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Abstract 

Time series modeling using Autoregressive Integrated Moving Average (ARIMA) and state space (SS) 

models, was developed for individual univariate series of maize yield in India. In ARIMA modeling, the 

underlying parameters are assumed to be constant however the data in agriculture are generally collected 

over time and thus have the time-dependency in parameters. Such data can be analyzed using SS 

procedures by the application of Kalman filtering technique. The aim of this study was to evaluate 

univariate time series methods to forecast the maize yield in India. ARIMA (0, 1, 1) model was found to 

be appropriate but the SS model with lower error metrics showed the superiority over ARIMA model for 

this empirical study. The performances of the models were validated by comparing with the observed 

values. 

 

Keywords: Autocorrelation function, Kalman filtering technique, State space modeling, Akaike’s 

information criterion, Maize yield forecast 

 

Introduction 

Agriculture plays a crucial role in the overall growth of any country and so it is necessary to 

ensure its development. For example, the major population of India is working as farmers 

accounting for around 16% of the total GDP. This ratio is enough to say that India is highly 

dependent on its agriculture as a huge amount of land is used for it. Maize is one of the most 

important cereal crops of the world and contributes to food security in most of the developing 

countries. It is grown in 70 countries of the world. The major maize growing countries are 

USA, China, Brazil, Mexico, Indonesia, India, France and Argentina. India is at 6th position in 

maize production and fifteenth position in its productivity in the World. 

In India, maize is emerging as third most important crop after rice and wheat and is grown 

over 4 per cent of the net area sown of the country. The major maize producing states are 

Karnataka, Andhra Pradesh, Madhya Pradesh, Bihar, Rajasthan, Tamil Nadu, Telangana and 

Uttar Pradesh. In India its importance lies in the fact that it is not only used for human food 

and animal feed but at the same time it is also widely used for corn starch industry, corn oil 

production and baby corns etc. The increasing use of maize as feed, increasing interest of the 

consumers in nutritionally enriched products and rising demand for maize seed are the core 

driving forces behind emerging importance of maize crop in India. 

Maize is mainly a rainfed kharif crop which is sown just before the onset of monsoon and is 

harvested after retreat of the monsoon. However, despite the production strength, Indian corn 

yields are significantly below the yields in major corn producing countries. There is immense 

scope for an increase in India’s corn production by increasing area under hybrids, adoption of 

better genetics and improved agronomic practices. 

ARIMA time series models could be regarded as means of transforming the data to white noise 

that is to an uncorrelated sequence of errors. ARIMA models are widely used in practice for 

forecasting, mainly due to the contributions of Box and Jenkins (1976) [6]. Pindyck and 

Rubinfeld (1981) [18] and Makridakis et al. (1982) [12] have also emphasised the use of ARIMA 

models. Badmus and Ariyo (2011) [5] focused on forecasting the cultivated area and production 

of maize in Nigeria using ARIMA model. Further ARIMA modeling technique have been 

employed by Verma et al. (2011) [22] for wheat, sugarcane, cotton and mustard crops 

operational yield for forecasting purpose in Haryana, Mishra et al. (2014) [14] to analyse and 

forecast fertilizer statistics in India and Ali et al. (2015) [3] for forecasting the production and 

yield of sugarcane crop in Pakistan. Recent developments in time series modeling offer further 

scope in improving these models and also for developing ARIMA models under multivariate 

framework.  

At the national level, not much work has been done on SS modeling in the field of agriculture.
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SS models are time varying parameters models as they allow 

for known changes in the structure of the system over time. 

All Box-Jenkins models can be restated in the SS form. The 

SS model originated in the field of engineering (Kalman, 

1960) [10] and was later applied into economics by Rosenberg 

(1973) [19]. Expositions of the state space approach to 

multivariate forecasting can be found in studies of Akaike 

(1976) [1], Kitagawa and Gersh (1984) [11], Aksu and Narayan 

(1990) [2] and Hyndman et al. (2002) etc. A good account on 

SS modeling is given by Many authors (Durbin, 2002; Piepho 

and Ogutu, 2007; Yusof and Kane, 2012; Yemitan and Shittu 

2015; Omekara et al., 2016, Suman et al., 2017) [7, 17, 24, 23, 15, 

21] and in the book by Aoki (1987) [4]. Keeping in view the 

above subject matter, the maize yield estimates of India have 

been obtained with the emphasis to compare the forecasting 

performance of the models developed on the basis of ARIMA 

and SS procedures. 

