

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; SP2: 480-482

JP Sajitha

Department of vegetable crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

RM Vijayakumar

Department of medicinal and aromatic crop, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

C Kannan

Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Tamil Nadu, India

S Senthil Murugan

Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Tamil Nadu, India

Correspondence JP Sajitha Department of vegetable crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu. India

Efficacy of different levels of nutrients through fertigation on microbial population in watermelon rhizosphere soil

JP Sajitha, RM Vijayakumar, C Kannan and S Senthil Murugan

Abstract

Watermelon (*Citrullus lanatus* (Thumb) is the only fruit vegetable that is consumed as fresh fruit. It has risen from its relative obscurity to the present status mainly because of its pleasant flavour, sweet taste and refreshing effect that is well utilized during hot summer months. Soil constitutes the habitat of vast majority of microscopic forms of life distributed throughout the soil. These micro organisms bring about the decomposition of plant and animal residues to inorganic compounds that are essential for the maintenance of soil fertility and enhanced nutrient uptake capacity. An investigation was carried out to study the efficacy of different levels of nutrients through fertigation on microbial population in watermelon rhizosphere soil. Among the different levels of treatments in two seasons, the highest microbial population was recorded in the treatment T_7 at 30th, 45th, 60th and 75th DAS respectively). The soil application of 100 per cent recommended dose of nutrients had lesser impact on the microbial populations.

Keywords: watermelon, fertigation and rhizosphere microflora.

Introduction

Watermelon is a common man's fruit relished by both rich and poor alike. The flesh of the fruit is also consumed after adding a pinch of salt and black pepper. The juice is delicious and nourishing and exerts a cooling effect in hot summer months. The unripe fruit is also cooked as a vegetable and its seeds are fried and eaten in some parts of India (Vigneshwara Varmudy, 2012)^[2]. Among the curcurbitaceous crops, watermelon is the only fruit vegetable that is consumed as fresh fruit. It is truly native to sandy dry areas of South Africa chiefly Kalahari desert. It has risen from its relative obscurity to the present status mainly because of its pleasant flavour, sweet taste and refreshing effect that is well utilized during hot summer months. (Silva-matos. *et al.*, 2012)^[3]. Micro organisms decomposes the plant and animal residues to inorganic compounds that are essential for the maintenance of soil fertility. and enhanced nutrient uptake capacity Kajal *et al.* (2008)^[4]. The present study was carried out to study the efficacy of different levels of nutrients through fertigation on microbial population in watermelon rhizosphere soil.

Material and methods

Crop and variety

The watermelon hybrid 'Kiran' of known You Seed India Pvt. Ltd. was used for the study. It is an early maturing and vigorous hybrid with elongated dark green fruit.

Treatments

- T₁ 75% RDF through fertigation using water soluble fertilizers
- T_2 100% RDF through fertigation using water soluble fertilizers
- $T_3\ -\ 125\%$ RDF through fertigation using water soluble fertilizers.
- T_4 150% RDF through fertigation using water soluble fertilizers
- T_5 75% RDF through fertigation using water soluble fertilizers+Azophosmet + humic acid
- T₆ 100% RDF through fertigation using water soluble fertilizers+Azophosmet + humic acid
- T₇ 125% RDF through fertigation using water soluble fertilizers +Azophosmet + humic acid
- $T_8 \ \ \, \ \ \, 150\% \ RDF \ through \ fertigation \ using \ water \ soluble \ fertilizers \ + Azophosmet \ + \ humic \ acid$
- T₉ 100% RDF through soil application (control)

(RDF-Recommended Dose of Fertilizers -200:100:100 kg of N, P2O5, K2O per ha, respectively)

Fertilizer form

The following are the forms of fertilizers used for the study.

Straight fertilizers: Urea (46 % N), Single super phosphate (SP – 16% P₂O₅) and Muriate of potash (MOP – 60 % K₂O) **Water soluble fertilizers:** Proprietary water soluble form of N, P and K fertilizers *Viz.*, 19:19:19- (Polyfeed), 12:61:00 (Mono ammonium phosphate), 13:00:45(Multi 'K').

