

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(4): 419-421 Received: 16-05-2019 Accepted: 18-06-2019

Akoijam Ranjita Devi

Department of Spices and Plantation Crops, Faculty of Horticulture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India

Sharangi AB

Department of Spices and Plantation Crops, Faculty of Horticulture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, Indai

Mary C Haokip

Department of Spices and Plantation Crops, Faculty of Horticulture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India

Correspondence Akoijam Ranjita Devi Department of Spices and Plantation Crops, Faculty of Horticulture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India

Genetic variability studies of coriander (Coriandrum sativum L.) genotypes

Akoijam Ranjita Devi, Sharangi AB and Mary C Haokip

Abstract

The present experiment was conducted to find out the genetic variability in 12 genotypes of coriander. It was undertaken at HRS, Mandouri, Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal. The experimental design was RBD and evaluation studies were carried out on the basis of several genetic variability parameters. Among the characters studied, seed yield/plant, number of seeds/umbel, number of basal leaves, primary branch, secondary branch and plant height were characterised by high PCV, GCV, heritability and genetic advance indicating prevalence of additive gene action which offer good scope for further improvement.

Keywords: Coriander, PCV, GCV, heritability, genetic advance

Introduction

Coriander (Coriandrum sativum L.) is a highly cross pollinated annual crop valued as spice for its aroma and flavour. India has leading position in cultivation and production of coriander. At present, coriander is grown widely in parts of western and central India in the states of Gujarat and Rajasthan. Germplasm collection with good variability for the desirable characters is the basic requirement of any crop improvement program (Moniruzzaman et al., 2013) ^[7]. Again, in order to exploit the yield potential of coriander, the factors affecting yield and yield component ought to be thoroughly investigated. These factors consist of environment and cultural practices which directly affect the yield. The development of suitable plant type is of pronounced importance for all the crops through planned design programme. Attempts have therefore been made by some scientists to analyse different morphological characters to make available meaningful information about the significance of characters in relation to seed yield in coriander. An ideal plant ideotype would only be defined if the different components of coriander seeds are analysed and their relative importance can be assessed. In the present study, genetic diversity of coriander genotypes collected from different sources were examined and yield component analyses were carried out to identify important coriander seed yield components.

Materials and methods

The experiment was undertaken at Horticulture Research Station, BCKV during 2014-15 and 2015-16. Twelve genotypes of coriander were used in the experiment. The genotypes were Arka Isha, Manipur collection-1, Suvashini, West Bengal collection-1, West Bengal collection-2, Assam collection, Five -X, Manipur collection-2, NRCS A.Cr-1, Tripura collection, Pant Haritma and West Bengal collection-3. The experiment was laid out in randomized block design (RBD), 12 number of treatments and 3 replications. Each genotypes were planted in plot size of $1.8m \times 1m$. Land preparation was done by deep ploughing followed by pulverizing and levelling. Overnight soaked seeds were used for planting. Intercultural operations were done at timely intervals. Thinning and hoeing was done 30 days after sowing along with first weeding. The crop was harvested when 60 per cent of seeds in main umbels turn yellowish brown in colour.

The genotype (G.C.V.) and phenotype (P.C.V.) co-efficient of variation were calculated by the following formula given by Burton (1952)^[2].

Genotypic standard deviation GCV=-----x 100

Grand mean

Heritability in broad sense (H) was estimated by the formula given by Hanson *et al.* (1956).

The expected genetic advance (GA) was calculated by the formula as suggested by Johnson *et al.* (1955)^[5].

Genotypic variance GA= ------ $x K x P = \delta H x K x \delta P$ Phenotypic variance

Where,

H = Heritability in broad sense.

 δP = Phenotypic Standard deviation.

K= Selection differential, a constant value is 2.06 for 5% selection intensity.

Result and discussion

The present study was initiated to examine the nature of variability in different characters of coriander germplasm. Analysis of variance of eleven traits revealed that mean squares due to genotypes were highly significant (Table 1). The co-efficient of variation were below 10% for the characters like days to flowering, days to harvest, plant height, number of basal leaves, secondary branch, umbels per plant, umbellets per umbel, number of seeds per umbel, test weight and seed yield per plant during 1^{st} year and 2^{nd} year, excluding primary branch confirming the reliability of the

experiment and also suggesting less G x E interactions. However, the co-efficient of variation was little bit high for the characters like primary and secondary suggesting moderate G x E interactions. Range of variation was highest for plant height followed by days to maturity. The similar finding was reported by Dhakad *et al.*, (2017)^[3].

