

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(6): 538-542 Received: 04-09-2019 Accepted: 06-10-2019

Krishnaveni M

PG Scholar, Department of Agricultural Entomology, Agricultural College and Research Institute, TNAU, Killikulam, Vallanadu, Thoothukudi, Tamil Nadu, India

Ravi M

Assistant Professors, Department of Agricultural Entomology, Agricultural College and Research Institute, TNAU, Killikulam, Vallanadu, Thoothukudi, Tamil Nadu, India

Allwin L

Assistant Professors, Department of Agricultural Entomology, Agricultural College and Research Institute, TNAU, Killikulam, Vallanadu, Thoothukudi, Tamil Nadu, India

Sabarinathan KG

Assistant Professor, Department of Plant Pathology, Agricultural College and Research Institute, TNAU, Killikulam, Vallanadu, Thoothukudi, Tamil Nadu, India

Corresponding Author: Ravi M Assistant Professors, Department of Agricultural Entomology, Agricultural College and Research Institute, TNAU, Killikulam, Vallanadu, Thoothukudi, Tamil Nadu, India

Effect of organic amendments on the incidence of major pests of ash gourd, *Benincasa hispida* Thunb

Krishnaveni M, Ravi M, Allwin L and Sabarinathan KG

Abstract

Field experiments were conducted to study the effect of organic amendments on the incidence of major pests of ash gourd, *Benincasa hispida* Thunb. in Agricultural College and Research Institute farm, Killikulam, Vallanadu, Thoothukudi during Rabi 2018 and Summer 2019. The results revealed that among the six organic amendments, Poultry manure @ 5.0 t/ha recorded the lowest incidence of pests viz., *Myzus persicae* Sulzer, *Liriomyza trifolli* Burgess, *Aulocophora foveicollis* Lucas and *Diaphania indica* Saunders in both the seasons followed by Farm Yard Manure @ 12.5 t/ha. Biochemical analysis of plants showed that total phenol content in leaves was higher in poultry manure applied plants compared to other organic amendments and untreated plants.

Keywords: Ash gourd, insect pests, organic amendments

Introduction

Ash gourd, *Benincasa hispida* Thunb is one of the most important vegetable crops being cultivated throughout the humid tropical and sub tropical climates. (Tindall, 1986) ^[17]. The immature fruits are used as vegetable and mature fruits are used for preparing candy, sweets and some ayurvedic medicines also. It is a good source of Vitamin B1 (thiamine), Vitamin B3 (niacin), Vitamin C and also rich in calcium and potassium. Ash gourd possess many medicinal properties such as muscle relaxant, antidepressant, antioxidant, anti-inflammatory, antiasthmatic, diuretic, nephroprotective, antidiabetic and antimicrobial effects (Al-Snafi, 2013)^[1].

In India, the production of ash gourd is hampered by many insect pests and non-insect pests. The major sucking pests are aphids (*Aphis gossypii* Glover and *Myzus persicae* Sulzer), whitefly (*Bemisia tabaci* Gennadius), leafhopper (*Amrasca devastans* Distant) and thrips (*Scirtothrips dorsalis* Hood) (Tamilnayagan *et al.*, 2017)^[15]. Serpentine leaf miner (*Liriomyza trifolii* Burgess), Pumpkin caterpillar (*Diaphania indica* Saunders), Red pumpkin beetle (*Aulacophora foveicollis* Lucas) and Melon fruit fly (*Bactrocera cucurbitae* Coquillett) are the common and serious pests of ash gourd and cause severe yield loss (Atwal, 1993; Dhillon *et al.*, 2005; Tamilnayagan *et al.*, 2017)^[3, 8, 16]. In Tamilnadu, ash gourd was cultivated in an area of 441 hectares with a production of 8901.28 tonnes and productivity of 20.18 tonnes per hectare during 2016-17 (DES, 2019). Due to its medicinal purpose the area under ash gourd cultivation is increasing year after year.

Ash gourd growers mainly rely on synthetic chemical pesticides for managing the pests and indiscriminate usage of chemical insecticides disturbs the ecosystem and leaves harmful pesticide residues which cause health concerns in consumers (Azmi *et al.*, 2006)^[4].

Plants supplied with organic amendments are resistant to insect pests and diseases than the plants supplied with inorganic fertilizers (Patriquin *et al.*, 1995)^[11]. Since the ash gourd is consumed for its medicinal properties, avoiding the usage of chemical pesticides assumes significance. Hence the present study was undertaken to study the effect of organic amendments on the incidence of major pests of ash gourd.

Materials and methods

The field experiments were laid out in a randomized block design with six treatments and four replications in Agricultural College and Research Institute farm, Killikulam, Thoothukudi during Rabi 2018 (Nov 2018 – Feb 2019) and Summer 2019 (Mar 2019 – June 2019) seasons to study the effect of organic amendments on the incidence of major pests of ash gourd. The recommended doses of organic amendments were applied during last ploughing and ridges and furrows (2 m × 60 cm) were formed.

Ash gourd F_1 hybrid MAH 1 was sown on both the sides of the ridges at 45 cm spacing. The incidence of major pests *viz.*, aphid (*M. persicae*), serpentine leaf miner (*L. trifolii*), red pumpkin beetle (*A. foveicollis*) and pumpkin caterpillar (*D. indica*) were recorded starting from 3 weeks after sowing (WAS) till 10 WAS at weekly intervals on five randomly selected plants. The incidence of insect pests is expressed as number of insects per five plants and leaf damage by *L. trifolii* is expressed as per cent leaf damage per five plants.

