

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(6): 430-433 Received: 13-09-2019 Accepted: 15-10-2019

VD Vora

Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

KK Kanzaria

Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

PD Vekaria

Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

DS Hirpara

Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

SC Sagar

Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

VL Modhavadiya

Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

Corresponding Author: VD Vora Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

Effect of nutrient management on yield of Bt cotton under rainfed condition in North Saurashtra agro climatic zone

VD Vora, KK Kanzaria, PD Vekaria, DS Hirpara, SC Sagar and VL Modhavadiya

Abstract

The field experiment carried out to study the effect of nutrient management on seed cotton yield of Bt. Cotton and economics under rainfed condition at Dry Farming Research Station, Junagadh Agricultural University, Jamkhambhalia, Gujarat during Kharif 2011-12 to 2015-16. The experiment was laid out in randomized block design with 9 different treatments comprising of T₁ - 80 kg N/ha, T₂ - 80 kg N/ha + 20 kg P₂O₅/ha + 40 kg K₂O/ha + 20 kg S/ha, T₃ - 80 kg N/ha + 20 kg P₂O₅/ha + 40 kg K₂O/ha + 40 kg S/ha, $T_4 - 80 \text{ kg N/ha} + 20 \text{ kg P}_2O_5/ha + 80 \text{ kg K}_2O/ha + 20 \text{ kg S/ha}, T_5 - 80 \text{ kg N/ha} + 20 \text{ kg P}_2O_5/ha + 80 \text{ kg N/ha} + 20 \text{ kg P}_2O_5/ha + 80 \text{ kg N/ha} + 20 \text{ kg$ K2O/ha + 40 kg S/ha, T6 - 80 kg N/ha + 40 kg P2O5/ha + 40 kg K2O/ha + 20 kg S/ha, T7 - 80 kg N/ha + 40 kg P₂O₅/ha + 40 kg K₂O/ha + 40 kg S/ha, T₈ - 80 kg N/ha + 40 kg P₂O₅/ha + 80 kg K₂O/ha + 20 kg S/ha, T9 - 80 kg N/ha + 40 kg P2O5/ha + 80 kg K2O/ha + 40 kg S/ha, replicated thrice. On the basis of pooled results, maximum values of all the attributes like plant height, number of branches per plant and number of bolls per plant of cotton crop were recorded with treatment T₉ (80-40-80-40 NPKS kg/ha). The significantly higher seed cotton yield (1798 kg/ha) and stalk yield (3536 kg/ha) of cotton were recorded under treatment T9 (80 kg N/ha + 40 kg P₂O₅/ha + 80 kg K₂O/ha + 40 kg S/ha) in pooled results. Whereas, lower seed cotton yield (1452 kg/ha) and stalk yield (2569 kg/ha) of cotton were recorded under T₁ (80 kg N/ha). The highest total income (Rs. 80905/ha) was also obtained with application of 80-40-80-40 NPKS kg/ha (T₉). The pH, EC and organic carbon content of soil were remain unaffected due to different treatments. Significantly higher values of available status of phosphorus, potassium and sulphur in soil were recorded with treatment T9 (80-40-80-40 NPKS kg/ha).

Keywords: Bt cotton, nitrogen, phosphorus, potassium, sulphur, seed cotton yield, stalk yield

Introduction

Cotton (Gossypium hirsuum), the white gold, is one of the most important commercial and industrial crop. Cotton 'the king of apparel fibers' is an important cash crop and it supplies a major share of raw material for the textile industry and playing a key role in the economic and social affairs of the world (Anonymous, 2010; Hosamani et al., 2013)^[2, 5]. It is grown chiefly for its fiber which is used in the manufacture of cloths, making of threads and extraction of oil from cotton seed (Deshmukh et al., 2013)^[3]. The cotton (Gossypium hirsutum L.), an important fiber crop, is grown throughout India under both rainfed and irrigated conditions on an area of 9.5 million ha (Mayee et al., 2008; Yang et al., 2014)^[7, 13]. India ranks first in area and production is far below the world average of over 600 kg ha (Gadhiya *et al.*, 2009)^[4]. The cultivation of cotton is increasing day by day in North Saurashtra Agro-climatic Zone due to change in rainfall pattern, sustained price at higher level, demand for export and introduction of pest resistant variety. Nitrogen, phosphorus and potassium are primary element to increase of agricultural crop production. Among these, nitrogen is one of the decisive as well as expensive inputs, which has quickest and most pronounced effect on plant growth. As a constituent of protoplasm, it is intimately involved in the process of photosynthesis and ultimately, in the dry matter production. At present acute problems of reddening of cotton are observed due to lack of proper nutrient management practice (Das et al., 2004)^[2]. Keeping in view, the experiment was planned to study the effect of nutrient management in Bt cotton under rain fed condition, at Dry Farming Research Station, Junagadh Agricultural University, Jamkhambhalia, Gujarat.