Phenotypic co-efficient of variation (PCV) agreed closely with the genotypic co-efficient of variation (GCV) but the magnitude of PCV was higher than GCV for almost all the characters (Table. 2). The PCV was lowest in days to maturity (10.610) and highest was recorded in seed yield per plant (53.25). The study is supported by the findings of Dhakad et al., (2017)^[3], Shrivastava et al. (2000)^[10]. Broad sense heritability values were higher (more than 90 %) for all the characters except secondary branch (89.16%). This was in accordance with Megeji and Korla (2002)^[6], Anilkumar et al. (2018) ^[1]. However, genetic advance (GA) expressed as percentage of mean was high for the characters like seed yield/plant, number of seeds/umbel, number of basal leaves and primary branch. In other words, seed yield per plant, number of seeds per umbel, number of basal leaves and primary branch were characterised by high PCV, GCV, heritability and genetic advance. The results find support from the observations of Sanker and Khader. (1991)^[8], Sharma and Sharma (1989)^[9] and Singh *et al.* (2006)^[11]. High heritability accompanied with low genetic advance for the character like days to flowering, days to harvest, umbel per plant and test weight suggesting that this character is influenced due to favourable influence of environment rather than genotypes.

Conclusion

Seed yield per plant, number of seeds per umbel, number of basal leaves, primary branches, secondary branches and plant height were characterised by high PCV, GCV, heritability and genetic advance offer good scope for further improvement.

Source of	Mean Sum of Square (MS)										
variation (d.f.)	Days to flowering	Days to maturity	Plant height (cm)	No. basal leaves	No. Primary branches	No. Secondary branches	Umbels/plant	Umbellets/ umbel	No. seeds/umbel	Test weight	Seed yield/plant
Replication (2)											
1 st year	0.861	10.028	183.688	0.361	0.083	2.694	2.237	0.232	5.434	0.033	0.030
2nd year	5.083	0.111	75.710	0.528	0.528	2.861	1.061	0.042	6.641	0.022	0.011
Treatment (11)											
1 st year	412.899	397.785	1,119.132	12.694	14.917	27.543	46.951	3.182	249.001	2.872	8.985
2nd year	329.280	405.263	1,144.176	13.232	15.111	28.960	51.091	3.394	236.142	2.301	9.203
Error (22)											
1st year	10.104	1.634	44.167	0.331	0.386	1.240	2.295	0.109	5.143	0.061	0.080
2 nd year	7.568	2.838	33.416	0.528	0.407	2.770	2.166	0.111	4.986	0.036	0.062
CV (%)											
1 st year	5.39	1.17	7.17	9.91	12.57	9.43	6.75	6.65	6.44	3.18	8.69
2 nd year	4.57	1.54	6.31	12.57	10.25	13.56	6.60	6.75	6.33	2.44	7.53

Table 1: Analysis of variance for eleven different characters in 12 genotypes of coriander

	Table 2: Genetic variability paramete	rs in different characters in first and second	vear of 12 coriander genotypes
--	---------------------------------------	--	--------------------------------