 

Data and Methodology 

This study is based on secondary data of cash crop for 

forecasting purpose. The yearly yield (kg/hc) data of maize 

crop have been taken from Food and Agriculture Organization 

of India (FAOSTAT) for modeling and forecasting the maize 

yield in India. The emphasis has been given in predicting the 

future value(s) on the basis of previous time series 

observations. Data from 1961 to 2011 were used for model 

building and 2012 to 2016 were used to check the forecasting 

performance of the model. The main objective of this study 

was to compare the both in-sample and out-of-sample 

forecasts of maize yield obtained by using ARIMA and SS 

modeling techniques.  

 

Box-Jenkins Autoregressive Integrated Moving Average 

methodology 

The existing study applies Box-Jenkins ARIMA modeling 

technique, which is an extrapolation method for forecasting. It 

requires historical time series data of underlying variable and 

applicable to both discrete data as well as continuous data. 

However, the data should be available at equally spaced 

discrete time intervals. The data has to be made stationary in 

order to choose an appropriate ARIMA model for forecasting. 

One of the simplest transformations called ‘differencing’ can 

be applied when the mean of a series changes over time and 

log transformation is used when the variance of a series 

changes through time. The main stages in setting up a Box-

Jenkins forecasting model are: Identification, Estimating the 

parameters, Diagnostic checking and Forecasting. 

The stationarity of the data series can be tested both through 

graphics and other formal techniques i.e. Autocorrelation 

Function (Acf) and Partial Autocorrelation Function (Pacf), 

Augmented Dickey-Fuller test (ADF) of unit root and 

Kwiatkowski– Phillips–Schmidt–Shin (KPSS) unit root test. 

By considering the patterns of the Acfs and the Pacfs, we can 

guess a reasonable model for the data. The general functional 

form of ARIMA model i.e. ARIMA (p, d, q) used for the 

present study is expressed as: 

 
p(B) Δd Yt = c'+ θq(B) et, where c' = 0 if Yt was adjusted for its mean 

 

where Y = Variable under forecasting, t = time subscript, B = 

Lag operator, e = Error term (𝑌 − �̂�), where �̂� is the 

estimated value of Y, p(B) = non-seasonal AR process, (1-B)d 

= non-seasonal difference, θq(B) = non-seasonal MA process, 

’s and θ’s = the parameters to be estimated (Pankratz, 1991) 
[16].  

Further, at the estimation stage, an attempt was made to 

obtain the precise estimates of a small number of parameters 

of the model. Linear least-squares can be used to estimate 

only pure auto regressive models and non-linear least squares 

(NLS) method for all other models. Furthermore, the 

diagnostic tests were performed to check if the random shocks 

were independent or not. The residuals were analyzed using 

Box-Ljung Statistic and “Histogram with normal plot”. The 

accuracy of post-sample forecasts were tested using the 

following tests such as Relative Deviation in percentage (RD 

%) and Root Mean Square Error (RMSE). 

 

The state space model 

SS modeling consists of a measurement (observation) 

equation and a state (transition) equation where the state 

equation formulates the dynamics of the state variables while 

the measurement equation relates the observed variables to 

the unobserved state vector. Let yt be the r ×1 vector of 

observed variables after differencing if needed and 

subtracting the sample mean. Let zt be the state vector of 

dimension s, s ≥ r, where the first r components of zt consist 

of yt. Various forms of the SS model are in use but the model 

fitted with the help of STATESPACE procedure in SAS for 

this study is based on Akaike (1976) [1]. The SS model 

defined by the state transition equation is 

 

zt+1 = F zt + G et+1  

 

where, zt is a state vector of dimension s, whose first r 

elements are yt and whose last s-r elements are conditional 

prediction of future yt. F is an s×s transition matrix and G is 

an s×r input matrix; for model identification, the first r rows 

and r columns of G are set to an r×r identity matrix. et is a 

sequence of independent normally distributed random vectors 

of dimension r with mean 0 and covariance matrix Σee. 

In addition to the state transition equation, SS models usually 

include a measurement or observation equation that gives the 

observed values yt as a function of the state vector zt. 

The measurement equation used by the STATESPACE 

procedure is 

 

yt = H zt, H= [Ir 0] and Ir is an r×r identity matrix and 0 is an 

{r×(s-r)} zero matrix. 

 

The methods used by the SS procedure also assume the input 

series to be stationary. Therefore, the first step is to examine 

the data and test the requirement of differencing. SS 

procedure employs canonical correlation analysis for the 

identification of SS model. The identification of the canonical 

SS model is accomplished in two steps. The first step involves 

the determination of the amount of past information to be 

used in the canonical correlation analysis. This is achieved by 

fitting successively higher order vector autoregressive (VAR) 

models and computing Akaike information criterion (AIC) for 

each fitted model. The optimum lag (p) into the past is chosen 

as the order of VAR model for which AIC is minimum. 

