

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; SP2: 215-218

Purnima Mourya

Department of Fruit Science Indira Gandhi Krishi Vishwavidyalaya, Raipur, C.G, India

GL Sharma

Department of Fruit Science Indira Gandhi Krishi Vishwavidyalaya, Raipur, C.G, India

LS Verma

Department of Fruit Science Indira Gandhi Krishi Vishwavidyalaya, Raipur, C.G, India National Conference on Conservation Agriculture (ITM University, Gwalior on 22-23 February, 2018)

Studies on comparative performance of various genotypes of mango for wedge grafting with polytube capping

Purnima Mourya, GL Sharma and LS Verma

Abstract

The present investigation was conducted at Horticulture Farm, Indira Gandhi Krishi Vishwavidyalaya, Raipur (C.G.) during the year 2016-2017 in kharif and rabi season. The treatments consisted of combinations of three genotypes of mango (Dashehari, C.G. Achar and C.G. Swarnaprabha) three duration of defoliation of scion (4, 8 and 12 days) and with covering and without covering of grafts with poly tube till sprouting. The growth observations including girth of rootstock, scion and sprout, length of sprout, number of leaves per graft, total height of grafted plant, days taken for first and last sprouting, percentage of graft sprouting, establishment and survival were recorded at 30 days interval up to 180 days of grafting. The result on individual effects indicated that genotype Dashehari significantly increased early sprouting, girth of rootstock, girth of scion, girth of sprout, sprout length, number of leaves per graft, plant height, higher establishment and survival percentage followed by genotype C.G. Achar.

Keywords: grafting, genotype, polytube capping

Introduction

Mango (*Mangifera indica* L.) is one of the delicious fruits of commercial importance of family Anacardiaceae, originated in the region of India and adjoining Myanmar (Singh, 1988)^[9]. In India area (million ha), production (million metric tonnes) and productivity (MT/ha) of mango is 2.26, 20.2 and 8.93 respectively (Anon., 2017)^[2].

Mangos possess unique nutritional and medicinal qualities apart from being a rich source of vitamins A and C. Besides its attractive form and appearance, delicious taste and appetizing flavor; the ripe mango fruit, according to nutritional experts, is also highly invigorating, fattening, laxative and diuretic.

The major bottleneck for increasing area under mango cultivation is non-availability of quality planting material of desired variety in required quantity. Mango is propagated by both sexual and asexual methods. Being a highly heterozygous plant, seeds may not give rise true to type seedling. Different grafting methods were tried in superior varieties, of which inarching, veneer, softwood and epicotyl methods are economically feasible for commercial purposes. On the other hand, is adopted commercially, as it not only ensures inheritance of all parent qualities including productiveness and uniformity of bearing and size of fruit, but also shortens the juvenile phase *i.e.* the trees flower and sets fruit earlier. Grafted trees are relatively dwarfed in size, therefore easy to manage and more trees can be grown per unit area. Recently, a technique of rapid multiplication (wedge grafting) has been developed at Central Institute for Subtropical Horticulture (CISH), Lucknow.

Materials and Methods

Field experiment was carried out during the year 2016-17 kharif and rabi season at the nursery, Horticulture Farm, Indira Gandhi Krishi Vishwavidyalaya, Raipur (C.G.). The experiment material consisted of 3 genotypes of mango i.e., Dashehari, Chhattisgarh Achar and Chhattisgarh Swarnaprabha, 3 duration of defoliation i.e., 4, 8 and 12 days with using and without using poly tube capping. Thus, the treatment combinations were 18 and replicated three times under Factorial Complete Randomized Design. The seedling rootstocks were selected from the polythene bags already available in the nursery. The seedlings of uniform

Correspondence Purnima Mourya Department of Fruit Science Indira Gandhi Krishi Vishwavidyalaya, Raipur, C.G, India length, thickness and size, about 1 year old were selected for grafting from the group of seedlings. The scions of Dashehari were selected from about 25 year's old mango orchard and scions of Chhattisgarh Achar and Chhattisgarh Swarnaprabha were selected from about 12 year's old mango orchard of the Horticulture Farm, Indira Gandhi Krishi Vishwavidyalaya, Raipur. The growth observations including girth of rootstock, scion and sprout, length of sprout, number of leaves per graft, total height of grafted plant, days taken for first and last sprouting, percentage of graft sprouting, establishment and survival were recorded at 30 days interval up to 180 days of grafting.

