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Abstract 

Soil organic carbon (SOC) and its fractions (labile and non-labile) including particulate organic carbon 

(POC) and its components [coarse POC and fine POC], light fraction organic carbon (LFOC), readily 

oxidizable organic carbon, dissolved organic carbon (DOC) are important for sustainability of any 

agricultural production system as they govern most of the soil properties, and hence soil quality and 

health. Being a food source for soil microorganisms, they also affect microbial activity. Tillage regimes 

that contribute to greater aggregation also improved soil microbial activity. Soil OC and MBC were at 

their highest levels for 1.0–2.0 mm aggregates, suggesting a higher biological activity at this aggregate 

size for the ecosystem. Compared with CT treatments, NT treatments increased MBC by11.2%, 11.5%, 

and 20%, and dissolved organic carbon (DOC) concentration by 15.5% 29.5%, and 14.1% of bulk soil, 

>0.25 mm aggregate, and <0.25 mm aggregate in the 0−5 cm soil layer, respectively. The portion of 

0.25–2 mm aggregates, mean weight diameter (MWD) and geometric mean diameter (GMD) of 

aggregates from ST and NT treatments were larger than from CT at both 0–15- and 15–30-cm soil 

depths. Positive significant correlations were observed between SOC, labile organic C fractions, MWD, 

GMD, and macro-aggregate (0.25–2 mm) C within the upper 15 cm. Moreover, NT treatments 

significantly increased SOC concentration of bulk soil, >0.25 aggregate, and <0.25 mm aggregate in the 

0−5 cm soil layer by 5.8%, 6.8% and 7.9% relative to CT treatments, respectively. S treatments had 

higher SOC concentration of bulk soil (12.9%), >0.25 mm aggregate (11.3%), and <0.25 mm aggregate 

(14.1%) than NS treatments. Compared with CT treatments, NT treatments increased MBC by 11.2%, 

11.5%, and 20%, and dissolved organic carbon (DOC) concentration by 15.5%, 29.5%, and 14.1% of 

bulk soil, >0.25 mm aggregate, and <0.25 mm aggregate in the 0−5 cm soil layer, respectively. 

Compared with NS treatments, S treatments significantly increased MBC by 29.8%, 30.2%, and 24.1%, 

and DOC concentration by 23.2%, 25.0%, and 37.5% of bulk soil, >0.25 mm aggregate, and <0.25 mm 

aggregate in the 0−5 cm soil layer, respectively. In conclusion, soil organic carbon fractions (SOC), and 

microbial biomasses in the macro-aggregates are more sensitive to conservation tillage (CT) than in the 

micro-aggregates. Soil aggregation regulates the distributions of SOC and microbial parameters in Typic 

Ustochrept soil. 

 

Keywords: Microbial biomass, tillage, soil organic matter, soil aggregates 

 

Introduction 

Agricultural SOC accumulation is influenced by numerous factors, such as tillage practices 

(Zhang et al., 2013; Liu et al., 2014) [36, 17] soil aggregate size (Zhang et al., 2013; Devine et 

al., 2014) [36] and microbial functional diversity (Stirling et al., 2010; Pritchett et al., 2011) [31, 

25]. Tillage practices can affect the stability or composition of SOC (Zhang et al., 2013; Devine 

et al., 2014) [36, 3] and thus affect SOC concentration and SOC density of the plough layer 

(Zhang et al., 2013) [36]. Conventional intensive tillage (CT) can decrease soil aggregate 

stability and accelerate soil organic matter oxidation (Gathala et al., 2011) [8, 14] thereby 

threatening sustainable crop production (Mathew et al., 2012) [21]. Sustainable soil 

management can be achieved through conservation tillage practices, including NT and crop 

residue returning (Hobbs et al., 2008) [12]. Conservation tillage significantly reduces soil 

physical disturbance (Uri, 1999) [32] promotes soil aggregation, and improves soil 

microorganism dynamics because of more beneficial environmental conditions (Guo et al., 

2015) [10]. Therefore, investigating the effects of conservation tillage on SOC is necessary for 

further understanding soil sequestration. 

Soil aggregates that control the dynamics of soil organic matter and nutrient cycling are 

structural units within the soil (Six et al., 2004) [28]. The aggregate hierarchy model shows that 

soil C accumulation in a given system may comprise a hierarchy of biological processes at the  
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spatial dimension of soil physical structure (Lavelle et al., 

2004) [15]. Ettema and Wardle, (2002) [15] reported that soil 

biota should be recognized at different spatial scales to 

understand their functions better in the ecosystem. Zhang et 

al. (2013) [36] also reported that previous studies mainly 

focused on the effects of microorganisms on the vertical and 

horizontal orientations of soil profiles and ignored the effects 

on the micro-spatial dimension of soil physical structure. 