Biochemical analysis

The total phenolic content in the leaf extracts of all the treatments was determined using Folin-Ciocalteu reagent (Singleton and Rossi, 1965)^[14]. Catechol was used as a reference standard for plotting the calibration curve. Leaves were collected separately from randomly selected five plants in all treatment plots and weighed to1.0 g. The leaves were cut into small pieces and kept at hot water bath for 10 min along with 5 ml of 80 % ethanol. Then leaf bits were macerated with another 5 ml of 80 % ethanol and the content was centrifuged at 5000 rpm for 10 min. The supernatant was collected and made up to 25 ml using distilled water. One ml of aliquot was taken in a test tube and 2 ml of 20 % sodium carbonate and 1 ml of Folin-Ciocalteu reagent were added. The absorbance of the resulting blue color was measured at 660 nm in scanning UV-VIS spectrophotometer (Elico® SL 159). The total phenolic content is expressed as mg/g of leaves (Damodar et al., 2011)^[6].

Statistical analysis

The data obtained from the field experiments were analyzed using AGRES ver. (7.01). The data in numbers were subjected to square root transformation and the data in percentage were subjected to arcsine transformation (Gomez and Gomez, 1984)^[9].

Results and discussion Incidence of aphid, *M. persicae*

The observations made on the incidence of *M. persicae* on ash

gourd showed that the population was lower in poultry manure @ 5.0 t/ha applied plots *i.e.*, 4.50, 3.50, 6.00, 7.75, 5.50, 0.50, 1.75 and 1.25 per five plants during Rabi 2018 and 0.25, 1.75, 6.75, 575, 5.25, 7.00, 6.25 and 3.00 per five plants during Summer 2019 from 3 WAS to 10 WAS respectively. Farm Yard Manure @ 12.5 t/ha applied plots also recorded low population during both the seasons (Table 1 and 5).

Serpentine leaf miner, L. trifolii

The percent leaf damage caused by *L. trifolii* was recorded as 0.00, 1.16, 0.96, 2.83, 3.01, 4.12, 4.81 and 7.04 per five plants during 3 WAS to 10 WAS respectively in Poultry manure @ 5.0 t/ha applied plots. Application of Farm Yard Manure @ 12.5 t/ha, Goat manure @ 5.0 t/ha, Vermicompost @ 2.5 t/ha and Neem cake @ 500 kg/ha also recorded low incidence of *L. trifolii* in comparison with untreated check during Rabi 2018 (Table 2). Similar trend was observed during Summer 2019, where the percent leaf damage recorded in Poultry manure @ 5.0 t/ha applied plots was 8.86, 10.66, 3.08, 2.09, 1.24, 2.57, 1.81 and 1.83 per five plants during 3 WAS to 10 WAS respectively (Table 6).

Red Pumpkin beetle, A. foveicollis

During Rabi 2018, Poultry manure @ 5.0 t/ha applied plots significantly reduced the incidence of *A. foveicollis* and

recorded no incidence during 3 WAS, 7 WAS and 9 WAS. Farm Yard Manure @ 12.5 t/ha, Goat manure @ 5.0 t/ha, Vermicompost @ 2.5 t/ha and Neem cake @ 500 kg/ha applied plots also recorded less incidence in comparison with untreated check plot (Table 3). During Summer 2019, the red pumpkin beetle incidence was not there in any of the experimental plots.

Pumpkin caterpillar, D. indica

During Rabi 2018, the incidence of *D. indica* was lowest in the plots applied with Poultry manure @ 5.0 t/ha *i.e.*, 0.25 and 0.75larvae per five plants during 3 and 4 WAS respectively and there was no incidence afterwards till the harvest. However, the incidence of *D. indica* was recorded in the untreated check plots till the harvest (Table 4). During Summer 2019, the pumpkin caterpillar incidence was not there in any of the experimental plots.

Phenol content of leaves

The total phenol content of the leaves showed significant variation among the organic amendments applied plants and untreated plants. Among the organic amendments, the total phenol content was on the highest in poultry manure applied plants (3.70 and 3.71 mg/g) in both the seasons followed by Farm Yard Manure @ 12.5 t/ha (2.64 and 2.63 mg/g), Goat manure @ 5.0 t/ha (2.15 and 2.13 mg/g), Vermicompost @ 2.5 t/ha (1.94 and 1.96 mg/g) and Neem cake @ 500 kg/ha (1.41 and 1.42 mg/g). The phenol content was low in untreated plants (1.14 and 1.12 mg/g) during both the seasons (Table 7).

Yield

The plots applied with the Poultry manure @ 5.0 t/ha recorded the highest yield (35.93 and 35.50 t/ha) followed by Farm Yard Manure @ 12.5 t/ha (31.48 and 30.98 t/ha). All other organic amendments also recoded higher yield in comparison with the untreated check (22.46 and 22.56 t/ha) in both the seasons (Table 7). The results of the present study revealed that the incidence of insect pests on ash gourd was significantly lower in all the organic amendments applied plots when compared to the untreated check plot. Earlier studies proved that plants supplied with organic amendments are resistant to insect pests (Patriquin et al., 1995 and Arancon et al., 2005) [11, 2]. During both the seasons, application of organic manures increased the total phenolics in the leaves of ash gourd (Table 7). The phenols are secondary phytochemicals which confer resistance against the herbivores (Boeckler et al., 2011)^[5]. The increased phenol content in leaves might have reduced the incidence of insect pests. Similar report on sunflower was made by Ravi et al. (2006)^[13] where application of organic manures reduced the incidence of early season sucking pests by increasing level of the secondary compounds viz., phenols, peroxidase and polyphenol oxidase. The increased activities of these enzymes in a plant are considered as resistant state of the plant to the insect pests (Wei *et al.*, 2007; Ramirez *et al.*, 2009 and Gulsen *et al.*, 2010) ^[18, 12, 10]. The present study and earlier reports are evident that application of organic amendments helps the plants to produce biochemicals which confer resistance against insect pests. Hence, organic amendments could be used as a viable tool to reduce the incidence of insect pests on crops.