Results and Discussions

1. Girth of Rootstock

In case of genotypes, significant variation was observed in girth of rootstock and girth was significantly increased. The maximum rootstock girth (9.65 mm) was found in G_1 (Dashehari) and minimum girth (8.165 mm) was found in G_3 (C.G. Swarnaprabha) in the month of February.

S No.	Treatments	Girth of Root Stock (mm)					
		30 DAG	60 DAG	90 DAG	120 DAG	150 DAG	180 DAG
		Sept	Oct	Nov	Dec	Jan	Feb
1.		Genotypes					
Ι	G1	8.62	8.84	9.05	9.25	9.45	9.65
II	G_2	8.05	8.24	8.45	8.65	8.83	9
III	G ₃	7.32	7.49	7.66	7.84	8	8.165
	SEm±	0.115	0.118	0.121	0.124	0.126	0.129
	CD 5%	0.331	0.338	0.347	0.355	0.363	0.369

Table 1: Effect of Genotypes on Girth of Rootstock

2. Girth of Scion

As regards the effect of genotypes, different genotypes used were found to have significant effect on scion girth in most of the months i.e. from October to February except in the month of September. However, highest growth in the girth of scion (6.84 mm) was recorded in G_1 (Dashehari) in the month of February, while minimum growth in the girth of scion (6.36 mm) was recorded in G_3 (C.G. Swarnaprabha) in the month of February.

Similar findings were also obtained by Alam *et al.* (2006) ^[1]. Gurudutta *et al.* (2004) ^[4] also recorded the highest scion girth was found in Mallika compared with the other cultivars on epicotyl grafting.

Table 2:	Effect of	Genotypes	on Girth	of Scion
Lable 2.	Effect of	Genotypes	on on u	or beron

S No.	Treatments	Girth of Scion (mm)					
		30 DAG	60 DAG	90 DAG	120 DAG	150 DAG	180 DAG
		Sept	Oct	Nov	Dec	Jan	Feb
1.		Genotypes					
Ι	G 1	6.04	6.161	6.33	6.486	6.638	6.84
II	G ₂	5.85	5.938	6.148	6.286	6.416	6.543
III	G3	5.775	5.86	6	6.12	6.238	6.36
	SEm±	0.084	0.086	0.088	0.090	0.092	0.094
	CD 5%	NS	0.245	0.252	0.259	0.265	0.270

3. Length of Sprout

After grafting, the length of sprouts was significantly increased in different genotypes. The treatment G_1 (Dashehari) was found significantly superior as compared to other genotypes. At 30, 60, 90, 120,150 and 180 days after grafting, maximum length of sprout was recorded in genotype G_1 (Dashehari) (5.735 cm, 7.76 cm, 9.898 cm, 11.838 cm,

13.652 cm, and 14.825 cm respectively) and minimum (4.88 cm, 6.705 cm, 8.232 cm, 9.737 cm, 11.174 cm, 12.568 cm) was noted under the genotype G_3 (C.G. Swarnaprabha) at 30, 60, 90,120,150 and 180 days after grafting respectively. Similar result was also obtained by Brahmachari *et al.* (1997) ^[3] in mango cv. Amrapali grafted by veneer grafting.

Table 3: Effect of Genotypes on Length of Sprouts

S No.	Treatments	Length of Sprout (cm)					
		30 DAG	60 DAG	90 DAG	120 DAG	150 DAG	180 DAG
		Sept	Oct	Nov	Dec	Jan	Feb
1.		Genotypes					
Ι	G 1	5.735	7.76	9.898	11.838	13.652	14.825
II	G ₂	5.136	7.148	8.806	10.693	12.152	14.033
III	G3	4.88	6.705	8.232	9.737	11.174	12.568
	SEm±	0.075	0.103	0.128	0.153	0.176	0.193
	CD 5%	0.215	0.294	0.368	0.440	0.505	0.554

4. Girth of Sprout

After 180 days of grafting, the maximum (4.245 mm) shoot girth was observed in the treatment G1 (Dashehari), while it

was recorded minimum (3.588 mm) in the treatment G3 (C.G. Swarnaprabha).

