

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(3): 132-134 Received: 22-03-2019 Accepted: 24-04-2019

Borge Priyanka

Vasantrao Naik Marathwada Krushi Vidyapeeth Parbhani, Maharashtra, India

Dattatraya Dalvi

Department of Agricultural Botany, College of Agriculture Parbhani, Maharashtra, India

Efffect of plant growth regulators on yield and yield contributing character of Bt cotton (Gossypium hirsutum L) hybrid

Borge Priyanka and Dattatraya Dalvi

Abstract

Plant growth regulators are used for cotton (Gossypium hirsutum L.) canopy manipulation to avoid excess growth and yield losses Application of Mepiquat chloride@15ml and 10ml/10 lit of water at square and flowering stage was found significantly superior through out all growth stages which is resulted in alteration of cotton plant growth and development like reduction in plant height, internode length, reduction in leaf area and monopodial branches. It also responsible for increase in sympodial branches, relative water content, chlorophyll content, yield and yield parameters in Bt cotton hybrid. Application of mepiquat chloride (mc) at square and flower formation stage was found effective in reducing plant height, internode length, sympodia, increase in RWC, chlorophyll content and yield attributes as well as GMR, NMR and B:C ratio of Bt cotton.

Keywords: Regulators, contributing, Gossypium hirsutum

Introduction

Cotton (Gossypium hirsutum. L) is one of the most important commercial cash crops, important fibre crop of global significance and cultivated in more than seventy countries. It is an important raw material of economy in terms of both employment generation and foreign exchange and hence it is known as: 'White gold' or 'friendly fibre and king of fibre'. The cotton plant belongs to the genus Gossypium of the family Malvaceae. Cotton is one of the principle crops of India and plays a vital role in the country's economic growth by providing substantial employment and making significant contributions to export earnings.

Plant growth regulators are substances, when added in small amounts modify the growth of plant usually by stimulating or inhibiting part of the natural growth regulation. Plant growth regulators are known to modify the source to sink relationship and increase the translocation and photosynthetic efficiency resulting in increased square and boll retention and boll set percent. MC is also known to modify source-sink relationship and stimulate translocation of photo-assimilates towards effective flower, fruit and seed development and ultimately enhanced crop productivity. It only affects new plant growth as effect of mepiquat chloride is function of plant size and concentration of the product applied.

Material and Method

The field experiment was conducted during *Kharif* season of 2017 at the experimental farm, Department of Agril. Botany, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani Experiment was laid out in randomized block design as per the plan after preparatory cultivation. The layout consisted of thirty experimental plots in three replications. Data on growth and yield attributes were recorded from five randomly selected plants in each treatment plot. The experiment comprising Bt cotton hybrid Ajeet-155 and using PGRs to study effect of spraying on plant growth and yield of cotton. By using PGRs with different proportion such as Ethrel 100 ppm at 45 DAS+80 DAS, MH 750 ppm at 45 DAS+80 DAS, MH 1000 ppm at 45 DAS+80 DAS, Ethrel 100 ppm at 45 DAS+MH750 ppm at 80 DAS, Ethrel 100 ppm at 45 DAS+MH 1000 ppm at 80 DAS, Cycoceal 100 ppm at 45 DAS+80 DAS, Mepiquat Chloride 15ml/10 lit at 45 DAS+80 DAS, Mepiquat Chloride 15ml/10 lit at 45 DAS+80 DAS.

Statistical analysis and interpretation of data

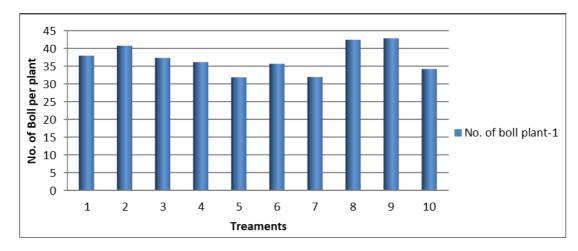
The data recorded on various variables were statistically analyzed by using technique of analysis of variance and significance was determined as given by Panse and Sukhatme (1967). Whenever differences were significant, C.D. values were indicated for comparison otherwise only the values of SE \pm were indicated. Graphical illustrations of data have been given at appropriate places. The critical difference was worked out whenever the treatment effects were statistically significant

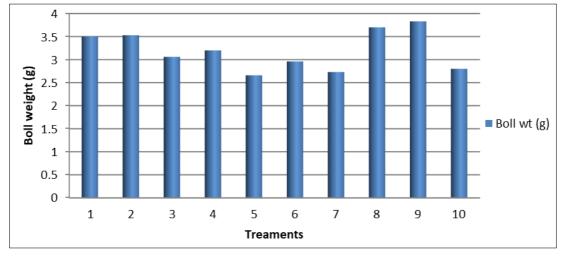
Correspondence Borge Priyanka Vasantrao Naik Marathwada Krushi Vidyapeeth Parbhani, Maharashtra, India