Table 1: Effect of organic amendments o	n the incidence of a	phid, M.	persicae during Rabi 2018

Treatments	Number of aphids/5plants*								
1 reatments	3 WAS	4 WAS	5 WAS	6 WAS	7 WAS	8 WAS	9 WAS	10 WAS	
The Farm Yard Manure @ 12.5 t/ha	7.00	7.50	10.75	9.50	9.75	3.25	4.50	2.75	
Failli Taiu Malule @ 12.5 //la	$(2.56)^{a}$	$(2.80)^{ab}$	(3.29) ^{ab}	(3.08) ^{ab}	(3.15) ^{ab}	(1.92) ^b	(2.14) ^{ab}	(1.69) ^{ab}	
Goat manure @ 5.0 t/ha		13.75	13.25	13.25	15.00	4.75	5.75	4.50	
12 Goat manure @ 5.0 //na	(3.44) ^{ab}	$(3.59)^{bc}$	(3.68) ^{ab}	(3.56) ^{abc}	(3.74) ^{ab}	(2.27) ^b	$(2.46)^{bc}$	$(2.16)^{bc}$	
Poultry manure @ 5.0 t/ha	4.50	3.50	6.00	7.75	5.50	0.50	1.75	1.25	
Foundy manufe @ 5.0 t/ma	$(2.07)^{a}$	$(1.87)^{a}$	$(2.14)^{a}$	(2.59) ^a	$(2.26)^{a}$	$(0.93)^{a}$	$(1.42)^{a}$	$(1.27)^{a}$	
Γ4 Vermicompost @ 2.5 t/ha	18.25	19.00	16.00	20.25	16.25	5.00	7.75	5.00	
	$(4.29)^{bc}$	(4.27) ^b	$(3.95)^{bc}$	$(4.52)^{bcd}$	(3.93) ^{ab}	(2.27) ^b	$(2.79)^{bc}$	$(2.30)^{bcd}$	
Naam aaka @ 500 ka/ha	20.75	21.25	23.50	22.50	20.75	5.75	9.00	7.00	
Neem cake @ 500 kg/na	$(4.45)^{bc}$	(4.62) ^c	$(4.86)^{bc}$	(4.74) ^{cd}	$(4.60)^{bc}$	(2.26) ^b	(3.05) ^{bc}	(2.72) ^{cd}	
Untrasted sheak	26.75	24.75	30.75	30.25	32.75	11.00	10.25	8.75	
Untreated check	(5.20) ^c	(4.91) ^c	(5.46) ^c	(5.51) ^d	(5.69) ^c	(3.35) ^c	(3.26) ^c	(3.01) ^d	
	TreatmentsTreatmentsFarm Yard Manure @ 12.5 t/haGoat manure @ 5.0 t/haPoultry manure @ 5.0 t/haVermicompost @ 2.5 t/haNeem cake @ 500 kg/haUntreated check	3 WAS Farm Yard Manure @ 12.5 t/ha 7.00 (2.56) ^a Goat manure @ 5.0 t/ha 11.75 (3.44) ^{ab} Poultry manure @ 5.0 t/ha 4.50 (2.07) ^a Vermicompost @ 2.5 t/ha 18.25 (4.29) ^{bc} Neem cake @ 500 kg/ha 20.75 (4.45) ^{bc} Untreated check 26.75	3 WAS 4 WAS Farm Yard Manure @ 12.5 t/ha 7.00 (2.56) ^a 7.50 (2.80) ^{ab} Goat manure @ 5.0 t/ha 11.75 (3.44) ^{ab} 13.75 (3.59) ^{bc} Poultry manure @ 5.0 t/ha 4.50 (2.07) ^a 3.50 (2.07) ^a Vermicompost @ 2.5 t/ha 18.25 (4.29) ^{bc} 19.00 (4.27) ^b Neem cake @ 500 kg/ha 20.75 (4.45) ^{bc} 21.25 (4.62) ^c Lintreated check 26.75 24.75	Treatments 3 WAS 4 WAS 5 WAS Farm Yard Manure @ 12.5 t/ha 7.00 7.50 10.75 Goat manure @ 5.0 t/ha 11.75 13.75 13.25 Poultry manure @ 5.0 t/ha 4.50 3.50 6.00 Vermicompost @ 2.5 t/ha 18.25 19.00 16.00 Vermicompost @ 2.5 t/ha 20.75 21.25 23.50 Neem cake @ 500 kg/ha 20.75 21.25 23.50 Untreated check 26.75 24.75 30.75	Treatments3 WAS4 WAS5 WAS6 WASFarm Yard Manure @ 12.5 t/ha 7.00 (2.56)a 7.50 (2.80)ab 10.75 (3.29)ab 9.50 (3.08)abGoat manure @ 5.0 t/ha 11.75 (3.44)ab 13.75 (3.59)bc 13.25 (3.68)ab 13.25 (3.56)abcPoultry manure @ 5.0 t/ha 4.50 (2.07)a 3.50 (1.87)a 6.00 (2.14)a 7.75 (2.59)aVermicompost @ 2.5 t/ha 18.25 (4.29)bc 19.00 (4.27)b 16.00 (3.95)bc 20.25 (4.52)bcdNeem cake @ 500 kg/ha 20.75 (4.45)bc 21.25 (4.62)c 23.50 (4.86)bc 22.50 (4.74)cdUntreated check 26.75 (4.62)c 24.75 (3.075 30.25	Treatments3 WAS4 WAS5 WAS6 WAS7 WASFarm Yard Manure @ 12.5 t/ha 7.00 7.50 10.75 9.50 9.75 $(2.56)^a$ $(2.80)^{ab}$ $(3.29)^{ab}$ $(3.08)^{ab}$ $(3.15)^{ab}$ Goat manure @ 5.0 t/ha 11.75 13.75 13.25 13.25 15.00 Poultry manure @ 5.0 t/ha 4.50 3.50 6.00 7.75 5.50 $(2.07)^a$ $(1.87)^a$ $(2.14)^a$ $(2.59)^a$ $(2.26)^a$ Vermicompost @ 2.5 t/ha 18.25 19.00 16.00 20.25 16.25 Neem cake @ 500 kg/ha 20.75 21.25 23.50 22.50 20.75 Untreated check 26.75 24.75 30.75 30.25 32.75	Treatments3 WAS4 WAS5 WAS6 WAS7 WAS8 WASFarm Yard Manure @ 12.5 t/ha 7.00 (2.56)^a 7.50 (2.80)^{ab} 10.75 (3.29)^{ab} 9.75 (3.08)^{ab} 3.25 (3.15)^{ab}Goat manure @ 5.0 t/ha 11.75 (3.44)^{ab} 13.75 (3.59)^{bc} 13.25 (3.68)^{ab} 13.25 (3.56)^{abc} 15.00 (3.74)^{ab}Poultry manure @ 5.0 t/ha 4.50 (2.07)^a 3.50 (1.87)^a 6.00 (2.14)^a 7.75 (2.26)^a 5.50 (0.93)^aVermicompost @ 2.5 t/ha 18.25 (4.29)^b 19.00 (4.27)^b 16.00 (3.95)^{bc} 22.50 (4.52)^{bd} 20.75 (3.93)^{ab}Neem cake @ 500 kg/ha 20.75 (4.45)^{bc} 21.25 (4.62)^c 23.50 (4.86)^{bc} 22.75 (4.60)^{bc}Untreated check 26.75 (4.62)^c 24.75 (4.86)^{bc} 30.25 (4.74)^{cd} 32.75 (4.60)^{bc}	Treatments3 WAS4 WAS5 WAS6 WAS7 WAS8 WAS9 WASFarm Yard Manure @ 12.5 t/ha 7.00 (2.56)a 7.50 (2.80)ab 10.75 (3.29)ab 9.50 (3.08)ab 9.75 (3.15)ab 3.25 (1.92)b 4.50 (2.14)abGoat manure @ 5.0 t/ha 11.75 (3.44)ab 13.75 (3.59)bc 13.25 (3.68)ab 13.25 (3.56)abc 15.00 (3.74)ab 4.75 (2.27)b 5.75 (2.46)bcPoultry manure @ 5.0 t/ha 4.50 (2.07)a 3.50 (1.87)a 6.00 (2.14)a 7.75 (2.26)a 5.00 (0.93)a 1.75 (1.42)aVermicompost @ 2.5 t/ha 18.25 (4.29)bc 19.00 (4.45)bc 16.00 (3.95)bc 20.75 (3.95)bc 21.50 (3.93)ab $(2.27)b$ (2.27)b $(2.79)bc$ (2.79)bcNeem cake @ 500 kg/ha 20.75 (4.45)bc 21.25 (4.62)c 23.50 (4.86)bc 22.75 (4.74)cd 21.20 b (4.60)bc $(2.25)b$ (3.05)bcUntreated check 26.75 (24.75 30.75 (30.75 30.25 (3.25 32.75 (11.00 10.25	