Therefore, investigation of SOC driven by soil microbial 

community processes within soil aggregates will help 

elucidate the regulation of soil biota in soil C storage. 

Soil microorganisms significantly affect the health of an agro-

ecosystem through their functions in residue decomposition 

and nutrient cycling, as well as their associations with other 

organisms Dong et al. (2014) [4]. The activities and 

compositions of soil microbial community and their 

interactions with environmental factors affect SOC dynamics 

and crop productivity (Dong et al., 2014) [4]. Direct 

measurements of metabolic diversity of soil microbial 

communities are likely to provide more relevant information 

regarding soil functions compared with measurements of 

species diversity Giller et al. (1997) [9] because soil micro-

organisms generally present in resting or dormant stages, in 

which they are not functionally active White and 

MacNaughton, (1997) [34]. Biology system, a rapid 

community-level approach for assessing patterns of sole C 

source utilization, is used to study microbial community 

metabolic activities (Nautiyal et al., 2010) [24]. Several studies 

used the biology system to differentiate microbial 

communities from diverse habitats (Nautiyal et al., 2010) [24]. 

However, only a few these studies determined the relationship 

between soil microbial metabolic activities and SOC, 

especially within aggregates, in rice–wheat cropping systems. 

The effects of conservation tillage on rice–wheat cropping 

systems are well demonstrated (Guo et al., 2015; Kumari et 

al., 2011; Naresh et al., 2012) [10, 14, 22]. However, limited 

attention has been given to the relationship between SOC and 

microbial metabolic characteristics within aggregate fractions 

under conservation tillage in the rice–wheat system. Thus, this 

paper reviewed that (1) microbial metabolic activity is 

improved by conservation tillage at the small-scale in soil in 

the plow layer, and (2) the potential associations among 

tillage systems (straw systems), microbial metabolic 

activities, organic C fractions, and SOC to elucidate the 

relationship better between soil microbial metabolic diversity 

and SOC within aggregates. 

Bolat et al., (2016) [2] showed higher values for mean soil 

microbial biomass C (afforestation: 311.97 μg g-1; control: 

149.68 μg g-1) and N (afforestation: 43.07 μg g-1; control: 

19.21 μg g-1) and basal respiration (afforestation: 0.303 μg 

CO2-C g-1 h-1; control: 0.167 μg CO2-C g-1 h-1) [Fig.1]. 

However, the mean metabolic quotient (qCO2) assessed at the 

control sites was higher (1.47 mg CO2-C g-1Cmic h-1) than that 

observed the afforestation sites (0.96 mg CO2-C g-1 Cmic h-1), 

likely due to difficulties in the utilization of organic substrates 

by the microbial community. Soil organic C and total N are 

important factors that contribute to improve the physical 

properties of soil, and then its productivity. The largest soil 

organic C and total N amount were detected in the soils 

sampled at the afforestation sites. Such evidence is reasonably 

related to their higher clay content (Campbell et al., 1996), 

the presence and diversity of tree species (Kara & Bolat 2008) 
[13], the higher input of root exudates and plant residues 

(García-Orenes et al., 2010) [7], and the chemical composition 

of litter. 

 

 
 

Fig 1: Changes in mean soil microbial biomass C (a), soil microbial biomass N (b) and soil basal respiration (c) in the soil at the control and 

afforestation [Source: Bolat et al., 2016] [2] 

 

Xiaojun et al. (2013) [35] also found that both SOC and MBC 

contents increased downslope in a roughly consecutive 

increment [Fig.2a]. SOC contents averaged 12.99 and 12.42 g 

kg-1 at lower slope positions of the 7%- and 4%-slopes with 

an increase of 44% and 31%, respectively, compared with 

those at respective upper slope positions [Fig.2a] From the 

upper to lower slope positions, MBC contents changed from 

182.13 to 217.80 mg kg-1 with an increase of 20% on the 7%-

slope, and from 168.78 to 221.13 mg kg-1 with an increase of 

31% on the 4%-slope [Fig.2a].The MBC distribution pattern 

was in agreement with soil redistribution in gentle slope 

landscapes but independent of soil redistribution in steep 

slope landscapes. This is attributed to impacts of water-

induced soil redistribution on SOC and MBC in gentle slope 

landscapes, and impacts of tillage-induced soil redistribution 

in steep slope landscapes. The difference in the relationship 

between MBC and SOC under the disturbances of water and 

tillage erosion differed from the studies Vineela et al., (2008) 
[33]. Ma et al., (2016) [19] reported that the differences in 

SMBC were limited to the surface layers (0–5 and 5–10 cm) 

in the PRB treatment [Fig.10b]. There was a significant 

reduction in SMBC content with depth in all treatments. 

