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Abstract 

To bolster in drug discovery, authentic data on pharmacokinetics properties of the molecule must be 

attainable at the earliest which eventually contributes to the success or failure of the compound. The 

present study will be the first of its kind reporting the ADME (Absorption, Distribution, Metabolism and 

Excretion) properties of Ipomoea mauritiana Jacq using freely available web tool Swiss ADME. A sum 

total of 15 potential compounds reported in earlier work from Ipomoea mauritiana were screened for 

ADME properties and the results were analyzed hereafter. Among the compounds screened only 5 

molecules showed good brain penetration viz. tetradecanal, tetradecanoic acid, dodecanoic acid, hexanoic 

acid, scopoletin and three with good GIT absorption viz. Octadecan-1-ol, octadecanoic acid and 

Chloroacetic acid. Most of the compounds are non-substrate for both P-gp (P-glycoprotein) and CYP 

(Cytochrome P-450 isoenzymes). All the compounds passed Lipinski’s rule of five to for drug likeness 

test. SwissADME emerged to be simple, robust and accurate method to understand the ADME properties 

of the compounds present in Ipomoea mauritiana. 

 

Keywords: Ipomoea mauritiana, SwissADME, drug discovery, Lipinski’s rule of five, P-glycoprotein, 

cytochrome P-450 isoenzymes 

 

1. Introduction 

World health organization (WHO) predicts more than 80% of world population lean on 

conventional medicaments. India being rich diversity with blooming traditional systems of 

medical practice, few people of ancient periods have started prospecting plants for their 

therapeutic attributes and biopharmaceutical segments (Boopathi and Shivakumar, 2011 & 

Zereena Viji and Paulsamy, 2016) [1, 2]. The family Convolvulaceae is conceded as Morning 

glory family with more than 2000 species and 58 genera dispersed in tropics and subtropics 

region (Undirwade, 2015) [3] like West Bengal, Maharashtra, Western Ghats, Goa, Gujarat, 

Karnataka and Bihar (Deepa Srivastava, 2017) [4]. Ipomoea mauritiana Jacq. (Family- 

Convolvulaceae; syn: Ipomoea digitata Linn) is an abundant perennial climber mostly grows 

in moist areas, monsoon forests and in coastal areas (Mishra and Datta, 1962 & Vidya Dighe 

and Shreeda Adhyapak, 2011) [5, 6]. It is considered as nutritive, expectorants, diuretics, used 

for the treatment of fever, bronchitis, as vitalizer, Galactagogue, aphrodisiac, demulcent, 

Cholagogue with antioxidant and immunomodulatory activity (Iyer, 1962, Chopra et al., 1956, 

Kirtikar and Basu, 1918, Nadkarni and Nadkarni, 1954, Upadhyay, 1997) [7-11].  

Ipomoea mauritiana consists of major phytoconstituents viz taraxerol, taraxerol acetate, β-

sitosterol, scopoletin, and 7-O-β- D-glycopyranosyl scopoletin (Karthik and Padma, 2009, 

Dharmaratne, 1997) [12, 13]. The GC-MS analysis of tuber of I mauritiana give in the presence 

of 27 major phytochemical constituents with different therapeutic properties viz., 6,8 

Dioxabicyclo (3,2,1) octan 3a ol-2, 2, 4, 4-D4, 4-acetyl butyric acid, 2-methyl 4, 5 dihydroxy 

benzaldehyde, thiosulfuric acid, dodecanoic acid, chloroacetic acid, tetradecanal, tetradecanoic 

acid, E-15- Heptadecenal, Iso propyl myristate, ethyl-3-8-aza-bicycle-oct-2-ene8-carboxylate, 

hexadecen-1-ol-trans-9, Hexadecanoic acid, 1-octadecene, 9-octadecene-1-ol, 1-octadecanol, 

2,2 dideutero octadecanal, 9, 12, octadecadienoic acid, octadecanoic acid, 1-docosanol methyl 

ether, hexatriacontane, 4, 6 fluro coumarin, n-tetracosanol-1, hahnfett, octacosane, 

nonacosane, tetratetracontane respectively (Harada et al., 2002, Harborne, 1998, Nayana et al., 

2006 & Ranjith and Viswanath, 2019) [14-17]. 

Data processing biology and bioinformatics discharges a considerable role in drug design, 

screening and discovery (Prabhu Srinivasan et al., 2018) [18]. In silico pragmatic winnowing 

methodologies are quintessential for radical inquiring assessment of the promising activity of 

herbs. With in-silico studies several thousands of compounds present in a composite mixtures 

can be appraised contrary to their target swiftly and cost effectively (Chen et al., 2018, Dai et 
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al., 2016, Liu et al., 2017, Andriea et al., 2019) [19-22]. 

Presently, computer aided reckoning of ADME (Absorption, 

Distribution, Metabolism and Excretion) of drugs gained 

consideration to implement anticipative and reliable data 

compliment to accession of the experiment. These 

computational models predicts pharmacokinetics, 

physicochemical and medicinal properties of small molecules 

and back in development of lead molecules to patient drugs 

(Sliwoski et al., 2014 & Ndombera et al., 2019) [23, 24]. 

SwissADME is one of the most recent and afar-reaching site 

run by the Swiss Institute for Bioinformatics (SIB) which 

encourages bioinformatics services and resources for 

scientists worldwide (Ndombera et al., 2019) [24]. It promotes 

the assessment of ADME parameters of drug candidates and 

molecules and provides information that acquiesce antecedent 

uncertainty determination in the drug discovery process, it is 

the rostrum to determine Lipinski’s rule of five (Lipinski et 

al., 2001) [25] for drug likeness of oral bioavailability. Drug 

likeness is the composite harmony of molecular properties 

and constitutional appearance which determine whether an 

unknown molecule is like the known drugs, which include 

electronic distribution, hydrophobicity, hydrogen bonding 

characteristics, molecular flexibility and size respectively. 

One of the extended feature of SwissADME includes 

BOILED-Egg evaluation (Daina and Zoete, 2016) [26] which 

predicts gastrointestinal absorption (HIA) and efflux/retention 

by P-glycoprotein (Pgp). In addition, blood brain barrier 

(BBB) penetration and Cytochrome P450 (CYP) enzyme 

substrate inhibition prediction can also been made, here the 

false positive results frequently encountered in biochemical 

assays of small molecules is predicted with fair degree of 

positivity (Matlock et al., 2018, Ndombera et al., 2019) [27, 24] 

The present study was designed to submit the bioactive 

compounds present in Ipomoea mauritiana for insilico 

ADMET screening using SwissADME website 

(http://www.swissadme.ch/index.php) to evaluate the 

individual ADME behaviour like physiochemical properties, 

Lipophilicity, water solubility, pharmacokinetics, drug 

likeness and medicinal chemistry properties of the 

compounds.  