Materials and Methods

A field experiment was conducted during *Kharif* 2011-12 to 2015-16 at Dry Farming Research Station, Junagadh Agricultural University, Jamkhambhalia under North Saurashtra Agroclimatic Zone. The soil of the experimental field was medium black having good drainage

and high moisture retentive capacity. Some important characteristics of the soil were pH 8.30, EC 0.35 dSm⁻¹, Organic carbon 0.41 per cent, available N, P2O5, K2O and S were 230.3, 28.6, and 336 kg ha⁻¹ and 17.8 ppm, respectively and micronutrient Fe, Mn and Zn were 10.19, 12.84 and 0.66 ppm, respectively. The experiment comprised total 9 treatments i.e. T₁ - 80 kg N/ha, T₂ - 80 kg N/ha + 20 kg P₂O₅/ha + 40 kg K₂O/ha + 20 kg S/ha, T₃ - 80 kg N/ha + 20 kg P₂O₅/ha + 40 kg K₂O/ha + 40 kg S/ha, T₄ - 80 kg N/ha + $20 \text{ kg P}_2\text{O}_5/\text{ha} + 80 \text{ kg K}_2\text{O}/\text{ha} + 20 \text{ kg S}/\text{ha}, \text{T}_5\text{-} 80 \text{ kg N}/\text{ha} +$ $20 \text{ kg } P_2O_5/ha + 80 \text{ kg } K_2O/ha + 40 \text{ kg } S/ha$, T₆ - 80 kg N/ha + 40 kg P₂O₅/ha + 40 kg K₂O/ha + 20 kg S/ha, T₇ - 80 kg N/ha + 40 kg P₂O₅/ha + 40 kg K₂O/ha + 40 kg S/ha, T₈ - 80 kg N/ha + 40 kg P₂O₅/ha + 80 kg K₂O/ha + 20 kg S/ha, T₉ -80 kg N/ha + 40 kg P₂O₅/ha + 80 kg K₂O/ha + 40 kg S/ha in randomized block design, replicated thrice. Bt cotton variety BG-II G.Cot. Hy. 8 was sown, the 80 kg nitrogen/ha was applied in three splits i.e. 25% as basal, 50% as top dressing at 35-40 days and 25% as top dressing at 60-65 days and all the agronomic practices were adopted as per need of the crop. The growth and yield parameters, seed cotton and stalk yield of cotton were recorded. After harvest of crop soil samples were collected and analyzed for EC, pH, OC, available NPK status in soil using standard methods (Jackson, 1973)^[6].

Results and Discussion

Yield attributes

The result presented in table 1 regarding yield attributes i.e. plant height, number of branches per plant and number of bolls per plant of cotton crop were significantly affected due to different nutritional treatments during all the years of experimentation and in pooled results also. On the basis of pooled results, maximum values of all the yield attributing characters were recorded with treatment T₉ (80-40-80-40 NPKS kg/ha). This might be due to application of NPKS fertilizers at higher dose which required for the plant. Similar results were also observed by Gadhiya *et al.*, (2009) ^[10] and Vora *et al.*, (2015) ^[12].

Yield

The result presented in table 2 revealed that seed cotton yield of Bt. cotton was significantly affected due to different nutritional treatments during all the years of experimentation and in pooled results also. On the basis of pooled results, maximum seed cotton yield (1798 kg/ha) was recorded with T_9 (80-40-80-40 NPKS kg/ha) which was significantly higher than treatment T_1 (80 kg N/ha) & T_6 (80-40-40-20 NPKS kg/ha) and statistically at par with rest of all the treatments. The minimum seed cotton yield (1452 kg/ha) was recorded under recommended dose of fertilizer i.e. 80 kg N/ha (T_1). Thus, the result clearly indicated that combine application of NPKS at higher dose resulted in increase yield. The results are in concurrence with those reported by Gadhiya *et al.*, (2009) ^[4], Megha *et al.*, (2009) and Sakarvadia *et al.*, (2009) ^[10].