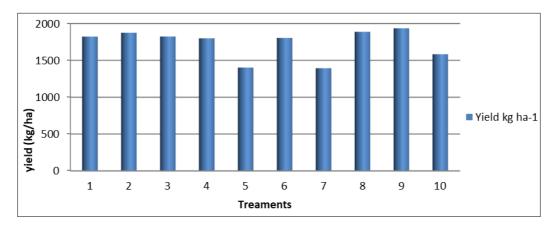
Results

Yield and Yield Contributing Characters

The data pertaining to the yield and yield contributing


characters of Bt cotton viz., yield kg ha⁻¹, no. of bolls plant⁻¹, weight of boll⁻¹ (g boll⁻¹), cotton yield per plant (g plant⁻¹), yield per plot and harvest index (%) are presented in Table 1.


Table 1: Yield and yield contributing characters


S. No	Treatments	Yield kg ha ⁻¹	No. of boll plant ⁻¹	Boll wt (g)	Yield Plant ⁻¹ (g)
T_1	Ethrel 100 ppm at 45 DAS+ 80 DAS	1690	37.96	3.20	119.8
T_2	MH 750 ppm at 45 DAS+ 80 DAS	1875	40.73	3.53	130.5
T 3	MH 1000 ppm at 45 DAS+80 DAS	1705	37.33	3.06	114.7
T ₄	Ethrel 100 ppm at 45 DAS+MH750 ppm at 80 DAS	1680	36.13	3.20	114.1
T_5	Ethrel 100 ppm at 45 DAS+ MH 1000 ppm at 80 DAS	1402	31.86	2.66	88.43
T_6	Cycoceal 100 ppm at 45 DAS +80 DAS	1805	35.66	2.96	109.4
T 7	Cycoceal 150 ppm at 45 DAS+80 DAS	1393	31.93	2.73	108.64
T_8	Mepiquat Chloride 10ml/10 lit at 45 DAS+80 DAS	1888	42.43	3.70	133.5
T ₉	Mepiquat Chloride 15ml/10 lit at 45 DAS+ 80 DAS	1935	42.86	3.83	137.1
T ₁₀	Control	1583	34.20	2.80	107.0
SE ±		74.91	1.56	0.1	4.7
CD at 5%		219.7	4.6	0.3	14.2
CV		7.4	7.3	8.5	7.27
GM		1696	36.90	3.17	113.9

Among the treatments the highest cotton yield kg per hectares was recorded in treatment T_9 (Mepiquat Chloride 15ml/10 lit at 45 DAS+ 80 DAS)(1935kg/ha) followed by T_8 (Mepiquat Chloride 10ml/10 lit at 45 DAS+80 DAS)(1888 kg/ha) and T_2 (MH 750 ppm at 45 DAS+ 80 DAS)(1875kg/ha) over all treatments and control.The mean number of bolls per plant

was 36.90 however the significantly higher bolls per plant, The mean boll wt (g) per plant was 3.21. The mean yield plant (g) was 113.9 however the significantly higher yield per plant, The mean yield per plot (kg) was 3.21 however the significantly higher yield per plant.

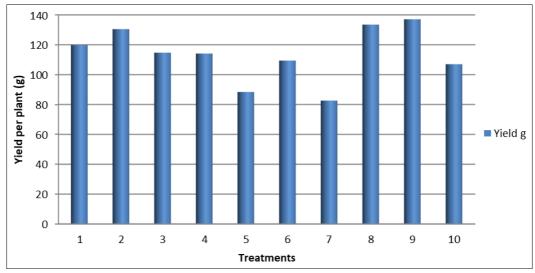


Fig 11: Yield and yield contributing characters (no. of bolls plant⁻¹, weight of boll⁻¹ (g boll⁻¹), cotton yield per plant (g plant⁻¹) Yield per kg ha⁻¹).

References

- 1. Kumar KA, Patil BC, Cheti MB. Effect of plant growth regulator on physiological components of yield in hybrid cotton. Indian journal of plant physiology. 2005; 10(2):187-190.
- 2. Kaur P, Patil BC. Plant growth regulator and its influence on yield, morphological and biochemical parameter in hybrid cotton. Journal of cotton research and development. 2013; 27(1):50-55.
- 3. Nawalagatti CM, Doddamani MB, Jyothi RH, Chetti MB. Effect of plant growth regulators on growth, biochemical traits, yield and yield attributes in Bt cotton. J. Of Ecofriendly Agri. 2011; 6(1):25-28.
- 4. Rajeswari VR, N Ranganadhacharyulu. Influence of mepiquat chloride on growth and yield of cotton. Ann. Agril. Res. 1997; 18(1):105-107.
- 5. Sabale SS, GR Lahane, SJ Dhakulkar. Effect of Various Plant Growth Regulators on Growth and Yield of Cotton (*Gossypium hirsutum*) Int. J Curr. Microbiol. App. Sci. 2017 6(11):978-989.