 

2. Materials and Methods 

2.1 SwissADME 

SwissADME software (www.swissadme.ch) of Swiss institute 

of bioinformatics (http://www.sib.swiss) was accessed in a 

web server that displays the Submission page of SwissADME 

in Google was used to estimate individual ADME behaviors 

of the compounds from the plant. The input zone itself 

contains a molecular sketcher based on Chem Axons Marvin 

JS (http://www.chemaxon.com) that allowed the user to draw 

and edit 2D chemical structures. The structure are transferred 

as a list to the right hand side of the submission page, which is 

the actual input for computation. The list is made to contain 

one input molecule per line with several inputs, defined by 

simplified molecular input line entry system (SMILES) and 

the results are presented for each molecule in tables, graphs 

and also an excel spreadsheet. The SwissADME output file 

comprises of one panel per molecule for clear output and 

export, the panel comprises of all the information’s of the 

molecules (Egan et al., 2000) [28]. 

 

2.2 Structure and bioavailability radar 

The two dimensional chemical structure with canonical 

SMILES were shown in the first section. The bioavailability 

radar empowers preliminary glimpse at the drug likeness of 

the molecules of interest. The pink area exemplifies optimum 

physicochemical space for each properties predicted to be 

orally bioavailable. Six physicochemical properties are taken 

in to account: LIPO (Lipophilicity), SIZE, POLAR (Polarity), 

INSOLU (Insolubility), INSATU (Insaturation) and FLEX 

(Flexibility) respectively. Lipophilicity: XLOGP3 between-

0.7 and + 5.0, size: MW between 150 and 500 g/mol, polarity: 

TPSA between 20 and 130 0A2, solubility: log S not higher 

than 6, saturation: fraction of carbons in the sp3 hybridization 

not less than 0.25 and flexibility: no more than 9 rotatable 

bonds (Daina et al., 2017) [29] 

 

2.3 Physicochemical properties 

These section comprises of clean molecular and 

physicochemical characteristics like molecular formula, 

molecular weight, number of heavy atoms, number of 

aromatic heavy atoms, fraction csp3, number of rotatable 

bonds, number of H-bond acceptors, number of H-bond 

donors, molar refractivity, TPSA respectively. The values 

were computed with open babel version 2.3.0 (O’Boyle, 2011 

& Daina et al., 2017) [30, 29]. A new methodology has been 

developed for calculating PSA (molecular polar surface area) 

called TPSA (Topological PSA) by simply calculating the 

summation of the tabulated surface contributions of polar 

fragments which is determined by least squares fitting of the 

fragment based TPSA to the single conformer 3D PSA for a 

large set of drug like structures. The database was processed 

by removing molecules with apparent valence errors, 

molecular weights outside the interval of 100-800 and 

molecules not having at least one oxygen, nitrogen, sulfur or 

phosphorus atom (Ertl et al., 2000, Daina and Zoete, 2016) [31, 

26]. 

 

2.4 Lipophilicity 

Lipophilicity is a paramount parameter in drug discovery and 

design (Leeson & Springthorpe, 2007) [32] on the grounds that 

it complements the single most informational and successful 

physicochemical property in medicinal chemistry (Testa et al., 

2000) [33]. It is experimentally demonstrated as partition 

coefficients (log P) or as distribution coefficients (log D). Log 

P portrays partition equilibrium of an un-ionized solute amidst 

water and an immiscible organic solvent. Larger the log P 

values corresponds greater lipophilicity (Arnott & Planey, 

2012) [34]. For the measurement of lipophilicity two 

preparatory techniques were characterized viz. shake flask 

method (Sangster, 1997) [35] and potentiometric titration 

(Avdeef, 1993 & Scherrer and Donovan, 2009) [36, 37]. 

Potentiometric method analyzes an aqueous pKa to an 

apparent pKa which is measured in two phase systems 

(Water-Octanol) by employing difference curve analysis i.e. 

partition coefficient between n-octanol to water which is 

designated as log Po/w (Arnott and Planey, 2012) [34]. 

To evaluate the lipophilicity character in a compound, 

SwissADME provides five freely available models i.e. 

XLOGP3, WLOGP, MLOGP, SILICOS-IT and iLOGP 

respectively. XLOGP3, an atomistic accost including 

corrective factors and knowledge based library (Cheng, 2007) 
[38]; WLOGP, application of purely atomistic method 

stationed on fragmental system (Wildman and Crippen, 1999) 
[39]; MLOGP, an archetype of topological method suggested 

on a linear relationship with implemented 13 molecular 

descriptors (Moriguchi et al., 1992 & Moriguchi et al., 1994) 
[40, 41]; SILICOS-IT, an mongrel method entrust on 27 

fragments and 7 topological descriptors; iLOGP, a physics 

based method lean on free energies of solvation in n-octanol 

http://www.phytojournal.com/
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and water calculated by the generalized-born and solvent 

accessible surface area (GB/SA) model; Consensus log P o/w is 

an arithmetic mean of the values predicted by the five 

proposed methods (Daina et al., 2017) [29].  

 

2.5 Solubility 

Solubility of a compound radically confide on the solvent 

used, ambient temperature and pressure. The breadth of 

solubility measured as the saturation concentration where 

upon adding more solute does not increase its concentration in 

the solution (Lachman et al., 1986 & Savjani et al., 2012) [42, 

43]. A drug is considered highly soluble when the highest dose 

strength is soluble in 250 mL or less of aqueous media over 

the pH range of 1 to 7.5. The volume estimate of 250 mL is 

derived from typical bioequivalence study protocols that 

prescribe administration of a drug product to fasting human 

volunteers with a glass of water (Amidon et al., 1995) [44]. All 

drugs have been divided into four classes: class I-high soluble 

and high permeable, class II-low soluble and high permeable, 

class III-low soluble and high permeable and class IV-low 

soluble and low permeable (Savjani et al., 2012) [43]. Two 

topological approaches included in SwissADME to predict 

water solubility, the first one is the application of ESOL 

model (Solubility class: Log S Scale: Insoluble<-10 poorly<-

6, moderately<-4 soluble<-2 very<0<highly) and the second 

one is adapted from Ali et al, 2012 (Solubility class: Log S 

Scale: Insoluble<-10 poorly<-6, moderately<-4 soluble<-

2very<0<highly). Both differ from the fundamental general 

solubility equation (Yalkowsky & Valvani, 1980) [45] since 

they avoid the melting point parameter but the linear 

correlation between predicted and experimental values were 

strong (R2=0.69 and 0.81 respectively). The third predictor of 

SwissADME was developed by SILICOS-IT (Solubility class: 

Log S Scale: Insoluble<-10 poorly<-6, moderately<-4 

soluble<-2 very<0<highly) where the linear coefficient is 

corrected by molecular weight (R2=0.75). All predicted values 

are the decimal logarithm of the molar solubility in water (log 

S). SwissADME also provides solubility in mol/l and mg/ml 

along with qualitative solubility classes. 