Scheduling of Nutrients Fertilizer schedule

Time of Application	Number of application*	N %	P%	K%
From 21 st day onwards and up to 49 th day	4	50	100	25
From 49 th day to 62 nd day	2	30	-	25
From 62 nd day to 77 th day	2	20	-	50
Total	100	100	100	

*Frequency of application: 7 days.

Enumeration of Rhizosphere Soil Microbial Population

The rhizosphere soil sample from watermelon crop was analysed for bacteria, fungi and actinomycetes.

Serial dilution of soil sample

Ten grams of rhizosphere soil sample was transferred to 90 ml of sterile distilled water to get 10^{-1} dilution. After thorough mixing, one ml of this dilution was transferred to 9 ml water blank to get 10^{-2} dilution. Likewise, sample was diluted serially with 9 ml water blank till appropriate dilution was obtained (Parkinson *et al.*, 1971)^[1].

Bacteria (No. of colonies per g of soil)

The total bacterial population was enumerated by planting one ml of 10^{-6} dilution in sterile petri plates using soil extract medium. The bacterial colonies appearing on the plates after 48 hours of incubation at 30°C were counted and expressed in g of dry weight of the soil.

Fungi (No. of colonies per g of soil)

For the determination of fungal population, one ml of 10^{-4} dilution of the soil sample was plated in sterile plate with potato dextrose agar medium. After 72 h of incubation, the fungal colonies were counted and expressed in g of dry weight of soil.

Actinomycetes (No of colonies per g of soil)

The total actinomycetes population was determined by plating 1 ml of 10^{-3} dilution with starch casein nitrate agar medium. The powdery colonies of actinomycetes appearing after 5 days were counted and expressed per g of dry weight of soil Result and discussion

Influence of different of nutrient levels on rhizosphere microbial changes

Bacteria

The results from the experiment showed that the bacterial

population was the highest in fertigation treatment T_7 (125 per cent recommended dose of nutrients along with Azophosmet and humic acid) which recorded 10.59 and 10.64 cfu g⁻¹ at 45th DAS during seasons I and II respectively. The lowest value was noticed in soil application of recommended dose of fertilizer which recorded 8.74 and 8.02 cfu g⁻¹ (Table 1).

Fungi

Among the different levels of treatments in two seasons, the highest fungi population was recorded in the treatment T_7 (3.602, 4.602, 4.561 and 4.397 cfu g⁻¹ in season I and 3.716, 4.851, 4.756 and 4.672 cfu g⁻¹ in season II at 30th, 45th, 60th and 75th DAS respectively). The soil application of 100 per cent recommended dose of nutrients had lesser impact on the fungal populations with the lowest values of 2.583, 3.595, 3.508 and 3.254 cfu g⁻¹ in season I and in season II 3.005, 3.608, 3.938 and 3.764 cfu g⁻¹ at 30th, 45th, 60th and 75th DAS respectively (Table 2).

Actinomycetes

The data on actinomycetes population as influenced by different levels of fertigation are presented in table 3. In general, the acinomycetes populations increased with the increasing in nutrients levels. The highest actinomycetes population was observed in T_7 with 5.459, 5.634 cfu g⁻¹ and 5.653, 5.734 cfu g⁻¹ during seasons I and II respectively at 60th and 75th DAS. The lowest value was noticed in the control (T₉) with 4.293 and 4.521 cfu g⁻¹ in seasons I and II at 75th DAS.

Soil constitutes the habitat of vast majority of microscopic forms of life distributed throughout the soil. It was revealed from the data that application of liquid Azophosmet and humic acid through drip irrigation showed a greater chance for multiplication of beneficial microorganism in the rhizosphere region. The results of present study indicated that drip fertigation at 125 per cent recommended dose of nutrients as water soluble fertilizer along with Azophosmet and humic acid resulted in a higher population of bacteria, fungi and actinomycetes than without using of Azophosmet and humic acid treatments at flowering stage. These micro organisms bring about the decomposition of plant and animal residues to inorganic compounds that are essential for the maintenance of soil fertility. Kajal et al. (2008)^[4] reported that application of water soluble fertilizers along with Azophosmet and humic acid improved the microbial population of soil and enhanced nutrient uptake capacity of bhendi crop.

Nguyen (2003) ^[5] reported that high above-ground biomass yield is obviously accompanied by an active root system, which releases an array of organic compounds into the rhizosphere. Plant roots release about 17 per cent of the photosynthate captured, most of which is available to soil organisms. These compounds support the growth of the microbial community and result in dense population in drip fertigation plot over the control plot at harvesting stage.

