

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(5): 3440-3442 Received: 25-07-2018 Accepted: 27-08-2018

Krishna Murari

Department of Agrometeorology Indira Gandhi Krishi Vishwavidyalaya, Raipur Chhattisgarh, India

Dr. GK Das

Department of Agrometeorology Indira Gandhi Krishi Vishwavidyalaya, Raipur Chhattisgarh, India

Jubli Sahu

Department of Agrometeorology Indira Gandhi Krishi Vishwavidyalaya, Raipur Chhattisgarh, India

Dr. HV Puranik

Department of Agrometeorology Indira Gandhi Krishi Vishwavidyalaya, Raipur Chhattisgarh, India

Correspondence Krishna Murari Department of Agrometeorology Indira Gandhi Krishi Vishwavidyalaya, Raipur Chhattisgarh, India

Crop weather relation in *kharif* rice for Chhattisgarh plains

Krishna Murari, Dr. GK Das, Jubli Sahu and Dr. HV Puranik

Abstract

Studies on crop weather relationship in rice were carried out *kharif* 2016 at Indira Gandhi Krishi Vishwavidyalaya, Raipur Chhattisgarh. Three rice varieties *viz*. Swarna, Mahamaya and MTU-1010 were grown under irrigated conditions with three dates of sowing *viz*. and D₁(01June2016), D₂ (15June2016) and D₃ (30 June2016). The cumulative growing degree days at maturity stage were highest (2724) for Swarna fertilized @ 100:60:40 kg NPK⁻¹and Swarna fertilized @ 60:40:40kg NPK⁻¹under 01st June sowing. Maximum growing degree days were observed in early sown crop 1st June as compared to late sown crop 15th June and 30th June. At maturity stage, the maximum helio thermal unit of 13247, 13247, 11122 and 10366 was recorded for varieties Swarna fertilized @ 100:60:40 kg NPK⁻¹, Swarna 60:40:40, Mahamaya and MTU-1010 respectively sown on 01st June was recorded. The maximum photo thermal unit of 34283, 34283, 31556 and 28914 was recorded for four varieties viz. Swarna fertilized @ 100:60:40 kg NPK⁻¹and Swarna fertilized @ 60:40:40kg NPK⁻¹, Mahamaya and MTU-1010 sown on 01st June respectively. The highest radiation use efficiency was recorded at maturity stage with MTU-1010 (1.52gMJ⁻¹) where as the heat use efficiency was higher in D₂ (15stJune) sowing (0.58g/m^{2/0}day). The highest HUE was found in variety Swarna fertilized @ 60:40:40kg NPK⁻¹ (0.58g/m^{2/0}day).

Keywords: GDD, HTU, PTU, RUE, HUE rice crop, Chhattisgarh state, sowing dates

Introduction

Rice (Oryza sativa L.) is one of the most important food crops of the world, representing the staple food for more than half of the world population (Confalonieri and Bocchi, 2005). Rice belong to family Poaceae originated from South East Asia, where more than 90 percent of world's rice is produced and consumed (Li and Xu, 2007)^[4]. Two countries, China and India, growing more than half of the world total rice production. Out of 24 species of rice only two species Oryza glaberima and Oryza sativa are cultivated. India is the second largest producer of rice after China having an area of 43.83 million hectare with the production of 104.80 million tonnes (Anonymous, 2014-15). To generate required crop management data, a field experiment was conducted at college of agriculture IGKV, Raipur (21°16'N Latitude, 81° 36'E Longitude and an altitude of 289.5 m above mean sea level) Chhattisgarh, India, during *kharif* season of the year 2016. The treatment consisted of three cultivars viz. V_1 (Swarna), V_2 (Mahamaya) & V_3 (MTU-1010) with three dates of sowing D_1 (01 June2016), D_2 (15 June2016) & D_3 (30 June2016). Rice crop needs a hot and humid climate. It is best suited to regions which have high humidity, prolonged and bright sunshine and an assured supply of water. The average temperature required throughout the life period of the crop ranges from 21° to 37 °C. At the time of tillering, the crop requires a high temperature for growth. The temperature requirement for blooming is in the range of 26.5 °C to 29.5 °C while at the time of ripening the temperature should be in between 20-25 °C.