 

2.6 Pharmacokinetics 

The delineation exists in a region of agreeable properties for 

GI absorption on a plot of two computed descriptors; ALOGP 

versus PSA respectively. The region most populated by well 

absorbed molecules is elliptical, it was called Egan egg, 

which is used to assess the predictive power of the model for 

GI passive absorption and prediction for brain access by 

passive diffusion to finally lay the BOILED-Egg (Brain or 

IntestinaL EstimateD permeation predictive model). The 

BOILED-Egg model produces a rapid, spontaneous, 

efficiently imitate yet boisterous method to forecast the 

passive GI absorption helpful for drug discovery and 

development (Di et al., 2012 & Brito-Sanchez et al., 2015) [46, 

47]. The white region is the space of the molecules with greater 

extent of absorption by GI tract, the yellow region (yolk) is 

the space with highest probability to permeate to the brain 

(Daina et al., 2017, Daina et al., 2016 & Montanari and 

Ecker, 2015) [29, 26, 48]. Cytochrome p450 (CYP) isoenzymes 

biotransforms more than 50-90% of therapeutic molecules 

from its five major isoforms (CYP1A2, CYP3A4, CYP2C9, 

CYP2C19, CYP2D6). P-gp is broadly dispersed in intestinal 

epithelium which pumps xenobiotic back in to the intestinal 

lumen and from the capillary endothelial cells of the brain 

back in to the capillaries (Ogu & Maxa, 2000 and Ndombera 

et al., 2019) [49, 24]. Swiss ADME adopts support vector 

machine algorithm (SVM) for the datasets of known 

substrates/non- substrates or inhibitors/non-inhibitors for 

binary classification. The resultant molecule will return “Yes” 

or “No” if the molecule under investigation expected to be 

substrate for both P-gp and CYP respectively. The SVM 

model for P-gp substrate was built on 1033 molecules 

(training set) and tested on 415 molecules (test set), 10 fold 

CV: ACC=0.72/AUC=0.77, External: ACC=0.88/AUC=0.94 

respectively. The SVM model for Cytochrome P-450 1A2 

inhibitor molecule was built on 9145 molecule (training set) 

and tested on 3000 molecules (test set), 10 fold CV: 

ACC=0.83/AUC=0.90, External: ACC=0.84/AUC=0.91. The 

SVM model for Cytochrome P-450 2C19 inhibitor molecule 

was built on 9272 molecule (training set) and tested on 3000 

molecules (test set), 10 fold CV: ACC=0.80/AUC=0.86, 

External: ACC=0.80/AUC=0.87. The SVM model for 

Cytochrome P-450 2C9 inhibitor molecule was built on 5940 

molecule (training set) and tested on 2075 molecules (test 

set), 10 fold CV: ACC=0.78/AUC=0.85, External: ACC= 

0.71/AUC=0.81. The SVM model for Cytochrome P-450 2D6 

inhibitor molecule was built on 3664 molecule (training set) 

and tested on 1068 molecules (test set), 10 fold CV: 

ACC=0.79/AUC=0.85, External: ACC=0.81/AUC=0.87. The 

SVM model for Cytochrome P-450 3A4 inhibitor molecule 

was built on 7518 molecule (training set) and tested on 2579 

molecules (test set), 10 fold CV: ACC=0.77/ AUC=0.85, 

External: ACC=0.78/AUC=0.86. 

Transdermal distribution is an alternative way of oral delivery 

and hypodermic injection of drugs. The advantages of 

transdermal delivery includes; avoiding stomach degradation 

of drugs, supposing steady plasma levels, avoiding first pass 

metabolism, increasing patient compliance, inexpensive, 

invasive, ease to use and decreasing side effects (Onyekaba, 

2015) [50]. The steady state transport of molecules over 

biological membrane is characterized as the solubility 

diffusion process. The permeability coefficient (Kp) relating 

solute flux to the concentration gradient across the membrane 

is expressed mathematically (Idson and Behl., 1987) [51]. The 

more negative the log Kp (with Kp in cm/s), the less skin 

permeant is the molecule. 

 

Kp= Km X Dm/δ 

Kp= Km X Dm/δ 

Where, 

Km = membrane / water partition coefficient of the permeant  

Dm = permeant diffusivity within the membrane  

δ = diffusion pathlength 

 

2.7 Drug likeness 

Drug likeness assesses the chances for a molecule to become 

an oral drug with respect to bioavailability. It is the property 

characterized by the red distorted hexagon within pink shade. 

Swiss ADME performs filtering of chemical libraries to 

exclude molecules with peculiarities incompatible with an 

acceptable pharmacokinetics profile with five disparate ruled 

based filters elemental from considerable Pharma companies 

intended to improve the condition of proprietary chemical 

collections (Daina et al., 2017) [29]. The Lipinski filter (Pfizer) 

is the pioneer rule of five that characterize small molecules 

based on physicochemical property profiles which includes 

Molecular Weight (MW) less than 500, MLOGP ≤ 4.15, N or 

O ≤ 10, NH or OH ≤ 5. Lipinski considers stringently that all 

nitrogens and oxygen as H-bond acceptor and all nitrogens 

and oxygens with at least one hydrogen as H-bond donors. 

Besides, aliphatic fluorines are acceptors and alinine nitrogens 

http://www.phytojournal.com/
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are neither donors nor acceptors (Lipinski et al., 2001) [25]. 