The result presented in table 3 revealed that stalks yield of cotton was significantly affected due to different nutritional treatments during 2011-12, 2012-13, 2014-15 and 2015-16 and in pooled results. On the basis of pooled results, significantly higher stalks yield (3536 kg/ha) of cotton was recorded with T₉ (80-40-80-40 NPKS kg/ha) over treatments T₁, to T₄ and T₆ and statistically at par with treatments T₅ (80-20-80-40 NPKS kg/ha) and T₇ (80 kg N/ha + 40 kg P₂O₅/ha + 40 kg K₂O/ha + 40 kg S/ha). The increase in cotton stalk yield with N, P, K and S fertilization was ascribed to their impact on plant height and also on branching as supported by Gadhiya *et al.*, (2009)^[4] and Sakarvadia *et al.*, (2009)^[10].

Post-harvest soil fertility

The data given in table 4 revealed that pH, EC and organic carbon content of soil were remain unaffected due to different treatments. However, higher value of organic carbon content (0.471%) was recorded due to higher levels of fertilizer i.e. T₉. Available status of phosphorus, potassium and sulphur in soil was significantly affected due to different treatments and maximum values were observed with T₉ (80-40-80-40 NPKS kg/ha). The minimum values for availability of all the nutrients were found under recommended dose of fertilizer i.e. 80 kg N/ha (T₁). The result is similar to Ravi kiran and Halepyati (2013)^[9], Sujatha and Vijayalakshmi (2013)^[11] and Vora *et al.*, (2015)^[12].

In case of micronutrients, the status of Fe, Zn and Mn in the soil was significantly affected due to different treatments. Maximum status of Fe (14.34 ppm) and Zn (0.77 ppm) in the soil were recorded under T_5 (80-20-80-40 NPKS kg/ha) and that of Mn with T_9 (Table 5).

Economics

The data pertaining to economics of various nutrient management treatments (table 6) revealed that highest total income (Rs. 80905/ha) was obtained when cotton crop was fertilized with 80-40-80-40 NPKS kg/ha (T₉). However, higher net realization (Rs. 52091/ha) and cost benefit ratio (1.94) was obtained with treatment T₂ (80-20-40-20 NPKS kg/ha).

Conclusion

The application of NPKS @ 80-40-80-40 kg/ha resulted in significantly higher seed cotton and stalk yield.

	Treatment	Plant height, cm	Number of branches/plant	Number of bolls/plant	
T_1	80 kg N/ha	86.6	13.13	26.75	
T_2	80-20-40-20 NPKS kg/ha	88.9	13.56	31.60	
T ₃	80-20-40-40 NPKS kg/ha	91.0	14.66	29.44	
T ₄	80-20-80-20 NPKS kg/ha	88.2	14.52	30.69	
T ₅	80-20-80-40 NPKS kg/ha	92.3	15.32	32.32	
T_6	80-40-40-20 NPKS kg/ha	91.8	15.18	27.97	
T 7	80-40-40-40 NPKS kg/ha	92.3	15.98	32.44	
T ₈	80-40-80-20 NPKS kg/ha	90.1	15.07	29.39	
T9	80-40-80-40 NPKS kg/ha	97.5	16.59	33.21	
	S.Em.±	2.7	0.70	2.1	
C.D. at 5%		7.9	2.04	6.1	
C.V. %		4.1	18.41	17.7	

Table 1: Effect of nutrient management on yield attributes of Bt cotton

Y						
S.Em.±	1.8	0.47	1.4			
C.D. at 5%	5.3	1.36	4.1			
YXT						
S.Em.±	2.2	1.58	3.1			
C.D. at 5%	6.1	4.47	8.8			

Table 2: Effect of nutrient management on seed cotton yield of Bt cotton

Treatment		Seed Cotton yield, kg/ha				
		2011-12	2013-14	2014-15	Pooled	
T ₁	80 kgN/ha	898	1742	1715	1452	
T ₂	80-20-40-20 NPKS kg/ha	1129	2030	2091	1754	
T ₃	80-20-40-40 NPKS kg/ha	1207	2003	2051	1751	
T4	80-20-80-20 NPKS kg/ha	1138	1948	2030	1705	
T ₅	80-20-80-40 NPKS kg/ha	1148	2085	2058	1763	
T ₆	80-40-40-20 NPKS kg/ha	1175	1852	2016	1676	
T ₇	80-40-40 NPKS kg/ha	1161	2099	2044	1759	
T8	80-40-80-20 NPKS kg/ha	1124	1989	1975	1696	
T9	80-40-80-40 NPKS kg/ha	1224	2058	2112	1798	
	S.Em.±	54	72	74	40	
	C.D.at 5%	162	217	221	113	
	CV%	10.17	9.41	11.28	6.99	
		Year	YxT			
	S.Em.±	23	69			
	C.D. at 5%	65	NS			