Materials and methods

Chhattisgarh state, Raipur district situated in Eastern India is located $21^{\circ}16$ 'N Latitude, 81° 36'E Longitude and an altitude of 289.5 m above mean sea level, during *kharif* season of the year 2016. Daily weather data of the study area used in study were collected from the Department of Agricultural Meteorology, Indira Gandhi Krishi Vishwavidyalaya Raipur (Chhatisgarh).

1. Growing Degree Days

Growing degree days (GDD) concept assumes that there is a direct and linear relationship between growth and developments of plants and temperature and the growth is dependent on the total amount of heat units to which it is subjected during its life time. The growing degree days was computed by using following formula:

$GDD = \Sigma [(Tx + Tn)/2 - Base temperature]$ Where,

Tx = Daily maximum temperature

Tn = Daily minimum temperature

The base temperature is defined as, "The temperature below which no plant physiological activity takes place" which is considered 10 °C for *Kharif* crops following Alocilja and Ritchie (1991)^[1].

2. Photo Thermal Unit (PTU)

PTU is calculated by multiplying GDD with maximum possible sunshine hours (N). PTU= GDD X N Where, N =maximum possible sunshine hours.

3. Helio Thermal Unit (HTU)

HTU is calculated by multiplying GDD with actual sunshine hours (n).

HTU = GDD X n

Where, n = actual sunshine hour.

4. Heat Use Efficiency (HUE)

Heat use efficiency (HUE) for total dry matter was obtained with help of following formula. HUE $(g/m^2 / 0 \text{ day}) = \text{Biomass} (g \text{ m}^{-2}) / \text{GDD} (^0\text{days})$

5. Radiation Use Efficiency (RUE)

RUE $(gMJ^{-1}) = Biomass (g m^{-2}) / IPAR (M J m^{-2} day^{-1})$ Where,

IPAR is cumulative intercepted photo synthetically active radiation.

The photo synthetic active radiation can be calculated by using the following formula

PAR = Rs X 0.5 Where, Rs = incoming solar radiation (MJm⁻²) The incoming solar radiation can be calculated by the formula Rs = Rs0 (a + b * n/N) Where,

Rs0 = Extra-terrestrial radiation (MJm⁻²)

n = Bright sunshine hours

N = Possible sunshine hours

a = 0.18, b = 0.5

Results and Discussion

The accumulated GDD (Table 1) required for reaching different phenophases, it was observed that similar pattern like that of phenophase durations was noticed at all

phenophases. The accumulated GDD for different varieties varied considerably from sowing to maturity. The cumulative GDD at maturity stage were highest (2724.9) for Swarna fertilized @ 100:60:40 kg NPK ha⁻¹ and Swarna fertilized @ 60:40:40 kg NPK ha⁻¹ followed by Mahamaya (2487.4) and MTU-1010 (2261.6) under D₁ (01st June) sowing as compared to late sown crop D₂ (15th June) and D₃ (30th June.) sowing. In general the accumulated growing degree day values decreased with delayed sowing due to early maturity of crops because of high value of temperature at maturity. These results are in general agreement with the findings of Sreenivas *et al.* (2010) ^[5] and Chopra and Chopra (2004) ^[3].

The observed value of accumulated Helio Thermal Units (HTU) at maturity stages of different varieties of rice under various growing environments is given in the Table 2. The cumulative HTU at maturity stage were highest (13247) for Swarna fertilized @ 100:60:40 kg NPK ha⁻¹ and Swarna fertilized @ 60:40:40 kg NPK ha⁻¹ followed by Mahamaya (11122) and MTU-1010 (10366) under D₁ (01st June) sowing as compared to late sown crop D₂ (15th June) and D₃ (30th June.) sowing.

The accumulated Photo Thermal Unit (PTU) computed for different rice varieties under different dates of sowing from sowing to maturity phase are shown in Table 3. Highest accumulated PTU was observed under D₁ sowing in all the varieties followed by D₂ sowing and D₃ sowing. Among variety Swarna fertilized @ 100:60:40 kg NPK ha⁻¹ and 60:40:40 kg NPK ha⁻¹ observed the highest PTU at maturity stage with D₁ sowing (34283) followed by D₂ sowing (31246) and D₃ sowing (29113). In variety Mahamaya the maximum accumulated photo thermal units was found with D₁ sowing (31556) followed by D₂ sowing (28904) and D₃ sowing (26860). In case of variety similarly the highest PTU value was observed by MTU-1010 under D₁ sowing (28914) followed by D₂ sowing (26442) and D₃ sowing (24851).