The Ghose filter (Amgen) describes small molecules stationed 

on physicochemical property, existence of functional groups 

and substructures. The qualifying range includes of molecular 

weight is between 160 and 480 Da, WlogP is between -0.4 to 

5.6, molar refractivity (MR) is between 40 to 130 for total 

number of atom; the qualifying range is between 20 and 70 

atoms in a small molecule (Ghose et al., 1998 & Ghose et al., 

1999) [52, 53]. Veber filter (GSK filter) model symbolize 

molecules as drug like if they have ≤ 10 rotatable bonds and a 

TPSA equal to or less than 140 Å2 with 12 or fewer H-bond 

donors and acceptors. Compounds with these properties will 

have good oral bioavailability, reduced TPSA correlates 

increased permeation rate, increased rotatable bonds counts 

has a negative effect on the permeation rate (Veber et al., 

2002) [54]. Egan filter (Pharmacia filter) anticipates drug 

absorption depend on processes involved in membrane 

permeability of a small molecule. These model symbolizes 

molecule as a drug like if they have WLOGP ≤ 5.88 and 

TPSA ≤ 131.6 respectively. The Egan computational model 

for human passive intestinal absorption (HIA) of small 

molecule accounts for active transport and efflux mechanisms 

and is therefore robust in predicting absorption of drugs (Egan 

et al., 2000) [55]. Muegge filter (Bayer filter) is a self-reliant 

Pharmacophore point filter that segregates drug like and non-

drug like molecules. These model symbolizes molecule as a 

drug like if they have molecular weight between 200 to 600 

Da, XLOGP between -2 and 5, TPSA ≤ 150, Number of rings 

≤ 7, Number of carbon atoms > 4, number of heteroatoms > 1, 

number of rotatable bonds ≤ 15, H-bond acceptor ≤ 10, H-

bond donor ≤ 5 respectively (Muegge et al., 2001). Abbott 

bioavailability score seeks to predicts the probability of a 

compound to have at least 10% oral bioavailability in rat or 

measurable Caco-2 permeability which predicts probability of 

a compound to have F>10% based on the predominant charge 

at biological pH in a rat model. It focusses on fast screening 

of chemical libraries to select best molecules to be 

synthesized (Martin, 2005) [56]. 

 

2.8 Medicinal chemistry 

The aim of these section is to bolster medicinal chemists in 

their daily drug discovery endeavours. PAINS (Pan Assay 

INterference compoundS or frequent hitters or promiscuous 

compounds) are the molecules which shows potent response 

in assays irrespective of the protein targets, notably such 

compounds are reported to be active in many different assays, 

which can be considered as potential starting points for 

further exploration. SwissADME returns warnings if such 

moieties are found in the molecule under evaluation (Baell & 

Holloway, 2010) [57]. In other model, Brenk considers 

compounds that are smaller and less hydrophobic and not 

those defined by “Lipinski’s rule of 5” to widen opportunities 

for lead optimization. This was after exclusion of compounds 

with potentially mutagenic, reactive and unfavorable groups 

such as nitro groups, sulfates, phosphates, 2-halopyridines and 

thiols. Brenk model restricts the ClogP/ClogD to between 0 

and 4, the number of hydrogen-bond donors and acceptors to 

fewer than 4 and 7, respectively, and the number of heavy 

atoms to between 10 and 27 respectively. Additionally, only 

compounds with limited complexity defined as fewer than 8 

rotatable bonds, fewer than 5 ring systems and no ring 

systems with more than 2 fused rings are considered

medicinal (Brenk et al., 2008) [58]. The concept of lead 

likeness designed to provide leads with tremendous affinity in 

high throughput screening (HTS) that avow for exploitation of 

additional interactions in the lead optimization phase. Leads 

are exposed to chemical modifications that will most likely 

decrease size and increase lipophilicity which is less 

hydrophobic than drug like molecules. Lead optimization has 

been done by rule based method consisting of molecules with 

molecular weight in between 100 and 350 Da, ClogP between 

1 and 3.0 and are greatly considered as superior to those of 

drug like compounds and therefore lead like (Hann & Keseru, 

2012 and Teague et al., 1999) [59, 60]. 

One of the fundamental aspect of CADD activity is to select 

the most promising virtual molecules submitting to biological 

assay. Synthetic accessibility (SA) estimation is based on 

fingerprint based approach which includes closed source 

information about fingerprint definition that prevents straight 

forward implementation open to scientific community. For a 

molecule to be drug like the SA Score should range from 1 

(very easy) to 10 (very difficult) based on 1024 fragmental 

contributions (FP2) modulated by size and complexity 

penalties, trained on 12’782’590 molecules and tested on 40 

external molecules (r2 = 0.94) (Ertl & Schuffenhauer, 2009) 
[61]. 

 

3. Results 

The structural features of phytoconstituents present in 

Ipomoea mauritiana were entering in SwissADME website 

(http://www.swissadme.ch) using ChemAxons Marvin JS 

structure drawing tool. The phytochemicals analyzed includes 

taraxerol, taraxerol acetate, beta-sitosterol, scopoletin, 

dodecanoic acid/ lauric acid, chloroacetic acid, 

tetradecanal/myristaldehyde, tetradecanoic acid/Myristic acid, 

hexanoic acid/Palmitic acid, octadec-1-ene, octadecan-1-ol, 

octadecanoic acid/stearic acid, octacosane, nonacosane, 

tetracosane for their ADME property.  

 

 
 

Fig 1: Good In vivo Drug absorption and Permeation Lipinski’s Rule 

of 5 

 
Table 1: United States Pharmacopeia-2007 and British 

Pharmacopeia-2009 Solubility Criteria (Savjani et al., 2012) 
 

Sl. No. Descriptive terms 
Parts of solvent required per 

parts of solute 

1 Very soluble Less than 1 

2 Freely soluble From 1 to 10 

3 Soluble From 10 to 30 

4 Sparingly soluble From 30 to 100 

5 Slightly soluble From 100 to 1000 

6 Very slightly soluble From 1000 to 10,000 

7 Practically insoluble 10,000 and over 

  

http://www.phytojournal.com/
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Table 2: General Characteristics of the Phytoconstituents of Ipomoea mauritiana 

 

Sl. No Small molecule Pubchem ID 
Molecular 

formula 
Canonical SMILES 

Molecular weight 

(g/mol or Da) 