Table 3: Effect of nutrient management on stalks yield of Bt cotton

Treatment		Stalks yield, kg/ha					
		2011-12	2013-14	2014-15	2015-16	Pooled	
T ₁	80 kg N/ha	2126	3278	3073	1797	2569	
T ₂	80-20-40-20 NPKS kg/ha	2195	3923	3717	2277	3028	
T ₃	80-20-40-40 NPKS kg/ha	2291	3937	4184	2154	3141	
T ₄	80-20-80-20 NPKS kg/ha	2318	3937	3045	2565	2966	
T ₅	80-20-80-40 NPKS kg/ha	2401	4321	3813	2689	3306	
T ₆	80-40-40-20 NPKS kg/ha	2292	4047	3525	2840	3176	
T7	80-40-40-40 NPKS kg/ha	2401	4321	3923	2963	3402	
T8	80-40-80-20 NPKS kg/ha	2428	3896	3402	2551	3069	
T9	80-40-80-40 NPKS kg/ha	2840	4252	4239	2812	3536	
	S.Em.±	122	245	190	119	115	
C.D.at 5%		366	NS	569	357	337	
	CV%	10.87	14.63	12.01	11.06	11.65	
		Year	YxT				
S.Em.±		77	177				
	C.D. at 5%	225	500				

Table 4: Effect of different treatments on post harvest soil fertility (At harvest 2015-16)

	Treatment	pН	EC (dS/m)	Org. C. (%)	Avail. P2O5 (kg/ha)	Avail. K ₂ O (kg/ha)	Avail. S ppm
	Initial	8.30	0.35	0.411	28.6	366	17.8
T_1	80 kg N/ha	8.29	0.39	0.416	27.79	360	16.7
$T_{2} \\$	80-20-40-20 NPKS kg/ha	8.23	0.35	0.428	35.66	381	21.2
$T_{3} \\$	80-20-40-40 NPKS kg/ha	8.20	0.33	0.432	36.83	388	23.6
T_4	80-20-80-20 NPKS kg/ha	8.24	0.34	0.434	38.70	429	25.0
T_5	80-20-80-40 NPKS kg/ha	8.22	0.33	0.441	41.16	431	27.2
$T_{6} \\$	80-40-40-20 NPKS kg/ha	8.25	0.35	0.447	44.96	411	25.8
T_7	80-40-40-40 NPKS kg/ha	8.20	0.36	0.452	47.79	420	28.9
T_8	80-40-80-20 NPKS kg/ha	8.26	0.38	0.468	49.76	452	26.4
T 9	80-40-80-40 NPKS kg/ha	8.24	0.36	0.471	52.17	459	30.1
	S.Em.±	0.06	0.02	0.02	2.14	11.04	1.6
	C.D.at 5%	NS	NS	NS	6.43	33.11	4.7
	CV%	1.32	8.60	6.69	8.92	4.61	10.87

Treatment		DTPA Extractable Micronutrient, ppm				
		Fe	Zn	Mn		
	Initial	10.19	0.66	12.84		
T_1	80 kg N/ha	9.73	0.61	12.47		
T ₂	80-20-40-20 NPKS kg/ha	12.59	0.68	13.24		
T ₃	80-20-40-40 NPKS kg/ha	13.38	0.72	13.58		
T 4	80-20-80-20 NPKS kg/ha	13.93	0.75	14.15		
T ₅	80-20-80-40 NPKS kg/ha	14.34	0.77	14.64		
T_6	80-40-40-20 NPKS kg/ha	11.86	0.54	15.44		
T ₇	80-40-40 NPKS kg/ha	12.24	0.55	16.63		
T ₈	80-40-80-20 NPKS kg/ha	12.87	0.58	17.62		
T 9	80-40-80-40 NPKS kg/ha	13.69	0.62	17.95		
	S.Em.±	0.68	0.03	1.17		
	C.D.at 5%	2.05	0.10	3.50		
	CV%	9.29	9.04	13.39		