Table 1: Influence of different levels of nutrients on bacteria population at different growth stages in watermelon hybrid Kiran

	Bacteria (CFU g-1)								
Treatments	30th day		45th day		60th day		75th day		
	Season I	Season II	Season I	Season II	Season I	Season II	Season I	Season II	
T1	7.46	7.01	9.20	8.60	9.06	7.84	8.37	8.67	
T2	7.55	7.12	9.30	8.656	9.13	8.45	8.42	8.72	
T3	7.71	7.62	9.86	9.35	9.56	9.09	9.05	9.25	
T4	8.01	8.18	10.36	10.04	10.07	9.69	9.52	9.76	
T5	7.85	7.18	9.34	8.689	9.14	8.49	8.54	8.75	

T6	8.18	7.77	9.90	9.47	9.69	9.16	9.12	9.28
T7	8.43	8.68	10.59	10.64	10.18	10.27	9.83	9.91
T8	8.32	8.57	10.47	10.56	10.11	10.18	9.76	9.82
T9	6.54	6.63	8.74	8.02	8.67	7.76	7.96	8.20

Table 2: Influence of different levels of nutrients on fungi population at different growth stages in watermelon hybrid Kiran

Fungi (CFU g ⁻¹)									
Treatments	30 th day		45 th day		60 th day		75 th day		
	Season I	Season II							
T_1	2.671	3.198	3.796	3.705	3.765	4.095	3.286	3.938	
T_2	2.889	3.213	3.824	3.913	3.892	4.102	3.488	4.065	
T3	3.174	3.461	4.102	4.268	4.192	4.299	3.816	4.272	
T_4	3.406	3.641	4.348	4.523	4.453	4.498	4.109	4.491	
T5	2.921	3.234	3.855	3.991	3.916	4.106	3.514	4.124	
T ₆	3.178	3.479	4.113	4.338	4.208	4.317	3.853	4.349	
T ₇	3.602	3.716	4.602	4.851	4.561	4.756	4.397	4.672	
T8	3.591	3.678	4.551	4.693	4.515	4.663	4.322	4.597	
T9	2.583	3.005	3.595	3.608	3.508	3.938	3.254	3.764	

Table 3: Influence of different levels of nutrients on actinomycetes population at different growth stages in watermelon hybrid Kiran

Actinomycetes (CFU g ⁻¹)									
Treatments	30 th day		45 th day		60 th day		75 th day		
	Season I	Season II							
T1	2.545	2.941	4.141	4.469	4.543	4.290	4.346	4.769	
T ₂	2.594	3.020	4.207	4.665	4.587	4.600	4.614	4.965	
T3	2.783	3.213	4.503	5.013	4.896	4.980	5.007	5.291	
T4	3.051	3.373	4.792	5.362	5.191	5.324	5.307	5.623	
T5	2.602	3.049	4.211	4.741	4.593	4.620	4.670	5.011	
T6	2.852	3.220	4.512	5.102	4.921	5.016	5.027	5.382	
T ₇	3.219	3.431	5.045	5.532	5.428	5.622	5.566	5.675	
T8	3.230	3.477	5.127	5.553	5.459	5.653	5.634	5.734	
T9	2.353	2.762	3.862	4.209	4.258	4.235	4.293	4.521	

References

- 1. Parkinson D, Gray JRG, Williams ST. Methods for studying the ecology of soil microorganisms. Oxford Blackwell Scientific Publications, 1971, 116.
- 2. Vigneshwara Varmudy. Market survey, 2012. www.ffymag.com/admin/issuepdf/Watermelon
- Silva-matos RRS, Cavalcante IHL, Albano FG. Foliar spray of humic substances on seedlings production of watermelon cv. Crimson sweet. J Agron. 2012; 11(2):60-64.
- 4. Kajal A, AS Jadhav, Patil DS, Waghdhare DS. Influence of integrated plant fertigation on field grown tomato. Indian J Agric. Sci. 2008; 75(6):329-332.
- 5. Nguyen C. Rhizo deposition of organic C by plant mechanism and control. *Agron.* 2003; 23:375-396