		Days to flowering	Days to maturity	Plant height (cm)	No. basal leaves	No. Primary branches	No. Secondary branches	Umbels/ plant	Umbellet s/umbel	No. seeds/ umbel	Test weight	Seed yield/ plant
Mean	1st	58.94	108.81	92.65	5.81	6.08	11.81	22.44	4.96	35.21	7.75	3.25
	2nd	60.25	109.61	91.67	5.78	6.22	12.28	22.28	4.93	35.26	7.76	3.31
	Р	59.60	109.21	92.16	5.79	6.15	12.04	22.36	4.95	35.24	7.75	3.28
Range	1st	42.33-77.0	93.67-129.33	64.33-115.33	3.33-9.33	3.67-10.33	7.67-17.0	16.66-29.81	3.64-6.91	22.22-51.83	6.82-9.98	1.12-6.03
	2nd	46.33-77.33	94.67-131.33	65.19-118.41	3.0-9.67	3.67-10.67	7.67-18	16.17-29.98	3.82-7.13	21.67-50.77	6.8-9.49	1.18-6.31
	р	44.83-77.33	94.17-130.33	64.76-114.98	3.17-9.50	3.83-10.50	8.0-17.50	16.42-29.89	3.75-7.02	21.94-51.30	6.86-9.74	1.15-6.17
PCV (%)		20.384	10.626	21.655	36.344	37.592	26.796	18.468	21.467	26.401	12.896	53.654
		17.784	10.678	21.918	37.771	37.027	27.620	19.288	22.258	25.686	11.462	53.214
	Р	18.811	10.610	21.618	36.356	36.878	26.277	18.551	21.652	25.766	12.115	53.248
GCV (%)		19.658	10.561	20.432	34.968	36.177	25.082	17.190	20.412	25.603	12.499	52.945
		17.188	10.566	20.991	35.617	35.581	24.065	18.122	21.210	24.893	11.199	52.678
	Р	18.444	10.565	20.670	35.260	35.918	24.812	17.814	20.826	25.358	11.811	52.826
Heritability (%) in b.s.		93.002	98.778	89.027	92.569	92.612	87.610	86.641	90.405	94.049	93.929	97.377
		93.408	97.928	91.722	88.918	92.341	75.911	88.274	90.810	93.922	95.468	97.998
	Р	96.137	99.161	91.424	94.062	94.862	89.161	92.217	92.514	96.864	95.054	98.422
GA (%) of mean		39.053	21.623	39.714	69.306	71.719	48.362	32.962	39.980	51.149	24.954	107.627
		34.220	21.540	41.414	69.186	70.434	43.192	35.074	41.637	49.698	22.542	107.426
	Р	37.254	21.672	40.714	70.447	72.065	48.263	35.240	41.265	51.413	23.722	107.959

References

- 1. Anilkumar GS, Umesha K, Shivapriya M, Halesh GK, Nithin Kumar VC. Genetic Variability, Heritability and Genetic Advance Studies in Coriander (*Coriandrum sativum* L.). International Journal of Pure and Applied Bioscience. 2018; 6(3):426-430.
- Burton GW. Quantitative inheritance in grasses. Proc. 6th Int. Grassld Cong. 1952; 1:277-283.
- 3. Dhakad RS, Sengupta SK, Lal N, Shiurkar G. Genetic diversity and heritability analysis in coriander. The Pharma Innovation Journal. 2017; 6(8):40-46
- 4. Hanson CH, Robinson GP, Comstock RE. Biometrical studies of yield in segregating population of Korean lespedeza. Journal of Agronomy. 1956; 48:268-272.
- 5. Johnson HW, Robinson HF, Comstock RE. Genotypic and phenotypic correlation and their implications in selection. Journal of agronomy. 1955; 47:477-483.
- Megeji NW. Korla BN. Genetic variation in coriander. Haryana Journal of Horticultural Science 2002; 31(3-4):292-293.
- Moniruzzaman M, Rahman MM, Hossain MM, Karim AJMS, Khaliq QA. Evaluation of coriander (*Coriandrum* sativum L.) genotypes for seed yield and yield contributing characters. Bangladesh Journal of Agricultural Research. 2013; 38(2):189-202
- 8. Sanker KB, Khader MA. Studies on genetic variability in coriander. South Indian Horticulture 1991; 39(5):312-314
- Sharma KC and Sharma RK. Variation and character associations of grain yield and its component characters in coriander. Indian Journal of Genetics. 1989; 49(1):135-139
- 10. Shrivastava SBL, Kamaluddin, Tripathi SM, Shrivastava JP. Genetic spices and aromatic plant challenges and opportunities in the new century contributory papers centennial conference on spices and aromatic plant Spices Calicut, Kerala, India. 2000, 68-70.
- 11. Singh SP, Prasad R, Singh D. Variability and character association of grain yield and its component character in coriander. Journal of Applied Bioscience. 2006; 32(1):64-67.