WAS – Weeks After Sowing

*Mean of four replications.

Figures in parentheses are $\sqrt{x + 0.5}$ transformed values.

In a column, means followed by common letters are not significantly different by LSD (P=0.05).

Table 2: Effect of organic amendments on the incidence of serpentine leaf miner, L. trifolii during Rabi 2018
--

S. No.	Treatments			Per	cent leaf da	mage/5pla	nts*		
5. NO.	vo. I reatments		4 WAS	5 WAS	6 WAS	7 WAS	8 WAS	9 WAS	10 WAS
Т1	Farm Yard Manure @ 12.5 t/ha	1.22	3.92	2.21	4.22	4.55	8.17	8.91	10.96
11	Farm Fard Manure @ 12.5 tha	(3.19) ^a	$(7.55)^{a}$	(7.38) ^{ab}	(10.15) ^{ab}	(12.11) ^{ab}	(16.10) ^{ab}	(16.86) ^{ab}	$(16.83)^{a}$
тэ	T2 Goat manure @ 5.0 t/ha	1.70	4.18	3.54	6.09	6.82	9.33	10.48	14.78
12		(5.30) ^{ab}	$(10.18)^{a}$	(8.87) ^{ab}	(12.23) ^{ab}	(15.07) ^{bc}	(17.70) ^{bc}	(18.70) ^b	(22.51) ^{ab}
Т3	T3 Poultry manure @ 5.0 t/ha	0.00	1.16	0.96	2.83	3.01	4.12	4.81	7.04
15 PC	Foundy manufe @ 5.0 ma	$(0.00)^{a}$	$(3.11)^{a}$	$(2.83)^{a}$	$(6.88)^{a}$	$(8.52)^{a}$	$(11.41)^{a}$	$(12.22)^{a}$	$(14.95)^{a}$
Т4	Varmiaarnaat @ 2.5 t/ha	2.41	6.64	4.40	7.74	7.01	10.64	10.72	15.91
14	Vermicompost @ 2.5 t/ha	(6.21) ^{ab}	(12.39) ^{ab}	(10.28) ^{ab}	(13.90) ^{abc}	(15.28) ^{bc}	(18.74) ^{bc}	(18.88) ^b	(22.94) ^{ab}
Т5	Neem cake @ 500 kg/ha	4.75	12.90	6.83	11.32	7.09	12.21	13.26	18.75
15	Neem cake @ 500 kg/na	(12.35) ^{bc}	(20.92) ^{bc}	(14.86) ^{bc}	(19.53) ^{ab}	(15.23) ^{bc}	(20.15) ^{bc}	(20.97) ^b	(25.55) ^b
т	Untrasted sheek	10.49	17.56	11.97	15.96	11.03	14.69	15.27	19.48
T6	Untreated check	(18.80) ^c	(24.67) ^c	(20.02) ^c	(23.40) ^c	(18.87) ^c	(22.49) ^c	(22.67) ^b	(25.86) ^b

WAS – Weeks After Sowing

*Mean of four replications.