SMBC in the PRB treatment increased by 19.8%, 26.2%, 

10.3%, 27.7%, 10% and 9% at 0–5, 5–10, 10–20, 20–40, 40–

60 and 60–90 cm depths, respectively, when compared with 

the TT treatment. The mean SMBC of the PRB treatment was 

14% higher than that in the TT treatment. There were no 

significant differences in SMBC content between the three 

treatments from 10 to 90 cm depth [Fig.2b]. Malviya, (2014) 

[20] inferred that significant difference were observed among 
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soybean+ pigeon pea, soybean – wheat and soybean + cotton 

(2:1) cropping system compared to soybean fallow system. 

Whereas, SMBC value were at par in soybean-fallow R and 

maize gram cropping system, among surface and subsurface 

soil [Fig.2c]. Malviya, (2014) [20] also indicated that 

irrespective of soil depth the SMBC contents were 

significantly higher under RT over CT. This was attributed to 

residue addition increases microbial biomass due to increase 

in carbon substrate under RT [Fig.2c]. Spedding et al., (2004) 
[30] found that residue management had more influence than 

tillage system on microbial characteristics, and higher SMB-C 

and N levels were found in plots with residue retention than 

with residue removal, although the differences were 

significant only in the 0-10 cm layer. 

 

 
 

Fig 2 (a): Distribution of SOC and MBC contents over eroded slopes. (a) Gentle slope landscape; (b) steep slope landscape [Source: Xiaojun et 

al., 2013] [35] (b): Microbial biomass carbon content with depth under traditional tillage (TT), flat raised bed with controlled traffic and zero 

tillage (FB) and permanent raised bed (PRB) [Source: Ma et al., 2016] (c): Effect of soil microbial biomass carbon (μg c g-1 of soil) under 

different tillage systems [Source: Malviya, 2014] [20] 

 

Naresh et al., (2017) [23] revealed that significantly increased 

66.1%, 50.9%, 38.3%, 37.3% and 32% LFOC, PON, LFON, 

DOC and POC, over T7 treatment and WSC 39.6% in surface 

soil and 37.4% in subsurface soil [Table 1]. The proportion of 

MBC ranged from 16.1% to 21.2% under ZT and PRB 

without residue retention and 27.8% to 31.6% of TOC under 

ZT and PRB system with residue retention, which showed 

gradual increase with the application of residue retention 

treatments and was maximum in 6 tha-1 residue retention 

treatment under both tillage systems [Table 1]. 
 

Table 1: Effect of 15 years of application of treatments on contents of various labile fractions of carbon in soil [Naresh et al., 2017] [23] 
 

 
 

Sheng et al. (2015) [27] observed that the stocks associated 

with the different LOC fractions in topsoil and subsoil 

responded differently to land use changes. POC decreased by 

15%, 38%, and 33% at 0-20 cm depth, and by 10%, 12%, and 

18% at 20e100 cm depth following natural forest conversion 

to plantation, orchard, and sloping tillage, respectively 

[Fig.3a]. POC stock in topsoil was more sensitive to land use 

change than that in subsoil [Fig.3a]. Regarding the different 

POC components, only fPOC stock in 0-20 cm topsoil 

decreased by 21%, 53%, and 51% after natural forest 

conversion to plantation, orchard, and sloping tillage, 

respectively [Fig. 3a]. Significant loss of LFOC occurred not 

only in topsoil, but also in subsoil below 20 cm following 

land use change [Fig.3b]. The decrease in ROC stock through 

the soil depth profile following land use change was smaller 

than that of LFOC [Fig.3b]. ROC stocks did not differ 

significantly between natural forest and sloping tillage areas, 

suggesting that ROC stock was relatively insensitive to land 

use change. The DOC stock in the topsoil decreased by 29% 

and 78% following the conversion of natural forest to 

plantation and orchard, respectively, and subsoil DOC stocks 

decreased even more dramatically following land use change 

[Fig.3b]. The proportion of the different LOC pools in 

relation to SOC can be used to detect changes in SOC quality. 