1 Taraxerol 92097 C30H50O 
CC1(CCC2(CC=C3C4(CCC5C(C(CCC5(C4CCC3(C

2C1)C)C)O)(C)C)C)C)C 
426.7 

2 Taraxerol acetate 94225 C32H52O2 
CC(=O)OC1CCC2(C(C1(C)C)CCC3(C2CCC4(C3=C

CC5(C4CC(CC5)(C)C)C)C)C)C 
468.8 

3 Beta sitosterol 222284 C29H50O 
CCC(CCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(

C4)O)C)C)C(C)C 
414.7 

4 Scopoletin 5280460 C10H8O4 COC1=C(C=C2C(=C1)C=CC(=O)O2)O 192.17 

5 Dodecanoic acid/Lauric acid 3893 C12H24O2 CCCCCCCCCCCC(=O)O 200.32 

6 Chloroacetic acid 300 C2H3ClO2 C(C(=O)O)Cl 94.5 

7 Tetradecanal 31291 C14H28O CCCCCCCCCCCCCC=O 212.37 

8 Tetradecanoic acid/Myristic acid 11005 C14H28O2 CCCCCCCCCCCCCC(=O)O 228.37 

9 Hexanoic acid 8892 C6H12O2 CCCCCC(=O)O 116.16 

10 Octadec-1-ene 8217 C18H36 CCCCCCCCCCCCCCCCC=C 252.5 

11 Octadecan-1-ol/Stearyl alcohol 8221 C18H38O CCCCCCCCCCCCCCCCCCO 270.5 

12 Octadecanoic acid/Stearic acid 5281 C18H36O2 CCCCCCCCCCCCCCCCCC(=O)O 284.5 

13 Octacosoic acid/Montanic acid 10470 C28H56O2 CCCCCCCCCCCCCCCCCCCCCCCCCCCC(=O)O 424.7 

14 Nonacosane 12409 C29H60 CCCCCCCCCCCCCCCCCCCCCCCCCCCCC 408.8 

15 Tetracosane 12592 C24H50 CCCCCCCCCCCCCCCCCCCCCCCC 338.7 

 
Table 3: Physicochemical Properties the Phytoconstituents of Ipomoea mauritiana: 

 

Sl. 

No 
Small molecule 

Num. heavy 

atoms 

Num. arom. 

heavy atoms 

Fraction 

Csp3 

Num. rotatable 

bonds 

Num. H-bond 

acceptors 

Num. H-

bond donors 

Molar 

refractivity 

TPSA 

(0A2) 

1 Taraxerol 31 0 0.93 0 1 1 134.88 20.23 

2 Taraxerol acetate 34 0 0.91 2 2 0 144.62 26.30 

3 Sitosterol beta 30 0 0.93 6 1 1 133.23 20.23 

4 Scopoletin 14 10 0.10 1 4 1 51.00 59.67 

5 Dodecanoic acid/Lauric acid 14 0 0.92 10 2 1 61.57 37.30 

6 Chloroacetic acid 5 0 0.5 1 2 1 18.30 37.30 

7 Tetradecanal 15 0 0.93 12 1 0 69.61 17.07 

8 Tetradecanoic acid/Myristic acid 16 0 0.93 12 2 1 71.18 37.30 

9 Hexanoic acid 8 0 0.83 4 2 1 32.73 37.30 

10 Octadec-1-ene 18 0 0.89 15 0 0 88.17 0.00 

11 Octadecan-1-ol/Stearyl alcohol 19 0 1 16 1 1 89.90 20.23 

12 Octadecanoic acid/Stearic acid 20 0 0.94 16 2 1 90.41 37.30 

13 Octacosoic acid/Montanic acid 30 0 0.96 26 2 1 138.48 37.30 

14 Nonacosane 29 0 1 26 0 0 141.52 0.00 

15 Tetracosane 24 0 1 21 0 0 117.48 0.00 

Num.-number, arom.-aromatic, H-bond-hydrogen bond, TPSA-topological polar surface area 
 

Table 4: Lipophilicity characteristics of the Phytoconstituents of Ipomoea mauritiana 
 

Sl. No Small molecule iLOGP XLOGP3 WLOGP MLOGP SILICOS-IT Consensus Log Po/w 

1 Taraxerol 4.78 9.30 8.17 6.92 6.92 7.22 

2 Taraxerol acetate 5.21 9.88 8.74 7.08 7.42 7.67 

3 Beta sitosterol 4.79 9.34 8.02 6.73 7.04 7.19 

4 Scopoletin 1.86 1.53 1.51 0.76 1.94 1.52 

5 Dodecanoic acid/Lauric acid 2.70 4.20 3.99 3.15 3.50 3.51 

6 Chloroacetic acid 0.57 0.22 0.31 0.03 0.31 0.29 

7 Tetradecanal 3.63 5.97 4.89 3.80 5.08 4.67 

8 Tetradecanoic acid/Myristic acid 3.32 6.11 4.77 3.69 4.37 4.45 

9 Hexanoic acid 1.57 1.92 1.65 1.27 0.93 1.47 

10 Octadec-1-ene 5.05 10.03 7.04 6.77 7.09 7.20 

11 Octadecan-1-ol 4.86 8.20 6.24 4.93 6.54 6.15 

12 Octadecanoic acid 4.30 8.23 6.33 4.67 6.13 5.93 

13 Octacosoic acid/Montanic acid 6.69 13.62 10.23 6.81 10.54 9.58 

14 Nonacosane 7.79 15.32 11.56 9.25 11.97 11.18 

15 Tetracosane 6.52 12.62 9.61 8.25 9.76 9.35 

 
Table 5: Water Solubility characteristics of the Phytoconstituents of Ipomoea mauritiana: 

 

Sl. 

No 
Small Molecule 

ESOL Ali SILICOS- IT 

Log S 

(ESOL) 

Solubility 
Class 

Log S 

(Ali) 

Solubility 
Class 

Log S 

SILICOS-IT 

Solubility 
Class 

mg/ml mol/L mg/ml mol/L mg/ml mol/L 

1 Taraxerol -8.34 1.93e-06 4.52e-09 PS -9.63 1.01e-07 2.36e-10 PS -7.16 2.93e-05 6.85e-08 PS 

2 Taraxerol acetate -8.84 6.82-0e-07 1.45e-09 PS -10.36 207e-08 4.41e-11 I -7.77 7.89e-06 1.68e-08 PS 
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3 Sitosterol beta -7.90 5.23e-06 1.26e-08 PS -9.67 8.90e-08 2.15e-10 PS -6.19 2.69e-04 6.49e-07 PS 