Figures in parentheses are arc-sine transformed values.

In a column, means followed by common letters are not significantly different by LSD (P=0.05).

S. No.	Treatments	Number of beetles/5plants*								
5. INO.	Treatments	3 WAS	4 WAS	5 WAS	6 WAS	7 WAS	8 WAS	9 WAS		
T1 Farm Yard	Farm Yard Manure @ 12.5 t/ha	0.25	0.50	0.75	0.75	0.50	0.50	0.25		
11	Farm Fard Manure @ 12.5 tha	$(0.84)^{a}$	$(0.93)^{a}$	$(1.10)^{ab}$	$(1.06)^{a}$	(0.93) ^{ab}	$(0.97)^{a}$	$(0.84)^{ab}$		
Т2	2 Goat manure @ 5.0 t/ha		0.75	1.25	1.00	0.75	0.75	0.75		
12	12 Obat manufe @ 5.0 tha	$(0.97)^{a}$	$(1.10)^{ab}$	$(1.31)^{bc}$	$(1.18)^{a}$	(1.06) ^{ab}	(1.06) ^{ab}	(1.06) ^{abc}		
т2	T3 Poultry manure @ 5.0 t/ha	0.00	0.25	0.25	0.50	0.00	0.25	0.00		
15	Poultry manufe @ 5.0 /ma	$(0.71)^{a}$	$(0.84)^{a}$	$(0.84)^{a}$	$(0.97)^{a}$	(0.71) ^a	$(0.84)^{a}$	(0.71) ^a		
T4	Varminamenat @ 2.5 t/ha	0.75	1.00	1.50	1.25	1.00	1.00	1.25		
14	Vermicompost @ 2.5 t/ha	(1.06) ^{ab}	$(1.18)^{ab}$	$(1.40)^{bc}$	$(1.27)^{a}$	$(1.18)^{abc}$	$(1.18)^{abc}$	(1.26) ^{bcd}		
Τ5	Neem cake @ 500 kg/ha	1.50	1.50	1.75	2.75	1.25	2.00	1.50		
T5		$(1.40)^{bc}$	$(1.40)^{bc}$	$(1.49)^{bc}$	(1.79) ^b	(1.27) ^{bc}	(1.56) ^{bc}	(1.40) ^{cd}		
ΤC	I laterate dath call	2.00	2.25	2.50	3.50	2.25	2.50	2.00		
T6	Untreated check	(1.56) ^c	(1.64) ^c	(1.70) ^c	(1.98) ^b	(1.64) ^c	(1.70) ^c	$(1.56)^{d}$		

WAS - Weeks After Sowing

*Mean of four replications.

Figures in parentheses are $\sqrt{x + 0.5}$ transformed values.

In a column, means followed by common letters are not significantly different by LSD (P=0.05).

Table 4: Effect of organic amendments on the incidence of pumpkin caterpillar, D. indica during Rabi 2018

S. No.	Treatments	Number of larvae/5plants*								
5. INO.		3 WAS	4 WAS	5 WAS	6 WAS	7 WAS	8 WAS	9 WAS		
T1	Farm Yard Manure @ 12.5 t/ha	1.00	2.25	0.50	0.25	0.25	0.25	0.00		
11	Farm Farm Farm Manure @ 12.5 //na	(1.13) ^{ab}	(1.63) ^{ab}	(0.97) ^{ab}	$(0.84)^{a}$	$(0.84)^{a}$	(0.84) ^{ab}	$(0.71)^{a}$		
Т2	2. Goat manure @ 5.0 t/ha	1.25	2.75	0.75	0.50	0.25	0.50	0.25		
12		(1.26) ^{bc}	(1.76) ^{ab}	$(1.10)^{bc}$	(0.93) ^{ab}	$(0.84)^{a}$	(0.97) ^{ab}	$(0.84)^{ab}$		
T3	Poultry manure @ 5.0 t/ha	0.25	0.75	0.00	0.00	0.00	0.00	0.00		

		$(0.84)^{a}$	$(1.10)^{a}$	$(0.71)^{a}$	$(0.71)^{a}$	$(0.71)^{a}$	$(0.71)^{a}$	$(0.71)^{a}$
T4	Vermicompost @ 2.5 t/ha	1.75 (1.48) ^{bcd}	3.25 (1.90) ^b	1.00 (1.18) ^{bc}	1.00 (1.22) ^{bc}	0.75 (1.06) ^{ab}	0.75 (1.10) ^{ab}	0.50 (0.97) ^{ab}
T5	Neem cake @ 500 kg/ha	2.75 (1.79) ^{cd}	4.50 (2.22) ^{bc}	1.25 (1.31) ^c	2.00 (1.56) ^{cd}	1.75 (1.48) ^{bc}	1.25 (1.27) ^{bc}	1.00 (1.18) ^{bc}
Т6	Untreated check	3.75 (2.03) ^d	7.25 (2.74) ^c	3.25 (1.92) ^d	3.00 (1.86) ^d	2.25 (1.61) ^c	2.00 (1.56) ^c	1.75 (1.48) ^c

WAS – Weeks After Sowing

*Mean of four replications.