S No.	Treatments		Girth of Sprout (mm)				
		30 DAG	60 DAG	90 DAG	120 DAG	150 DAG	180 DAG
		Sept	Oct	Nov	Dec	Jan	Feb
1.				Genotypes			
Ι	G_1	2.544	3.051	3.277	3.735	4.028	4.245
II	G ₂	2.302	2.808	3.042	3.37	3.573	3.758
III	G ₃	2.077	2.578	2.793	3.148	3.387	3.588
	SEm±	0.033	0.040	0.043	0.049	0.053	0.056
	CD 5%	0.09	0.115	0.124	0.141	0.152	0.16

5. Number of Leaves per Graft

Significant difference was observed on the number of leaves among the grafts of different genotypes, duration of defoliation and use of poly tube (Table 4.5.a). After grafting, the maximum (5.833, 7.833, 9.25, 10.183, 10.967, 11.65) number of leaves per graft was noted in genotype G_1 (Dashehari) while, it was recorded minimum (3.883, 5.717, 6.934, 7.683, 8.33, 9.067) in genotype G_3 (C.G. Swarnaprabha). It might be due to the genetic as well as environmental effect which influence the emergence of the leaves higher in genotype G_1 (Dashehari) and lower in genotype G_3 (C.G. Swarnaprabha), respectively.

Singh *et al.* (1992) ^[8] observed that Dashehari gave maximum number of leaves among different cultivars of mango by cleft grafting.

S No.	Treatments		No. of Leaves per Graft				
		30 DAG	60 DAG	90 DAG	120 DAG	150 DAG	180 DAG
		Sept	Oct	Nov	Dec	Jan	Feb
1.		Genotypes					
Ι	G_1	5.833	7.833	9.25	10.183	10.967	11.65
II	G_2	4.167	6	7.251	8.083	8.7	9.317
III	G ₃	3.883	5.717	6.934	7.683	8.33	9.067
	SEm±	0.068	0.094	0.113	0.125	0.134	0.144
	CD 5%	0.194	0.27	0.324	0.358	0.386	0.414

Table 5: Effect of Genotypes on Number of Leaves per graft

6. Total Height of Grafted plant

In respect of the effect of genotypes, significant variation was found in total height of graft after wedge grafting at various stages of growth observations. Genotype G_1 (Dashehari) produced maximum height (56.838 cm), while genotype G_3 (C.G. Swarnaprabha) produced minimum height (47.423 cm) at the end month of February. It might be due to the better compatibility between the stock and scion of genotype G_1 (Dashehari) than the genotype G_3 (C.G. Swarnaprabha).

Similar result was also found by Radha *et al.* (2000) ^[6] among different varieties of mango by cleft grafting. Gurudutta *et al.* (2004) ^[4] also found that in case of height of grafted plant cultivar Dashehari show highest height of grafted plant compared with the other cultivars on epicotyl grafting.

S. No.	Treatments		Total Height of Grafted Plant (cm)				
		30 DAG	60 DAG	90 DAG	120 DAG	150 DAG	180 DAG
		Sept	Oct	Nov	Dec	Jan	Feb
1.		Genotypes					
Ι	G 1	47.552	49.59	51.962	53.943	55.64	56.838
II	G ₂	44.181	46.206	48.062	49.86	51.293	52.338
III	G ₃	40.22	41.926	43.626	45.146	46.478	47.423
	SEm±	0.624	0.652	0.68	0.704	0.726	0.741
	CD 5%	1.790	1.869	1.95	2.021	2.082	2.126

Table 6: Effect of Genotypes on Total height of grafted plant

7. Percentage of Grafts sprouted

After grafting, the highest percentage of graft sprouted (74.91%) was recorded from the grafts of G_1 (Dashehari) and minimum (58.61%) was recorded from the grafts of G_3 (C.G. Swarnaprabha).

Similar results were also obtained by Shankara et al. (1987)

^[7]. They found that highest sprouting percentage (75.55%) was obtained by cultivar Mallika among different varieties of mango by wedge grafting. Singh *et al.* (1992) ^[8] assessed different mango cultivars and observed that Dashehari gave significantly higher average sprouting success (65-90%) through cleft grafting.

S No.	Treatments	Percentage of Graft Sprouted
1.		Genotypes
Ι	G1	74.911 (8.71)
II	G ₂	62.732 (7.79)
III	G3	58.618 (7.718)
	SEm±	0.923
	CD 5%	2.648

(Figure in parentheses shows transformed value)

8. Days taken for first and last sprouting

In case of genotypes, maximum days (19.2) required for sprouting was observed in the grafts of genotype G_3 (C.G. Swarnaprabha). Whereas, earlier sprouting 14.76 days was observed in genotype G_1 (Dashehari) followed by 16.29 days in genotype G_2 (C.G. Achar). However, genotype G_3 (C.G.