4 Scopoletin -2.46 6.70e-01 3.48e-03 S -2.36 7.79e-01 4.06e-03 S -3.17 1.31e-01 6.81e-04 S 

5 Dodecanoic acid / Lauric acid -3.07 1.71e-01 8.55e-04 S -4.69 4.06e-03 2.03e-05 MS -3.69 4.05e-02 2.02e-04 S 

6 Chloroacetic acid -0.50 3.00e+01 3.17e-01 VS -0.56 3.00e+01 3.17e-01 VS -0.18 6.17e+01 6.53e-01 S 

7 Tetradecanal -4.13 1.59e-02 7.49e-05 MS -6.10 1.67e-04 7.86e-07 PS -5.08 1.77e-03 8.32e-06 MS 

8 Tetradecanoic acid / Myristic acid -4.31 1.11e-02 4.86e-05 MS -6.67 4.3e-05 2.11e-07 PS -4.51 7.12e-03 3.12e-05 MS 

9 Hexanoic acid -1.51 3.62e+00 3.12e-02 VS -2.33 5.47e-01 4.71e-03 S -1.21 7.23e+00 6.22e-02 S 

10 Octadec-1-ene -6.73 4.66e-05 1.84e-07 PS -9.96 2.77e-08 1.10e-10 PS -6.79 4.09e-05 1.62e-07 PS 

11 Octadecan-1-ol -5.36 6.38e-04 2.36e-06 MS -8.49 8.85e-07 3.27e-09 PS -6.57 7.21e-05 2.67e-07 PS 

12 Octadecanoic acid -5.73 5.26e-04 1.85e-06 MS -8.87 3.80e-07 1.33e-09 PS -6.11 2.19e-04 7.71e-07 PS 

13 Octacosoic acid / Montanic acid -9.34 1.95e-07 4.59e-10 PS -14.47 1.45e-12 3.40e-15 I -10.06 3.66e-08 8.61e-11 I 

14 Nonacosane -10.31 2.00e-08 4.90e-11 I -15.45 1.45e-13 3.56e-16 I -11.50 1.30e-09 3.18e-12 I 

15 Tetracosane -8.50 1.06e-06 3.13e-09 PS -12.65 7.63e-11 2.25e-13 I -9.53 1.01e-07 2.97e-10 PS 

I-Insoluble, PS- Poorly soluble, S- Soluble, MS- Moderately soluble, VS- Very soluble 

 
Table 6: Pharmacokinetics parameters of the phytoconstituents of Ipomoea mauritiana 

 

Sl No Small Molecule 
GI 

absorption 

BBB 

permeant 

P-gp 

substrate 

CYP1A2 

inhibitor 

CYP2C19 

inhibitor 

CYP2C9 

inhibitor 

CYP2D6 

inhibitor 

CYP3A4 

inhibitor 

Log Kp (Skin 

Permeation) (cm/s) 

1 Taraxerol Low No No No No No No No -2.30 

2 Taraxerol acetate Low No No No No No No No -2.14 

3 Sitosterol beta Low No No No No No No No -2.20 

4 Scopoletin High Yes No Yes No No No No -6.39 

5 Dodecanoic acid/Lauric acid High Yes No No No No No No -4.54 

6 Chloroacetic acid High No No No No No No No -6.72 

7 Tetradecanal High Yes No Yes No No No No -3.36 

8 Tetradecanoic acid/Myristic acid High Yes No Yes No No No No -3.35 

9 Hexanoic acid High Yes No No No No No No -5.65 

10 Octadec-1-ene Low No No Yes No No No No -0.72 

11 Octadecan-1-ol High No No Yes No No No No -2.13 

12 Octadecanoic acid High No No Yes No No No No -2.19 

13 Octacosoic acid/Montanic acid Low No Yes No No No No No 0.78 

14 Nonacosane Low No Yes No No No No No 2.08 

15 Tetracosane Low No Yes Yes No No No No 0.59 

 
Table 7: Druglikeness rule and Bioavailability score of the phytoconstituents of Ipomoea mauritiana: 

 

Sl 

No 
Small molecule Lipinski Ghose Veber Egan Muegge 

Bioavailabi

lity score 

1 Taraxerol 
Yes; 1 violation: 

MLOGP>4.15 

No; 3 violations: WLOGP> 

5.6, MR>130, #atoms>70 
Yes 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Heteroatoms<2 
0.55 

2 Taraxerol acetate 
Yes; 1 violation: 

MLOGP>4.15 

No; 3 violations: WLOGP> 

5.6, MR>130, #atoms>70 
Yes 

No; 1 violation: 

WLOGP>5.88 
No; 1 violation: XLOGP3>5 0.55 

3 Sitosterol beta 
Yes; 1 violation: 

MLOGP>4.15 

No; 3 violations: WLOGP> 

5.6, MR>130, #atoms>70 
Yes 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Heteroatoms<2 
0.55 

4 Scopoletin Yes; 0 violation Yes Yes Yes No; 1 violation: MW<200 0.55 

5 
Dodecanoic acid/Lauric 

acid 
Yes Yes Yes Yes Yes 0.56 

6 Chloroacetic acid Yes; 0 violation 
No; 3 violations: MW<160, 

MR<40, #atoms<20 
Yes Yes 

No; 2 violations: MW<200, 

#C<5 
0.56 

7 Tetradecanal Yes Yes 
No; 1 violation: 

Rotors>10 
Yes 

No; 2 violations: XLOGP3>5, 

Heteroatoms<2 
0.55 

8 
Tetradecanoic 

acid/Myristic acid 
Yes Yes 

No; 1 violation: 

Rotors>10 
Yes No; 1 violation: XLOGP3>5 0.56 

9 Hexanoic acid Yes 
No; 2 violations: MW<160, 

MR<40 
Yes Yes No; 1 violation: MW<200 0.56 

10 Octadec-1-ene 
Yes; 1 violation: 

MLOGP>4.15 
No; 1 violation: WLOGP>5.6 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Heteroatoms<2 
0.55 

11 Octadecan-1-ol 
Yes; 1 violation: 

MLOGP>4.15 
No; 1 violation: WLOGP>5.6 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 

No; 3 violations: XLOGP3> 

5, Heteroatoms<2, Rotors>15 
0.55 

12 Octadecanoic acid 
Yes; 1 violation: 

MLOGP>4.15 
No; 1 violation: WLOGP>5.6 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Rotors>15 
0.56 

13 
Octacosoic acid/Montanic 

acid 

Yes; 1 violation: 

MLOGP>4.15 

No; 3 violations: WLOGP> 

5.6, MR>130, #atoms>70 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Rotors>15 
0.56 

14 Nonacosane 
Yes; 1 violation: 

MLOGP>4.15 

No; 3 violations: WLOGP> 

5.6, MR>130, #atoms>70 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 

No; 3 violations: XLOGP3> 

5, Heteroatoms<2, Rotors>15 
0.55 

15 Tetracosane 
Yes; 1 violation: 

MLOGP>4.15 

No; 2 violations: 

WLOGP>5.6, #atoms>70 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 

No; 3 violations: XLOGP3> 

5, Heteroatoms<2, Rotors>15 
0.55 
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Table 8: Medicinal Chemistry properties of Ipomoea mautiana: 