Figures in parentheses are $\sqrt{x + 0.5}$ transformed values.

In a column, means followed by common letters are not significantly different by LSD (P=0.05).

Table 5: Effect of organic an	mendments on the incidence	e of aphid, M.	persicae during Summer 20	019

S. No.	Treatments			ľ	Number of a	phids/5plant	s*		
5. NO.	Treatments	3 WAS	4 WAS	5 WAS	6 WAS	7 WAS	8 WAS	9 WAS	10 WAS
T1	Farm Yard Manure	3.00	9.25	12.00	14.75	15.50	11.50	8.75	8.25
11	@ 12.5 t/ha	$(1.71)^{a}$	(2.89) ^{ab}	(3.49) ^{ab}	(3.83) ^{ab}	(4.00) ^{ab}	(3.41) ^{ab}	$(3.03)^{a}$	(2.93) ^b
T2	Goat manure @ 5.0	1.50	14.00	23.00	28.75	23.50	19.50	12.25	17.50
12	t/ha	$(1.28)^{a}$	(3.77) ^{bc}	(4.70) ^b	(5.34) ^{bc}	(4.83) ^b	(4.45) ^b	$(3.49)^{a}$	(4.19) ^{cd}
Т3	Poultry manure @	0.25	1.75	6.75	5.75	5.25	7.00	6.25	3.00
13	5.0 t/ha	$(0.84)^{a}$	$(1.42)^{a}$	$(2.64)^{a}$	$(2.45)^{a}$	$(2.29)^{a}$	(2.63) ^a	$(2.56)^{a}$	(1.72) ^a
T4	Vermicompost @	12.00	28.00	48.50	50.25	65.25	24.50 (4.98) ^b	24.50	15.75
14	2.5 t/ha	(3.44) ^b	(5.30) ^{cd}	(6.99) ^c	(6.98) ^{cd}	(7.96) ^c	24.30 (4.98)	(4.98) ^b	(4.01) ^c
T5	Neem cake @ 500	12.25	37.75	39.50	52.25	88.25	82.25	34.50	25.50
15	kg/ha	(3.31) ^b	(5.90) ^{de}	(6.20) ^c	(7.15) ^{cd}	(9.41) ^c	(8.99) ^c	(5.90) ^b	(5.08) ^d
T6	Untreated check	19.75	54.50	95.75	74.50	161.25	193.75	81.75	43.00
10	Uniteated check	(4.36) ^b	(7.21) ^e	(9.80) ^d	$(8.60)^{d}$	(12.38) ^d	(13.71) ^d	(9.01) ^c	(6.56) ^e

WAS - Weeks After Sowing

*Mean of four replications.

Figures in parentheses are $\sqrt{x + 0.5}$ transformed values.

In a column, means followed by common letters are not significantly different by LSD (P=0.05).

Table 6: Effect of organic amendments on the incidence of serpentine leaf miner, L. trifolii during Summer 2019