The second step involves the selection of state vector via 

canonical correlation analysis between the set of present and 

past values and the set of present and future values. The 

canonical correlation coefficients are computed for the sample 

covariance matrices of the set of successively increasing 

number of present and future values and the fixed set of 

present and past values. If the smallest canonical correlation 

coefficient of the sample covariance matrix that corresponds 

to the component being evaluated for inclusion in the state 
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vector is non-zero, then that particular component is included 

in the state vector. Once the state vector is determined, the SS 

model is fitted to the data. The parameters in F, G and Σee are 

estimated using maximum likelihood procedure. 

The SS forecasts are obtained through the Kalman filtering 

(Harvey, 1984) [8]. Kalman filter (that updates the knowledge 

of the system each time a new observation is brought) 

minimizes the error terms. The m-step ahead forecast of zt+m 

i.e. zt+m/t denotes the conditional expectation of zt+m/t given the 

information available at time t i.e. 

 

yt+m/t = H zt+m/t 

 

where the matrix H= [Ir 0] 

 

The m-step ahead forecast error is  

 

 
 

and its variance is 

  
 

Letting ,  can be computed recursively using 

Kalman filter as 

 

 
 

Thus, the variance of m-step ahead forecast error of 

 obtained is 
 

 
 

Results and Discussion 
The most common method to check stationarity through 

examining the Acfs and Pacfs graphs of maize yield shown in 

Figure 1 indicates that the data series was non-stationary. It 

may be observed from Figure 2 that differencing of order one 

was sufficient for making an appropriate stationary series. 

 

  
 

Fig 1: Acf and Pacf for maize yield (with 5% significance limits for autocorrelations) 

 

  
 

Fig 2: Acf and Pacf for maize yield after differencing (with 5% significance limits for autocorrelations) 

 

Besides the graphical method two formal tests were used to 

check the stationarity condition for the data series, ADF and 

KPSS unit root tests. The null hypothesis (H0) in the ADF-

test was that the time series data is non-stationary while 

alternative hypothesis (Ha) was the series is stationary. But 

for KPSS unit root test the null hypothesis (H0) was that the 

series is stationary against the alternative (Ha) of non-

stationary data series. The hypothesis was then tested for 

original data and by performing first differencing. The ADF 

test with at the usual 5% level of significance adequately 

declared that the data series is stationary after first 

differencing and suggest that there is no unit root. The KPSS 

test of the data was unable to reject the null hypothesis of 

stationarity after applying the first differencing on the data 

series. The results, as obtained are shown below (Table 1): 
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Table 1: Results of ADF and KPSS tests. 

 

Test Test statistic Lag order p-value Decision 

ADF at level -1.225 3 0.89 Data Non-stationary 

ADF at first difference -5.682 3 0.01 Data Stationary 

KPSS level 2.389 1 0.01 Data Non-stationary 

KPSS at first difference 0.116 1 0.10 Data Stationary 

 

The appropriate orders of AR and MA polynomials i.e. the 

values of p and q were determined from the Acfs and Pacfs of the 

stationary series. Marquardt algorithm (1963) [13] was used to 

minimize the sum of squared residuals. Log Likelihood, 

Schwarz’s Bayesian Criterion (1978) and residual variance 

decided the criteria for the selection/estimation of AR and MA 

coefficients in the model. After experimenting with different lags 

of the moving average and the autoregressive processes, ARIMA 

(0, 1, 1) was fitted for obtaining maize yield forecasts. 

The fitted ARIMA (0, 1, 1) model may be elaborated as below:  
 

Yt = Yt-1 - θ1 et-1 + et  
 

The presence of lagged values of dependent variable and random 

shocks in above equation indicates the presence of autoregressive 

and moving average components both. The parameter estimates 

of fitted ARIMA models were presented in Table 2. Ljung-Box 

tests statistics for this model was greater than 0.05 at 5% level of 

significance and strongly suggested to accept that there is no 

autocorrelation among the residuals of the fitted ARIMA (0, 1, 1) 

model (Table 3). Also, here “Histogram with Normal Curve” was 

used to check the normality assumption for the residuals of the 

fitted model. The curve represented in Figure 3 suggests to 

accept the normality assumption that the residuals of the fitted 

ARIMA (0, 1, 1) model are normally distributed. Therefore, it is 

clear that the fitted ARIMA (0, 1, 1) model is the best fitted 

model and adequately used to forecast the maize yield in India. 
 

Table 2: Parameter estimates of fitted ARIMA models. 
 