 

Sl No Small molecule Pains Brenk Leadlikeness 
Synthetic 

accessibility 

1 Taraxerol 0 1 alert: isolated alkene No; 2 violations: MW>350, XLOGP3>3.5 6.04 

2 Taraxerol acetate 0 1 alert: isolated alkene No; 2 violations: MW>350, XLOGP3>3.5 5.98 

3 Sitosterol beta 0 1 alert: isolated alkene No; 2 violations: MW>350, XLOGP3>3.5 6.30 

4 Scopoletin 0 1 alert: cumarine No; 1 violation: MW<250 2.62 

5 Dodecanoic acid/Lauric acid 0 0 No; 3 violations: MW<250, Rotors>7, XLOGP3>3.5 1.87 

6 Chloroacetic acid 0 1 alert: alkyl halide No; 1 violation: MW<250 1.33 

7 Tetradecanal 0 1 alert: aldehyde No; 3 violations: MW<250, Rotors>7, XLOGP3>3.5 2.04 

8 Tetradecanoic acid / Myristic acid 0 0 No; 3 violations: MW<250, Rotors>7, XLOGP3>3.5 2.09 

9 Hexanoic acid 0 0 No; 1 violation: MW<250 1.17 

10 Octadec-1-ene 0 1 alert: isolated alkene No; 2 violations: Rotors>7, XLOGP3>3.5 2.82 

11 Octadecan-1-ol/Stearyl alcohol 0 0 No; 2 violations: Rotors>7, XLOGP3>3.5 2.52 

12 Octadecanoic acid/Stearic acid 0 0 No; 2 violations: Rotors>7, XLOGP3>3.5 2.54 

13 Octacosoic acid/Montanic acid 0 0 No; 3 violations: MW>350, Rotors>7, XLOGP3>3.5 3.73 

14 Nonacosane 0 0 No; 3 violations: MW>350, Rotors>7, XLOGP3>3.5 3.81 

15 Tetracosane 0 0 No; 2 violations: Rotors>7, XLOGP3>3.5 3.20 

C-Chloroacetic acid, S-Scopoletin, H-Hexanoic acid, D-Dodecanoic acid, TD-Tetradecanal, TDA-Tetradecanoic acid, ODA-Octadecanoic acid, 

O-1-ol-Octadecan-1-ol, O-1-ene-Octadec-1-ene, 

 
 

Fig 2: Schematic representation of perceptive evaluation of passive gastrointestinal absorption (HIA) and Brain penetration (BBB) with 

molecules in the WLOGP-versus-TPSA using BOILED-Egg. 
 

 
 

Fig 3: Schematic diagram of Bioavailability Radar for Drug likeness of a molecule (lipophilicity: XLOGP3 between-0.7 and+5.0, size: MW 

between 150 and 500 g/mol, polarity: TPSA between 20 and 130 A2, solubility: log S not higher than 6, saturation: fraction of carbons in the sp3 

hybridization not less than 0.25, and flexibility: no more than 9 rotatable bonds 
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Fig 4: Schematic diagram of Bioavailability Radar for Drug likeness of a molecule (lipophilicity: XLOGP3 between − 0.7 and + 5.0, size: MW 

between 150 and 500 g/mol, polarity: TPSA between 20 and 130 A2, solubility: log S not higher than 6, saturation: fraction of carbons in the sp3 

hybridization not less than 0.25, and flexibility: no more than 9 rotatable bonds) 

 

4. Discussion 

Ipomoea mauritiana Jacq. (Convolvulaceae) is a twinning 

perennial shrub with large tuberous root, widely distributed in 

the tropical parts of the world. The plants is commonly used 

to alleviate spinal cord injury, to manage tuberculosis, as 

aphrodisiac, used in biliary disorders (Jahan et al., 2013, 

Anzumi et al., 2014 and Ranjith & Viswanath, 2019) [62, 63, 17]. 

The reported phytoconstituents of Ipomoea mauritiana viz. 

Taraxerol, Taraxerol acetate, Sitosterol beta, Scopoletin, 

Dodecanoic acid/Lauric acid, Chloroacetic acid, Tetradecanal, 

Tetradecanoic acid/Myristic acid, Hexanoic acid, Octadec-1-

ene, Octadecan-1-ol/Stearyl alcohol, Octadecanoic acid/ 

Stearic acid, Octacosoic acid/Montanic acid, Nonacosane and 

Tetracosane respectively (Aparna et al., 2012 and Ranjith & 

Viswanath, 2019) [64, 17].  

Modern drug discovery involves assessment of competence of 

the dynamic molecules and their strength to reach target site 

in bioactive form, which involves cellular, animal and human 

clinical trials which are highly priced and encumbered with 

risks (Ndombera et al., 2019 and Ranjith & Viswanath, 2019) 
[24, 17]. Presently computer aided drug development 

encouraged the estimate of absorption, distribution, 

metabolism and excretion of drugs (ADME), they postulate 

anticipatory and dependable data very quickly and 

compliment for experimental approaches (Sliwoski et al., 

2014 and Ndombera et al., 2019) [65, 24]. It has been 

determined that the initial appraisal of ADME properties in 

the discovery period diminishes remarkably the fraction of 

pharmacokinetics related failures in the clinical phase 

(Ndombera et al., 2019 and Hay et al., 2014) [24, 66].  

In the present study we evaluated the ADME properties of the 

potent phytochemicals of Ipomoea mauritiana using Swiss 

ADME web tool, which is freely available at 

http://www.swissadme.ch and easy analysis of results, also for 

non- expert in CADD (Daina et al., 2017) [29]. A total of 15 

potent phytoconstituents of Ipomoea mauritiana were 

analyzed using Swiss ADME web tool to study general 

characteristics (Table 2), Physicochemical properties (Table 

3), lipophilicity and water solubility characteristics (Table 4 

& 5), pharmacokinetic parameters (Table 6), drug likeness 

rule and bioavailability score (Table 7) and medicinal 

chemistry properties (Table 8), BOILED-Egg representation 

for evaluation of passive gastrointestinal absorption and brain 

penetration (Figure 2) and bioavailability radar for drug 

likeness of compounds of Ipomoea mauritiana (Figure 3) 

respectively.  