Table 6: Effect of nutrient management on monetary returns

Treatment	Pooled seed cotton yield (kg/ha)	Gross monetary return (Rs/ha)	Cost of cultivation (Rs/ha)	Net monetary return (Rs/ha)	B:C Ratio
T1-80 Kg N/ha	1452	65329	23266	42063	1.81
T2-80-20-40-20 NPKS kg/ha	1754	78909	26818	52091	1.94
T ₃ -80-20-40-40 NPKS kg/ha	1751	78773	26967	51806	1.92
T ₄ -80-20-80-20 NPKS kg/ha	1705	76736	27818	48918	1.76
T ₅ -80-20-80-40 NPKS kg/ha	1763	79354	28247	51107	1.81
T ₆ -80-40-40-20 NPKS kg/ha	1676	75437	27742	47695	1.72
T ₇ -80-40-40-40 NPKS kg/ha	1759	79141	28200	50941	1.81
T ₈ -80-40-80-20 NPKS kg/ha	1696	76325	28767	47558	1.65
T9-80-40-80-40 NPKS kg/ha	1798	80905	29340	51565	1.76

References

- 1. Anonymous, Annual report. All India Coordinated Cotton Improvement Project. 2010,
- 2. Das A, Prasad M, Shivay YS, Subha KM. Productivity and sustainability of cotton (*Gossypium hirsutum* L.) wheat (*Triticum aestivum* L.) cropping system as influenced by prilled urea, farmyard manure and Azotobacter. J Agron. Crop Sci. 2004; 190:298-304.
- Deshmukh MS, Patil VD, Jadhav AS, Gadade GD, Dhamak AL. Assessment of soil quality parameters and yield of rainfed Bt. Cotton as influenced by application of herbicides in Vertisols. Int. J Agric. Sci. 2013; 3:553-557.
- 4. Gadhiya SS, Patel BB, Jadav NJ, Pavaya RP, Patel MV, Patel VR. Effect of different levels of nitrogen, phosphorus and potassium on growth, yield and quality of Bt cotton. Asian J Soil Sci., 2009; 4:37-42.
- Hosamani V, Halepyati AS, Shashikumar M, Santhosh UN, Nataraja M, Manu TG. Quality, uptake of nutrients and economics of irrigated Bt cotton (*Gossypium hirsutum* L.) as influenced by macro nutrients and liquid fertilizers. Global J Biol. Agric. Health Sci. 2013; 2:29-32.
- 6. Jackson ML. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi, 1973.
- 7. Mayee CD, Monga D, Dhillon SS, Nehra PL, Pundhir P. Cotton-wheat production system in South Asia: A success story. Asia-Pacific Association of Agricultural Research Institutions, Bangkok, 2008, 1-48.
- Megha S, Khambalkar VV, Gabhane, Shilpa V, Khambalkar. Studies on Effect of Integrated Nutrient Management on Productivity of Cotton in Rainfed Condition. International Journal of Current Microbiology and Applied Sciences. 2017; 6(8):3639-3641.
- 9. Ravikiran S, Halepyati AS. Yield and yield components, quality parameters, uptake of nutrients and economics of Bt cotton as influenced by macro and soluble

micronutrients under irrigation. Crop Research. 2013; 45(1&2):253-258.

- 10. Sakarvadia HL, Polara KB, Parmar KB, Babariya, N.B and Kunjadia, B.B. Effect of potassium and zinc on growth, yield, quality parameters and nutrient uptake by cotton. Asian j of. Soil. Sci. 2009; 4(1):24-26.
- 11. Sujatha T, Vijayalakshmi K. Soil Fertility status of Bt cotton Cultivated fields and other Soils of Khammam region in relation with available macro, micro nutrients and Microbial count. IOSR Journal of Environmental Science, Toxicology and Food Technology. 2013; 6(1):13-18.
- Vora VD, Rakholiya KD, Rupapara KV, Sutaria GS, Akbari KN. Effect of Integrated Nutrient Management on Bt Cotton and Post-Harvest Soil Fertility under Dry Farming Agriculture. Asian Journal of Agricultural Research. 2015; 1819-1894.
- 13. Yang F, Du M, Tian X, Eneji AE, Duan L, Li Z. Plant growth regulation enhanced potassium uptake and use efficiency in cotton. Field Crop. Res., 2014; 163:109-118.