Model  Estimate Standard Error p-value 

ARIMA (0,1,1) 

Constant 29.09 7.24 <0.01 

Difference 1   

MA lag 1 0.69 0.12 <0.01 

 

Table 3: Diagnostic checking of residual autocorrelations of maize yield. 
 

Model 
Ljung-Box Q statistic(s) 

Statistic Sig. 

ARIMA (0, 1, 1) 9.41 0.93 
 

 
 

Fig 3: Histogram of residuals from maize yield ARIMA (0, 1, 1) 

model with Normal Curve. 
 

The SS model assumes that the time series is stationary. 

Hence, the data was checked for stationarity. Here, yt, the r ×1 
vector of observed variables after differencing and subtracting 

the sample mean from Yt, can be expressed as follows:  

 

yt = (1-B) Yt -31.35 
 

The smallest AIC value, in this case is 517.68 at lag 2, 

determines the number of autocovariance matrices analyzed in 

the canonical correlation phase. Next, the Yule-Walker estimates 

of the selected AR model was obtained as Lag1=-0.721 and 

Lag2=-0.414. After the autoregressive order selection process of 

determining the number of lags used in canonical correlation 

analysis, the state vector was selected. Information from the 

canonical correlation and preliminary autoregression analyses 

were used to form the preliminary parameter estimates of state 

space models as shown in Table 4. 
 

Table 4: Parameter estimates of the state space models. 
 

Parameter Estimate Standard Error t Value 

F(2,1) -0.268 0.206 -1.30 

F(2,2) -0.437 0.286 -1.53 

G(2,1) -0.786 0.140 -5.64 

 

The fitted state space model for maize yield can be elaborated as: 
 

[
𝑦𝑡+1

𝑦𝑡+2/𝑡+1
] = [

0 1
−0.268 −0.437

] [
𝑦𝑡

𝑦𝑡+1/𝑡
] + [

1
−0.786

] (23180.83) 

 

The two models were compared for their in-sample (Table 5 and 

Figure 4) as well as their out-of-sample forecast (Figure 5) 

performance of maize yield in India. The first model was 

ARIMA (0, 1, 1) identified to fit the yearly maize yield data 

series and the second model was the SS mode which captures the 

time varying characteristics of the data series. The predictive 

performance(s) of the contending models were observed in terms 

of percent deviations of maize yield forecasts in relation to 

observed yield(s) and root mean square error(s) as well. The level 

of accuracy achieved by SS model was considered adequate for 

estimating the maize yield(s) i.e. the SS model consistently 

showed the superiority over ARIMA model in capturing percent 

relative deviations pertaining to maize yield forecasts in India. 
 

Table 5: Maize yield estimates and their associated percent relative 

deviations based on ARIMA and SS models. 
 

Year 

Arima State Space 

Obs. Yield 

(Kg/ha) 

Est. yield 

(Kg/ha) 

RD 

(%) 

Obs. Yield 

(Kg/ha) 

Est. yield 

(Kg/ha) 

RD 

(%) 

2012 2555.7 2410.02 5.70 2555.7 2488.21 2.64 

2013 2572.6 2439.11 5.19 2572.6 2533.39 1.52 

2014 2610.7 2468.21 5.46 2610.7 2575.91 1.33 

2015 2597.2 2497.31 3.85 2597.2 2616.74 -0.75 

2016 2574.5 2426.4 5.75 2574.5 2640.96 -2.58 

RMSE 135.10 49.20 

RD% = 100((Observed yield–Estimated yield)/ Observed yield) 
 

 
2

1

2

1
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n

i

ii EO
n

RMSE

,  

 

where Oi and Ei were the observed and forecast yield(s) and 

‘n’ being the number of forecast years.  
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Fig 4: Maize yield estimates along with observed yields based on ARIMA and SS modelling 

 

 
 

Fig 5: A comparative view of ARIMA and SS modeling for out-of-sample forecast performances 

 

Conclusion 
In this study time series analysis of maize yield data from the 

period of (1961-2016) was carried out. The comparison of the 

ARIMA and SS approach has been focused from a statistical 

point of view. The forecasting performance(s) of the 

contending models were observed in terms of the percent 

deviations of maize yield forecasts in relation to the observed 

yield (s) and root mean square error(s) as well. Both the 

models individually could provide the suitable relationship(s) 

to reliably estimate the maize yield and found to be stable in 

nature for both in-sample and out–of-sample forecasts. 

Comparison between the estimated ARIMA (0, 1, 1) and SS 

model was made and the result confirmed SS model to be 

more adequate. Therefore, the parameters being time-

dependent, the state space modeling may be effectively used, 

as it can take into account the time dependency of the 

underlying parameters which may further enhance the 

predictive accuracy of the forecast models. 
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