General characteristics of the phytoconstituents of Ipomoea 

mauritiana revealed all the compounds having molecular 

weight less than 500 Da, which is a prime property to be 

called as drug likeness of the small molecules. The 

lipophilicity property of the compounds portray an important 

role for molecular discovery activities in multifarious 

domains (Plika et al., 1996) [67]. The quantitative descriptor of 

the lipophilicity is the partition coefficient P of a given 

molecule between n-octanol and water system (Daina et al., 

2014)[68]. Because of its amphiphilic nature, n-octanol is 

considered a good mimic of phospholipid membrane 

characteristics (Liu et al., 2010) [69]. Multifarious algorithms 

are accessible to compute log Po/w, which rely on factual 

methodologies. The classic log P predictors branched in to 

two division, first ones splits molecular structures in to 

molecular fragments includes fragmental approach eg. 

KLOGP (Klopman et al., 1994) [70], KOWWNIN (Meylan & 

Howard, 2000) [71] or atomic approach eg. ALOGP (Ghose & 

Crippen, 1986 and Ghose et al., 1998) [72, 73], XLOGP (Wang 

et al., 1997, Cheng et al., 2007) [74, 75]. The second division 

gathers the topological methods in which, the molecules 

description is related to its topology being as count or flags 

for specific atoms, groups or structural properties eg. MLOGP 

(Moriguchi et al., 1992 and Moriguchi et al., 1994), the 

prediction attained by manifold linear regression trained on 

large molecular data sets. The SILICOS-IT is a hybrid 

technique which combines both molecular fragments and 

topological parameters, which confide on 27 fragments and 7 

topological descriptors, it was disciplined on 23,455 

molecules with experimental n-octanol/water partition values 

(Daina et al., 2014). The version three of the XLOGP atomic 

model is established on a system of 87 fragments and two 

corrective factors. If the input structures is similar to a 

reference compounds, the fragments differentiating them are 

treated and the corresponding log P contributions added to the 

reference structure log P value (Cheng et al., 2007). 

http://www.phytojournal.com/


 

~ 2071 ~ 

Journal of Pharmacognosy and Phytochemistry http://www.phytojournal.com 
Lipophilicity estimated as consensus Log P, which is the 

average value of all Log P evaluated with various lipophilicity 

criteria, determined nonacosane as most lipophilic whereas 

chloroacetic acid as least lipophilic and water solubility of the 

small molecules ranged from highly water soluble 

(chloroacetic acid) to least water soluble or insoluble 

(nonacosane) respectively.  

The pharmacokinetics and drug likeness performed using 

SwissADME showed a high level of GI absorption with 

scopoletin, dodecanoic acid, chloroacetic acid, tetradecanal, 

tetradecanoic acid, hexanoic acid, octadecan 1 ol, 

octadecanoic acid and high BBB permeant with scopoletin, 

dodecanoic acid, tetradecanal, tetradecanoic acid and 

hexanoic acid respectively. Most of the compounds present in 

Ipomoea mauritiana are not the substrates for P-gp except.  

The Swiss ADME model returns “Yes” or “No” if the 

compound under examination has greater probability to be a 

substrate or non-substrate of P-gp or inhibitor or non-inhibitor 

of Cytochrome P 450 isoenzymes (CYP1A2, CYP2c9, 

CYP2C19, CYP2D6 and CYP3A4). Octacosoic acid, 

nonacosane and tetracosane returned “Yes” for P-gp substrate 

and remaining all small molecules as “No” for P-gp substrate 

(Table 6). Almost all of the small molecules returned as non-

inhibitors for inactivation for CYP isoenzymes except for 

scopoletin, tetradecanal, tetradecanoic acid, octadecan 1 ol, 

octadecanoic acid and tetracosane for CYP1A2. The skin 

permeability coefficient (Log Kp), a multiple linear regression 

(Potts and Guy, 1992), the more negative the log Kp (with Kp 

in cm/s), the less skin permeant is the molecule. Among the 

phytoconstituents of the Ipomoea mauritiana chloroacetic acid 

(-6.72) is the least permeant compound and nonacosane (2.08) 

is highly permeant respectively. 

This SwissADME section gives access to five different rule-

based filters, with diverse ranges of properties inside of which 

the molecule is defined as drug-like. The Lipinski (Pfizer) 

filter is the pioneer rule-of-five implemented and with the 

Ghose (Amgen), Veber (GSK), Egan (Pharmacia) and 

Muegge (Bayer) methods. Multiple estimations allow 

consensus views or selection of methods best fitting the end-

user’s specific needs in terms of chemical space or project-

related demands. Any violation of any rule described here 

appears explicitly in the output panel. All the compounds of 

Ipomoea mauritiana expressed and followed the filtered rule 

invoked in the SwissADME, the violation shown by the 

molecules are minimal. SwissADME interpretation did not 

posts any PAINS alert of any of the molecules. Brenk 

considered compounds that are smaller and less hydrophobic 

and not those defined by “Lipinski’s rule of 5” to widen 

opportunities for lead optimization This was after exclusion of 

compounds with potentially mutagenic, reactive and 

unfavorable groups such as nitro groups, sulfates, phosphates, 

2-halopyridines and thiols. (Brenk et al., 2008). Among the 

compounds examined, seven molecules flouted brenks rule, 

remaining all followed and almost all the compounds failed 

Leadlikeness criteria respectively.  

The boiled egg allows to evaluate passive gastrointestinal 

absorption (HIA) and brain penetration (BBB), the white 

region is for high probability for passive absorption by GIT 

and the yellow region (yolk) is for high probability of brain 

penetration. In addition the points are coloured in blue, if 

predicted as actively effluxes by P-gp (PGP+) and in red if 

predicted as non-substrate of P-gp (PGP-). In the present study 

prediction, nine molecules out of 15 are within the prediction 

site, among them TD (Tetradecanal), TDA (Tetradecanoic 

acid), D (Dodecanoic acid), H (Hexanoic acid) and S 

(Scopoletin) are within yolk (high brain penetration) of the 

BOILED-Egg and O-1-ol (Octadecan-1-ol), ODA 

(Octadecanoic acid) and C (Chloroacetic acid) are in white of 

the BOILED-Egg (high passive absorption of GIT) 

respectively. All the molecules are depicted as red indicating 

non-substrate of P-gp. The Bioavailability Radar enables a 

first glance at the drug-likeness of a molecule. The pink area 

represents the optimal range for each properties 

 

5. Conclusion 

The small molecules originating from plants which impede 

altered metabolism emerge as potential therapeutic agents in 

drug discovery and development. In the present study, we 

used SwissADME web tool to evaluate hit molecule present 

in Ipomoea mauritiana Jacq. From these study the ADME 

property of the herb is disclosed for researcher, which can be 

used as appropriate tool for further identification of their in 

vitro and in vivo therapeutic potentials.  
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