Treatments			Per o	ent leaf dam	age/5plants*	:		
Treatments	3 WAS	4 WAS	5 WAS	6 WAS	7 WAS	8 WAS	9 WAS	10 WAS
Farm Yard Manure @	11.92	16.12	7.00	3.95	3.08	3.87	3.20	3.16
12.5 t/ha	(20.17) ^{ab}	(23.58) ^{ab}	(4.01) ^{ab}	(11.17) ^{ab}	(9.99) ^{ab}	(11.23) ^a	(9.79) ^a	(9.93) ^a
Goat manure @ 5.0	15.01	20.35	7.51	5.45	6.25	6.41	8.89	10.20
t/ha	(22.57) ^{bc}	(26.64) ^{bc}	(4.31) ^{ab}	(13.36) ^b	(14.33) ^{bc}	(14.61) ^a	(16.74) ^b	(18.59) ^b
Poultry manure @ 5.0	8.86	10.66	3.08	2.09	1.24	2.57	1.81	1.83
t/ha	(17.12) ^a	(18.71) ^a	$(1.76)^{a}$	$(8.14)^{a}$	(9.15) ^a	(9.15) ^a	$(7.68)^{a}$	(7.78) ^a
Vermicompost @ 2.5	22.26	23.93	11.68	9.37	11.62	16.03	17.29	13.34
t/ha	(28.00) ^d	(29.25) ^{cd}	(6.71) ^{bc}	(17.79) ^c	(19.92) ^{cd}	(23.48) ^b	(24.51) ^c	(21.39) ^c
Neem cake @ 500	20.94	27.55	19.54	12.71	12.62	16.48	24.69	24.35
kg/ha	(27.14) ^{cd}	(31.61) ^d	(11.27) ^c	(20.86) ^c	(20.71) ^{cd}	(22.52) ^b	(29.56) ^d	(29.52) ^d
Untracted aback	27.13	38.00	37.57	22.58	21.66	29.78	27.90	39.67
Untreated check	(31.19) ^d	(38.05) ^e	(22.07) ^d	(28.06) ^d	(32.76) ^d	(32.76) ^c	(31.86) ^d	(39.03) ^d
	12.5 t/ha Goat manure @ 5.0 t/ha Poultry manure @ 5.0 t/ha Vermicompost @ 2.5 t/ha Neem cake @ 500	3 WAS Farm Yard Manure @ 11.92 12.5 t/ha $(20.17)^{ab}$ Goat manure @ 5.0 15.01 t/ha $(22.57)^{bc}$ Poultry manure @ 5.0 8.86 t/ha $(17.12)^a$ Vermicompost @ 2.5 22.26 t/ha $(28.00)^d$ Neem cake @ 500 20.94 kg/ha $(27.13)^{cd}$	3 WAS 4 WAS Farm Yard Manure @ 11.92 16.12 12.5 t/ha $(20.17)^{ab}$ $(23.58)^{ab}$ Goat manure @ 5.0 15.01 20.35 t/ha $(22.57)^{bc}$ $(26.64)^{bc}$ Poultry manure @ 5.0 8.86 10.66 t/ha $(17.12)^a$ $(18.71)^a$ Vermicompost @ 2.5 22.26 23.93 t/ha $(28.00)^d$ $(29.25)^{cd}$ Neem cake @ 500 20.94 27.55 kg/ha $(27.14)^{cd}$ $(31.61)^d$ Untreated check 27.13 38.00	Treatments3 WAS4 WAS5 WASFarm Yard Manure @11.9216.127.0012.5 t/ha $(20.17)^{ab}$ $(23.58)^{ab}$ $(4.01)^{ab}$ Goat manure @ 5.015.0120.357.51t/ha $(22.57)^{bc}$ $(26.64)^{bc}$ $(4.31)^{ab}$ Poultry manure @ 5.08.8610.663.08t/ha $(17.12)^a$ $(18.71)^a$ $(1.76)^a$ Vermicompost @ 2.522.2623.9311.68t/ha $(28.00)^d$ $(29.25)^{cd}$ $(6.71)^{bc}$ Neem cake @ 50020.9427.5519.54kg/ha $(27.14)^{cd}$ $(31.61)^d$ $(11.27)^c$ Untreated check 27.13 38.0037.57	3 WAS4 WAS5 WAS6 WAS Farm Yard Manure @11.9216.127.00 3.95 12.5 t/ha $(20.17)^{ab}$ $(23.58)^{ab}$ $(4.01)^{ab}$ $(11.17)^{ab}$ Goat manure @ 5.015.01 20.35 7.51 5.45 t/ha $(22.57)^{bc}$ $(26.64)^{bc}$ $(4.31)^{ab}$ $(13.36)^{b}$ Poultry manure @ 5.08.8610.66 3.08 2.09 t/ha $(17.12)^a$ $(18.71)^a$ $(1.76)^a$ $(8.14)^a$ Vermicompost @ 2.5 22.26 23.93 11.68 9.37 t/ha $(28.00)^d$ $(29.25)^{cd}$ $(6.71)^{bc}$ $(17.79)^c$ Neem cake @ 500 20.94 27.55 19.54 12.71 kg/ha $(27.14)^{cd}$ $(31.61)^d$ $(11.27)^c$ $(20.86)^c$	Treatments3 WAS4 WAS5 WAS6 WAS7 WAS Farm Yard Manure @11.9216.127.00 3.95 3.08 12.5 t/ha(20.17) ^{ab} (23.58) ^{ab} (4.01) ^{ab} (11.17) ^{ab} (9.99) ^{ab} Goat manure @ 5.015.0120.357.51 5.45 6.25 t/ha(22.57) ^{bc} (26.64) ^{bc} (4.31) ^{ab} (13.36) ^b (14.33) ^{bc} Poultry manure @ 5.08.8610.66 3.08 2.09 1.24 t/ha(17.12) ^a (18.71) ^a (1.76) ^a (8.14) ^a (9.15) ^a Vernicompost @ 2.522.2623.9311.689.3711.62t/ha(28.00) ^d (29.25) ^{cd} (6.71) ^{bc} (17.79) ^c (19.92) ^{cd} Neem cake @ 50020.9427.5519.5412.7112.62kg/ha(27.14) ^{cd} (31.61) ^d (11.27) ^c (20.86) ^c (20.71) ^{cd} Untreated check27.1338.0037.5722.5821.66	3 WAS4 WAS5 WAS6 WAS7 WAS8 WASFarm Yard Manure @11.9216.127.003.953.083.8712.5 t/ha $(20.17)^{ab}$ $(23.58)^{ab}$ $(4.01)^{ab}$ $(11.17)^{ab}$ $(9.99)^{ab}$ $(11.23)^{a}$ Goat manure @ 5.015.0120.357.515.456.256.41t/ha $(22.57)^{bc}$ $(26.64)^{bc}$ $(4.31)^{ab}$ $(13.36)^{b}$ $(14.33)^{bc}$ $(14.61)^{a}$ Poultry manure @ 5.08.8610.663.082.091.242.57t/ha $(17.12)^{a}$ $(18.71)^{a}$ $(1.76)^{a}$ $(8.14)^{a}$ $(9.15)^{a}$ $(9.15)^{a}$ Vermicompost @ 2.522.2623.9311.689.3711.6216.03t/ha $(28.00)^{d}$ $(29.25)^{cd}$ $(6.71)^{bc}$ $(17.79)^{c}$ $(19.92)^{cd}$ $(23.48)^{b}$ Neem cake @ 50020.9427.5519.5412.7112.6216.48kg/ha $(27.14)^{cd}$ $(31.61)^{d}$ $(11.27)^{c}$ $(20.86)^{c}$ $(20.71)^{cd}$ $(22.52)^{b}$	Treatments3 WAS4 WAS5 WAS6 WAS7 WAS8 WAS9 WASFarm Yard Manure @11.9216.127.00 3.95 3.08 3.87 3.20 12.5 t/ha $(20.17)^{ab}$ $(23.58)^{ab}$ $(4.01)^{ab}$ $(11.17)^{ab}$ $(9.99)^{ab}$ $(11.23)^{a}$ $(9.79)^{a}$ Goat manure @ 5.015.0120.357.515.45 6.25 6.41 8.89 t/ha $(22.57)^{bc}$ $(26.64)^{bc}$ $(4.31)^{ab}$ $(13.36)^{b}$ $(14.33)^{bc}$ $(14.61)^{a}$ $(16.74)^{b}$ Poultry manure @ 5.0 8.86 10.66 3.08 2.09 1.24 2.57 1.81 t/ha $(17.12)^{a}$ $(18.71)^{a}$ $(1.76)^{a}$ $(8.14)^{a}$ $(9.15)^{a}$ $(9.15)^{a}$ $(7.68)^{a}$ Vermicompost @ 2.5 22.26 23.93 11.68 9.37 11.62 16.03 17.29 t/ha $(28.00)^{d}$ $(29.25)^{cd}$ $(6.71)^{bc}$ $(17.79)^{c}$ $(19.92)^{cd}$ $(23.48)^{b}$ $(24.51)^{c}$ Neem cake @ 500 20.94 27.55 19.54 12.71 12.62 16.48 24.69 kg/ha $(27.14)^{cd}$ $(31.61)^{d}$ $(11.27)^{c}$ $(20.86)^{c}$ $(20.71)^{cd}$ $(22.52)^{b}$ $(29.56)^{d}$ Untreated check 27.13 38.00 37.57 22.58 21.66 29.78 27.90