Swarnaprabha) took the longest period (25.83 days) for completion of sprouting and shortest duration (22.667 days) for last sprouting was recorded in genotype G_1 (Dashehari). Similar result was also found by Jacob *et al.* (2001) among different cultivars of mango by softwood grafting which is found similar to our result.

Table 8: Effect of genotypes, duration of defoliation and poly tube capping on Days taken for first and last sprouting

S No.	Treatments	Days taken for first sprouting	Days taken for last sprouting					
1.		Genotypes						
Ι	G_1	14.76	22.667					
II	G ₂	16.29	25.5					
III	G ₃	19.2	25.83					
	SEm±	0.244	0.354					
	CD 5%	0.699	1.016					

9. Percentage of Grafts Established (after one month)

After one month of grafting, the highest percentage of graft establishment (63.448%) was recorded from the grafts of G_1 (Dashehari) and minimum (60.238%) was recorded from the grafts of G_3 (C.G. Swarnaprabha). It might be due to better union between rootstock and scion of graft of genotype G_1 (Dashehari) and poor union between the rootstock and scion of graft of genotype G_3 (C.G. Swarnaprabha), respectively.

S No.	Treatments	Percentage of Graft Establishment
1.	Genotypes	
Ι	G ₁	63.448 (8.025)
II	G_2	61.655 (7.912)
III	G3	60.238 (7.822)
	SEm±	0.876
	CD 5%	2.514

(Figure in parentheses shows transformed value)

10. Percentage of grafts survived (after six month)

Genotype G_1 (Dashehari) was observed significantly superior as compared to other cultivars and it was recorded highest (57.308%) survival percentage followed by G_2 (C.G. Achar) with (55.083%). While, lowest (50.943%) graft survival percentage was observed in G_3 (C.G. Swarnaprabha).

Shankara *et al.* (1987)^[7] were obtained graft-take (57.10%) in the cultivar Mallika which was found close conformity with our findings. Singh *et al.* (1992)^[8] found similar result in case of cleft grafting in different cultivars of mango. Radha *et al.* (2000)^[6] recorded that the survival percentage six months after grafting among several cultivars of mango by cleft grafting.

Table 10: Effect of genotypes on Percentage of Graft Survival

S No.	Treatments	Percentage of Graft Survival
1.	Genotypes	
Ι	G_1	57.308 (7.633)
II	G ₂	55.083 (7.486)
III	G ₃	50.943 (7.204)
	SEm±	0.774
	CD 5%	2.219

(Figure in parentheses shows transformed value)

Conclusions

Amongst all the genotypes used, Dashehari was found to be the most suitable followed by C.G. Achar for better plant height, earliness in sprouting, girth of scion, rootstock and sprouts, and number of leaves per graft.

References

- 1. Alam MA, Islam MS, Uddin MZ, Barman JC, Quamruzzaman AKM. Effect of age of seedling and variety of scion in stone grafting of mango. Int. J Sustainable Crop Production. 2006; 1(2):27-32.
- 2. Anonymous. Area and Production of Horticulture Crops -All India, (Third Advance Est.) DAC&FW, 2017.
- Brahmachari VS, Kumar N, Kumar R. Seasonal effect on success of veneer grafting in mango cv. Amrapali. Horticultural Journal, 1997; 10(2):1-5.
- Gurudutta PS, Jain V, Singh PN. Response of mango cultivars to epicotyl grafting. Indian J Hort. 2004; 61(3):267.
- Jacob S, Ray DP, Sahu GS, Chandra A. Studies on the success of soft wood grafting in some commercial hybrid mango (*Mangifera indica* L.). Orissa J Hort. 2001; 29(2):6-9.
- 6. Radha T, Aravindakshan K. Differential response of mango varieties to epicotyl grafting on commercial scale. Acta Horticulturae, 2000; (509):265-268.
- Shankara S. Effect of time and method of grafting in some varieties of mango under Dharwad conditions. M.Sc. (Agri.) Thesis, Uni. Agri. Sci. Dharwad, (India), 1987.
- Singh AR, Panday SP, Singh RK, Singh ND. Influence of cultivar and period of operation on the success of veneer grafting in mango. Adv. Hort. Forestry. 1992; 19(2):17-23.
- 9. Singh R. Fruits. National Book Trust, New Delhi. 1988, 18-48.