In the topsoil, the ratios fPOC, LFOC, and MBC to SOC 

decreased, while those of ROC and cPOC increased following 

land use change [Fig.3c]. In subsoil, only the ratio of DOC to 

SOC decreased, the ratios POC, fPOC and ROC to SOC 

increased, and those of LFOC and MBC remained constant 

following land use change. In the topsoil, ratios fPOC, LFOC, 

DOC and MBC to SOC were more sensitive to conversion 

from natural forest to sloping tillage than SOC [Fig.3c]. 
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Fig 3(a): POC stocks and those of its components (cPOC, fPOC) in relation to depth and land use systems in subtropical condition [Source: 

Sheng et al., 2015] [27] (b): LOC fraction stocks in relation to depth and land use systems in subtropical condition [Source: Sheng et al., 2015] [27] 

(c): Proportions of labile organic C fractions to soil organic C in relation to depth and land use systems in subtropical conditions [Source: Sheng 

et al., 2015] [27] 

 

Liu et al., (2016) [18] revealed that the both MBC and MBN 

concentrations were significantly higher in the 0–5 cm soil 

layer than 5–15 and 15–25 cm layers under grassland, 

forestland and NT treatments [Fig. 4a & 4b]. These 

distribution patterns may be attributed to decrease in labile C 

and N pools with increase in soil depth. Similar patterns of 

decreased in microbiological parameters with soil depth had 

been reported for forestland (Agnelli et al., 2004) [1], 

grassland (Fierer et al., 2003) [6] and arable land. At the top 0–

5 cm depth, the MBC: MBN ratio was highest under 

grassland and lowest under PT [Fig.4c]. The MBC 

concentration accounted for 6.79%, 3.90%, 2.84%, and 2.24% 

of the SOC concentration, while MBN concentration 

accounted for 3.13%, 3.09%, 2.29%, and 1.55% of TN 

concentration under grassland, forest, PT and NT, 

respectively. At the 5–15 cm depth, the MBC: MBN ratio was 

higher under grassland and forestland than NT and PT [Fig. 

4c]. At the 15–25 cm depth, the MBC: MBN ratios were 

generally lower under PT and NT than grassland and 

forestland [Fig.4c]. The MBC concentration accounted for 

4.94%, 3.20%, 2.45%, and 1.50% of SOC concentration, 

while MBN concentration accounted for 2.44%, 1.75%, 

1.74%, and 1.78% of TN concentration under grassland, 

forestland, PT, and NT, respectively. The MBC: MBN ratios 

were generally not affected by soil depth for grassland, 

forestland and PT [Fig. 4c]. For NT however, the MBC: MBN 

ratios significantly decreased with increase in soil depth. 

These further implied that grassland and forestland would 

effectively promote soil C forming MBC and avoid more soil 

C decomposing. Correspondingly, arable land had relatively 

weak function on SOC sequestration by forming MBC. 

Among arable land, in the top layer the soil of NT was better 

than PT on forming MBC to C sequestration. 

 

 
 

Fig 4: Microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) concentrations (gkg−1), and ratios of microbial biomass carbon 

to microbial biomass nitrogen (MBC/MBN) in the 0–5 cm, 5–15 cm, and 15–25 cm layers expressed as a, b, and c for three land uses 

(forestland, grassland and arable land) and two tillage systems (NT: no-tillage, PT: plow tillage) [Source: Liu et al., 2016] [18] 

 

Zhao et al. (2018) [37] also found that relative to the control, 

the proportion of large and small macro-aggregates in the 0–

20 cm soil layer increased the most in MR-WR (32% and 

24%), followed by MR (22% and 13%), and WR (11% and 

10%). Straw return significantly increased the SOC content in 

each soil aggregate size class relative to no straw return. The 

order of SOC fractions with respect to SOC content was 

mSOM > fine iPOM > coarse iPOM > free LF. Straw return 

significantly increased the C stock in iPOM and mSOM 

relative to the control. Coarse iPOM was the most sensitive 

indicator of C change and mSOM was the main form of SOC 

under long-term straw return [Fig. 5a & 5b], [Fig.6a & 6b]. 