Highest value of RUE were recorded at maturity phase are shown in Table 4. MTU-1010 (1.52gMJ⁻¹) followed by Swarna fertilized @ 60:40:40 kg NPK ha⁻¹ (1.48gMJ⁻¹), Swarna fertilized @ 100:60:40 kg NPK ha⁻¹ (1.40gMJ⁻¹) and Mahamaya (1.48gMJ⁻¹). Similarly dates of sowing found highest RUE recorded under D₂ (15thJune) sowing (1.54gMJ⁻¹). Similarly HUE was higher phase are shown in Table 5 in D₂ (15stJune) sowing (0.58g/m²/⁰day). Among varieties higher HUE was found in variety Swarna fertilized @ 60:40:40 kg NPK ha⁻¹ (0.58g/m²/⁰day) followed by Swarna fertilized @ 100:60:40 kg NPK ha⁻¹MTU-1010 both (0.55g/m²/⁰day) and Mahamaya (0.50g/m²/⁰day).

Sowing dates	seedling	Tillering	Panicle initiation	booting	Panicle emergence	50% flowering	milking	dough	maturity	
V ₁ SWARNA fertilized @ 100:60:40 kg NPK ha ⁻¹										
D ₁ - 01 June	696	1307	1990	2060	2171	2245	2380	2556	2725	
D ₂ - 15 June	588	1149	1724	1780	2009	2099	2202	2341	2520	
D ₃ - 30 June	540	1038	1619	1722	1829	1881	2050	2170	2367	
	V ₂ SWARNA fertilized @ 60:40:40 kg NPK ha ⁻¹									
D ₁ - 01 June	696	1307	1990	2060	2172	2245	2380	2556	2725	
D ₂ - 15 June	588	1149	1724	1780	2009	2099	2202	2341	2520	
D ₃ - 30 June	540	1038	1619	1722	1829	1881	2050	2170	2367	
				V ₃ Ma	hamaya					
D ₁ - 01 June	696	1084	1485	1600	1811	1901	2097	2208	2487	
D ₂ - 15 June	588	987	1322	1437	1618	1724	1924	2185	2311	
D ₃ - 30 June	540	861	1243	1349	1515	1586	1778	2005	2170	
V ₄ MTU-1010										
D ₁ - 01 June	696	1014	1431	1549	1731	1791	1901	2078	2262	
D ₂ - 15 June	588	861	1265	1322	1511	1583	1724	1907	2099	
D ₃ - 30 June	540	713	1172	1279	1385	1441	1570	1795	1990	

Table 2: Accumulated HTU at different	growth stages	of rice	varieties under	different	growing en	vironments
Tuble 21 Recumulated III e at anterent	Sional stages	01 1100	ranceres anaer	annerene	Browing en	, in onniento

Sowing dates	seedling	Tillering	Panicle initiation	booting	Panicle emergence	50% flowering	milking	dough	maturity	
V ₁ SWARNA fertilized @ 100:60:40 kg NPK ha ⁻¹										
D ₁ - 01 June	5006	6881	8913	9121	9840	10313	10760	11581	13247	
D ₂ - 15 June	3426	4974	6902	7083	8396	8722	9085	10336	12003	
D ₃ - 30 June	2269	3743	6193	6881	7145	7404	8461	9672	11578	
	V ₂ Swarna fertilized @ 60:40:40 kg NPK ha ⁻¹									
D ₁ - 01 June	5006	6881	8913	9121	9840	10313	10760	11581	13247	
D ₂ - 15 June	3426	4974	6902	7083	8396	8722	9085	10336	12003	
D ₃ - 30 June	2269	3743	6193	6881	7145	7404	8461	9672	11578	
				V3 Ma	hamaya					
D ₁ - 01 June	5006	5735	7105	7500	8676	8780	9403	10096	11122	
D ₂ - 15 June	3426	4815	5462	5847	6742	6902	8059	9042	10016	
D ₃ - 30 June	2269	3468	4802	5319	5522	5971	7001	8019	9672	
V4 Mtu-1010										
D ₁ - 01 June	5006	5692	7011	7175	8016	8602	8780	9284	10366	
D ₂ - 15 June	3426	4046	5138	5462	6565	6714	6902	7946	8722	
D ₃ - 30 June	2269	3190	4353	5170	5348	5438	5852	7041	7873	

