs emerged: groundwater depletion, nitrate leaching, pesticide resistance, and biodiversity loss.

2.3 Digital and data revolutions

Since the 2000s, GIS, remote sensing, IoT sensors, drones, and AI have enabled precision management of inputs. Mobile platforms democratized weather, market, and advisory services, while traceability tools reconfigured value chains. Yet digital divides persist across gender, region, and farm size.

Correspondence
Dinesh Pandey
Scientist, Department of
Agronomy, BTC College of
Agriculture & Research Station,

Bilaspur, Chhattisgarh, India

3. Present Scenario of Agriculture 3.1 Global context

Global agriculture feeds over 8 billion people, with cereals providing more than half of dietary energy. Productivity growth has slowed in some regions due to climate stress, soil degradation, and plateauing genetic gains. Agrifood systems account for a significant share of greenhouse gas emissions (enteric methane, nitrous oxide from soils, energy use, and land-use change) but also offer mitigation opportunities through better nitrogen management, manure handling, agroforestry, rice water management, and peatland restoration.

Trade integrates markets yet exposes producers to price volatility and phytosanitary risks. Concentration in input industries and retail can squeeze farm gate margins, highlighting the importance of farmer organizations and fair contract structures.

3.2 India: structure and performance

India hosts ~146 million operational holdings, with small and marginal farms (<2 ha) comprising the vast majority. The crop mix is dominated by rice, wheat, coarse cereals, pulses, oilseeds, sugarcane, cotton, fruits, and vegetables; the livestock sector (dairy, poultry, small ruminants) increasingly drives agricultural GVA. Public procurement and minimum support prices (MSP) stabilize cereal markets but have historically skewed incentives toward water-intensive crops in certain states.

Key constraints include fragmented landholdings, post-harvest losses (notably in perishables), limited access to formal credit and insurance among smallholders, and spatial disparities in irrigation and input use efficiency. Nonetheless, horticulture growth, diversification to high-value enterprises, and expansion of micro-irrigation are notable positives.

4. Emerging Technologies in Agriculture 4.1 Precision agriculture

Precision agriculture uses sensor-based monitoring (soil moisture, nutrient status), variable rate application of inputs, GPS-guided machinery, and decision support systems. Benefits include input savings, yield stability, and environmental gains. Barriers: upfront capital costs, data literacy, lack of localized algorithms, and service delivery models for smallholders.

4.2 Micro-irrigation and water-saving technologies

Micro-irrigation (drip and sprinkler) delivers water near the root zone at controlled rates, improving water use efficiency (WUE) by 30-60% compared to surface irrigation. Fertigation enables synchronized nutrient delivery, reducing losses and nitrous oxide emissions. System components include filtration, pressure regulation, laterals, emitters, and automation (solenoids, timers). Design must consider soil texture, crop geometry, evapotranspiration (ET), and water quality. Challenges: clogging (biological, chemical), power reliability, maintenance skills, and financing for small plots.

Evidence of benefits

- Yield gains of 10-40% across vegetables, fruits, cotton, and sugarcane compared to conventional methods.
- Water savings of 30-50% and fertilizer savings of 15-30% with fertigation.
- Improved quality (size uniformity, Brix in fruit crops) and reduced weed pressure.

Innovations: sub-surface drip irrigation (SDI), low-pressure systems, solar-powered pumps with smart controllers, and IoT-enabled scheduling (soil moisture/plant stress sensors, ET-based algorithms).

4.3 Protected cultivation and controlled environments

Greenhouses, net houses, and polyhouses buffer weather variability and enable off-season production. Coupled with hydroponics and vertical farming, they achieve high productivity per unit area but require reliable energy, skilled management, and strong market linkages.

4.4 Biotechnology and advanced breeding

CRISPR/Cas genome editing, genomic selection, speed breeding, and doubled haploids are shortening breeding cycles and stacking traits for heat, drought, salinity, and disease resistance. Biofortification (e.g., provitamin A, iron, zinc) addresses hidden hunger.

4.5 Digital agriculture

Mobile advisories, e-marketplaces, satellite-based crop monitoring, and AI-driven pest diagnostics enhance decision-making. Traceability via QR codes and distributed ledgers can unlock premiums for quality and sustainability standards.

4.6 Mechanization and robotics

Two-wheel and four-wheel tractors, planters, harvesters, and custom hiring centers improve labor productivity. Emerging robotics—autonomous weeders, fruit pickers, and UAV-based spraying—show promise, though scaling in smallholder mosaics requires cooperative or service-based models.

5. Key Challenges in Agriculture

5.1 Climate risks

Rising temperatures, erratic rainfall, and extreme events (heatwaves, floods, cyclones) threaten yields and livestock health. Rainfed regions face heightened variability. Pest and disease dynamics are shifting with climate niches.

5.2 Land and soil health

Soil organic carbon decline, erosion, salinization, and micronutrient deficiencies impair productivity. Intensive tillage and residue burning exacerbate degradation.