Soil depth had a significant influence on almost all 

measurements, with greater values observed in the 0–20 cm 

layer than in the 20–40 cm layer. All three straw return 

treatments (MR-WR, MR and WR) largely improved the SOC 

stock in each aggregate fraction in the 0–20 cm depth; 

increases were highest in MR-WR, followed by MR, and 
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finally WR [Fig. 5b]. In the 20–40 cm layer, the SOC stock of 

small macro-aggregates significantly increased in MR-WR, 

but the SOC stock in the silt plus clay fraction decreased 

relative to other three treatments. Higher OC content of 

micro-aggregates due to straw return may be beneficial to 

long-term SOC sequestration because micro-aggregates have 

a longer turnover time and higher stability relative to macro-

aggregates (Qiao et al., 2015) [26] [Fig. 5a]. The carbon content 

of soil aggregates was much lower in the 20–40 cm layer than 

in the 0–20 cm layer because the field machinery used mainly 

distributed straw within the topsoil. Fine particulate OC of 

small macro-aggregates tended to increase with increasing 

straw input in the 0–20 cm layer [Fig. 6a], indicating that 

increased straw input is conducive to the formation of micro-

aggregates due to the positive role of intra-POM on the 

formation and stability of micro-aggregates (Six and Paustian, 

2014) [29]. The proportions of mSOM (29.1–32.9%) and iPOM 

(8.9–13.2%) [Fig. 6b] suggest that mSOM and iPOM promote 

a longer turnover time and preferential storage conditions, 

resulting in a long-term C stock (Li et al., 2016) [16]. 

 

 
 

Fig 5 (a): Organic C content (g kg−1 aggregate) of aggregates: LM, SM, mi, and SC in the 0–20 cm and 20–40 cm soil layers under MR-WR, 

MR, WR, and Control [Source: Zhao et al., 2018] [37]. (b): SOC stock of aggregate fractions (Mg ha−1): large macro-aggregates, small macro-

aggregates, micro-aggregates, and silt plus clay in the 0–20 cm and 20–40 cm soil layers under MR-WR, MR, WR, and Control [Source: Zhao et 

al., 2018] [37]. 
 

 
 

Fig 6(a): Organic C content (g kg−1 soil) of the SOC fractions: coarse iPOM, fine iPOM, mSOM, and free LF of small macro-aggregates and 

micro-aggregates in the 0–20 cm and 20–40 cm soil layers under MR-WR, MR, and WR [Source: Qiao et al., 2015] [26]. (b): Carbon stock of 

mSOM, iPOM, and free LF (small macro-aggregates and micro-aggregates) in the 0–20 and 20–40 cm soil layers under MR-WR, MR, WR, and 

Control [Source: Qiao et al., 2015] [26]. 

 

Conclusion 

Across the management practices evaluated in the review 

paper, tillage had the greatest effect on SOC and its various 

fractions and in the surface (0–15 cm) soil of tillage 

implementation, with positive results observed with 

conservation tillage practices compared with conventional 

tillage. SOC stocks and those of the labile fractions decreased 

in topsoil and subsoil below 20 cm following land conversion. 

The LOC fractions to SOC ratios also decreased, indicating a 

reduction in C quality as a consequence of land use change. 

Reduced LOC fraction stocks in subsoil could partially be 

explained by the decrease in fine root biomass in subsoil, with 

consequences for SOC stock. However, not all labile fractions 

could be useful early indicators of SOC alterations due to land 

use change. In fact, only fPOC, LFOC, and MBC in topsoil, 

and LFOC and DOC in subsoil were highly sensitive to land 

use change in subtropical climatic conditions of North West 

IGP. There was a significant reduction in SMBC content with 

depth in all treatments. SMBC in the PRB treatment increased 

by 19.8%, 26.2%, 10.3%, 27.7%, 10% and 9% at 0–5, 5–10, 

10–20, 20–40, 40–60 and 60–90 cm depths, respectively, 

when compared with the TT treatment. The mean SMBC of 

the PRB treatment was 14% higher than that in the TT 

treatment. 

The distribution pattern of soil microbial biomass associated 

with aggregates was likely governed by the size of aggregates, 

whereas the tillage effect was not significant at the aggregate-

size scale. Tillage regimes that contribute to greater soil 

aggregation also will improve soil microbial activity to aid in 

crop production. Heterogeneous distribution of OC and 

microbial biomass may lead to “hot-spots” of aggregation, 

and suggests that microorganisms associated with 1.0–2.0 mm 

aggregates are the most biologically active in the ecosystem. 

Conventional tillage (CT) significantly reduces macro-

aggregates to smaller ones, thus aggregate stability was 

reduced by 35% compared with conservation system (CS), 

further indicating that tillage practices led to soil structural 

damage. 
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