Table 3: Accumulated photo thermal units (PTU) at different growth stages of rice varieties under different growing environments

Sowing dates	seedling	Tillering	Panicle initiation	booting	Panicle emergence	50% flowering	milking	dough	maturity	
V ₁ Swarna fertilized @ 100:60:40 kg NPK ha ⁻¹										
D ₁ - 01 June	9224	17169	25683	26544	27855	28715	30302	32361	34283	
D ₂ - 15 June	7772	14965	22058	22708	25391	26442	27648	29235	31246	
D ₃ - 30 June	7076	13391	20478	21667	22912	23522	25512	26860	29113	
	V ₂ Swarna fertilized @ 60:40:40 kg NPK ha ⁻¹									
D ₁ - 01 June	9224	17169	25683	26544	27855	28715	30302	32361	34283	
D ₂ - 15 June	7772	14965	22058	22708	25391	26442	27648	29235	31246	
D ₃ - 30 June	7076	13391	20478	21667	22912	23522	25512	26860	29113	
	V ₃ Mahamaya									
D ₁ - 01 June	9224	14319	19441	2886	23476	24583	26991	28292	31556	
D ₂ - 15 June	7772	12889	17114	18523	20753	22058	24403	27454	28904	
D ₃ - 30 June	7076	11242	15926	17246	19195	20068	22284	25016	26860	
	V4 Mtu-1010									
D ₁ - 01 June	9224	13418	18754	20259	22502	23236	24583	26771	28914	
D ₂ - 15 June	7772	11277	16410	17114	19435	20317	22058	24201	26442	
D ₃ - 30 June	7076	9361	15039	16369	17668	18334	19855	22507	24851	

Table 4: Heat use efficiency (g/m^{2/o}day) of rice varieties as influenced by different growing environments at maturity stage

Varieties	D1	D2	D3	Mean
Swarna fertilized @ 100:60:40 kg NPK ha ⁻¹	0.65	0.44	0.55	0.55
Swarna fertilized @ 60:40:40 kg NPK ha ⁻¹	0.62	0.54	0.57	0.58
Mahamaya	0.39	0.62	0.49	0.50
MTU1010	0.42	0.70	0.52	0.55
Mean	0.52	0.58	0.53	0.54

Table 6: Radiation use efficiency $(g/m^2/Mj)$ of rice varieties as influenced by different growing environments at maturity stage

Varieties	D1	D2	D3	Mean
Swarna fertilized @ 100:60:40 kg NPK ha-1	1.73	1.12	1.35	1.40
Swarna fertilized @ 60:40:40 kg NPK ha ⁻¹	1.63	1.38	1.42	1.48
Mahamaya	1.08	1.67	1.29	1.35
MTU1010	1.15	1.97	1.44	1.52
Mean	1.40	1.54	1.38	1.44

References

- 1. Alocilja EC, Ritchie JT. A model for the phenology of rice. In: "Predicting crop phenology. (Ed. Tom Hodges). CRC Press, Boston, USA, 1991, 181-189.
- Confalonieri R, Bocchi S. Evaluation of Crop Syst for simulating the yield of flooded rice in northern Italy, Eur. J Agron. 2005; 23:315-326.
- 3. Chopra NK, Chopra N. Influence of transplanting dates on heat unit requirement of different phenological stages and subsequently yield and quality of scented rice (*Oryza*)

sativa) seed. Indian Journal of Agricultural Sciences. 2004; 74(8):415-419

- Li ZK, Xu JL. Breeding for drought and salt tolerant rice (*Oryza sativa* L.): progress and perspectives. In: Jenks MA *et al* (Eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, USA, 2007, 531-564
- 5. Sreenivas G, Raddy DM, Raddy RD. Agrometeorological indices in relation to phenology of aerobic rice. Journal of Agrometeorology. 2010; 12(2):241-244.