5.3 Water scarcity and groundwater depletion

Irrigation consumes ~70% of freshwater withdrawals globally. In water-stressed basins, overdraft lowers water tables and increases energy costs. Canal systems suffer conveyance losses; on-farm distribution is often inefficient.

5.4 Input and market inefficiencies

Adulterated inputs, information asymmetries, weak extension, fragmented value chains, and limited cold chains lead to low price realization and high losses, especially in horticulture.

5.5 Social inclusion and gender gaps

Women contribute substantially to farm labor yet have less access to land titles, credit, equipment, and extension. Youth perceive agriculture as low-return without pathways to entrepreneurship or technology adoption.

5.6 Risk management

Low insurance penetration, covariate risks, and basis risk in index products constrain resilience. Shock-responsive social protection and warehouse receipt systems are under-utilized.

6. Sustainable Agriculture Practices

6.1 Conservation agriculture (CA)

CA integrates minimal soil disturbance, permanent soil cover, and diversified rotations. Benefits include improved infiltration, soil structure, and carbon sequestration. Contextual adaptation is essential to manage weeds and residues.

6.2 Integrated nutrient management (INM)

Combines organic sources (compost, manure, green manures, biochar) with judicious mineral fertilizers and biofertilizers to match crop demand, enhance soil biology, and reduce losses.

6.3 Integrated pest management (IPM)

Emphasizes prevention (resistant varieties, crop rotation), monitoring (scouting, pheromone traps), and targeted control (biocontrol agents, biopesticides, precise chemical applications) to delay resistance and protect beneficials.

7. Discussion

Agriculture refers to the process and practice of growing food and raising livestock. Agriculture has a critical role in ensuring that all people have access to food. Agriculture has recently been the most employed industry in comparison to other industries. Agriculture is responsible for the majority of the world's food and textiles. Agricultural goods include cotton, wool, and leather. Agriculture has a number of problems, including soil erosion, irrigation, and insufficient storage facilities, to name a few. We may overcome these obstacles by embracing new technologies, such as AI systems that can do soil testing and identify lacking nutrients in soil. Crop storage is also made easier with the aid of indoor vertical farming. In this paper, Author has discussed about the various agricultural practices as well as the new technology involved in modern farming.

8. Conclusion

Agriculture is crucial to the growth and development of most developing nations, as well as their economic prosperity and stability. The agriculture sector attracts many big companies since it produces commercial crops on a large scale. Because of the introduction of modern technologies, agriculture has altered significantly during the past century. Gadgets are increasingly being used to analyze soil and keep track of a whole field. The author covers several farming techniques in this book. The author has addressed the importance of modern technologies in current agriculture in a country's development. How ordinary meals are cooked and eaten, as well as how rubber, paper, and wines are made, are all explored. This research has looked at everything. Agriculture is vital in every way since food, shelter, and clothing are all necessities for human survival, and agriculture supplies all three in some manner. Agriculture's potential is much larger than most people realize, since there would be no food without agriculture, and human existence would be impossible without food. As a result, by adopting modern technology to produce high-quality crops, the agricultural industry has a bright future.

References

1. Horst M, McClintock N, Hoey L. The intersection of planning, urban agriculture, and food justice: a review of the literature. J Am Plan Assoc. 2017;83(3):277-295.

- DOI:10.1080/01944363.2017.1322914.
- 2. Tal A. Making conventional agriculture environmentally friendly: moving beyond the glorification of organic agriculture and the demonization of conventional agriculture. Sustain. 2018;10(4):1078. DOI:10.3390/su10041078.
- 3. Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D. Machine learning in agriculture: a review. Sensors. 2018;18(8):2674. DOI:10.3390/s18082674.
- 4. Rhodes CJ. The imperative for regenerative agriculture. Science Progress. 2017;100(1):80-129. DOI:10.3184/003685017X14876775256165.
- 5. Kamilaris A, Prenafeta-Boldú FX. Deep learning in agriculture: a survey. Comput Electron Agric. 2018;147:70-90. DOI:10.1016/j.compag.2018.02.016.
- 6. Sachdev DP, Cameotra SS. Biosurfactants in agriculture. Appl Microbiol Biotechnol. 2013;97(3):1005-1019. DOI:10.1007/s00253-012-4641-8.
- 7. Tornaghi C. Critical geography of urban agriculture. Prog Hum Geogr. 2014;38(4):551-567. DOI:10.1177/0309132513512542.
- 8. Zhang N, Wang M, Wang N. Precision agriculture: a worldwide overview. Comput Electron Agric. 2002;36(2-3):113-132. DOI:10.1016/S0168-1699(02)00096-0.
- Derpsch R, Friedrich T. Global overview of conservation agriculture adoption. IV World Congr Conserv Agric. 2009:1:429-441.
- Dubock A. An overview of agriculture, nutrition and fortification, supplementation and biofortification:
 Golden Rice as an example for enhancing micronutrient intake. Agric Food Secur. 2017;6:59.
 DOI:10.1186/s40066-017-0135-3.
- 11. Salunkhe HA. The overview of Government subsidies to agriculture sector in India. IOSR J Agric Vet Sci. 2012;1(5):34-37. DOI:10.9790/2380-0154347.