WAS – Weeks After Sowing

*Mean of four replications.

Figures in parentheses are arc-sine transformed values.

In a column, means followed by common letters are not significantly different by LSD (P=0.05).

Table 7: Effect of organic amendments on phenol content of leaves and fruit yield

S. No.	Treatments	Total phenol cont	Yield (t/ha)		
5. 110.	Treatments	Rabi 2018	Summer 2019	Rabi 2018	Summer 2019
T1	Farm Yard Manure @ 12.5 t/ha	2.64 ^b	2.63 ^b	31.48 ^b	30.98 ^b
T2	Goat manure @ 5.0 t/ha	2.15 °	2.13 °	29.59 °	29.75 °
T3	Poultry manure @ 5.0 t/ha	3.70 ^a	3.71 ^a	35.93 ^a	35.50 ^a
T4	Vermicompost @ 2.5 t/ha	1.94 ^d	1.96 ^d	28.68 ^d	28.12 ^d
T5	Neem cake @ 500 kg/ha	1.41 ^e	1.42 °	26.12 ^e	25.85 ^e
T6	Untreated check	1.14 ^f	1.12 ^f	22.46 ^f	22.56 ^f

In a column, means followed by common letters are not significantly different by LSD (P=0.05).

Acknowledgement

The authors are thankful to Dr. R. Arulmozhiyan, Professor and Head, Department of Horticulture, Agricultural College and Research Institute, Killikulam and Dr. C. Raja babu, Assistant Professor (crop physiology), ICAR –Krishi Vigyan Kendra, Virudhunagar for their precious help and support during the study.

References

- 1. Al-Snafi AE. The Pharmacological importance of *Benincasa hispida*. A review. International Journal of Pharma Sciences and Research. 2013; 4(12):165-70.
- 2. Arancon NQ, Galvis PA and Edwards CA. Suppression of insect pest populations and damage to plants by vermicomposts. Bioresource technology. 2005; 96(10):1137-1142.
- 3. Atwal AS. Agriculture Pests of India and South East Asia. Kalyani Publications, New Delhi, India, 1993, 230.
- 4. Azmi MA, Naqvi SN, Azmi MA and Aslam M. Effect of pesticide residues on health and different enzyme levels in the blood of farm workers from Gadap (rural area) Karachi-Pakistan. Chemosphere. 2006; 64(10):1739-1744.
- 5. Boeckler GA, Gershenzon J and Unsicker SB. Phenolic glycosides of the Salicaceae and their role as antiherbivore defenses. Phytochemistry. 2011; 72(13):1497-1509.
- Damodar K, Bhogineni S and Ramanjaneyulu B. Phytochemical screening, quantitative estimation of total phenolic, flavanoids and antimicrobial evaluation of *Trachyspermum ammi*. Journal of Atoms and Molecules. 2011; 1(1):1.
- 7. DES. Directorate of Economics and Statistics (DES): Area, production and productivity of Ash gourd (vegetables) by district-wise in Tamil Nadu for year 2016-17, Government of India, 2019.
- 8. Dhillon MK, Singh R, Naresh JS and Sharma HC. The melon fruit fly, *Bactrocera cucurbitae*: A review of its biology and management. Journal of Insect Science. 2005; 5(1):40.
- 9. Gomez KA and Gomez AA. Statistical procedures for agricultural research. John Wiley & Sons, 1984.
- Gulsen O, Eickhoff T, Heng-Moss T, Shearman R, Baxendale F, Sarath G *et al.* Characterization of peroxidase changes in resistant and susceptible warmseason turfgrasses challenged by *Blissus occiduus*. Arthropod-Plant Interactions. 2010; 4(1):45-55.
- 11. Patriquin DG, Baines D andAbboud A. Diseases, pests and soil fertility. Soil Management in Sustainable Agriculture. Wye College Press, Wye, UK, 1995, 161-174.
- Ramirez CC, Guerra FP, Zuniga RE, Cordero C. Differential expression of candidate defense genes of poplars in response to aphid feeding. Journal of Economic Entomology. 2009; 102(3):1070-1074.
- Ravi M, Dhandapani N, Sathiah N and Murugan M. Influence of organic manures and fertilizers on the incidence of sucking pests of sunflower, *Helianthus annuus* L. Annals of Plant Protection Sciences. 2006; 14(1):41-44.
- 14. Singleton VL and Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture. 1965; 16(3):144-158.
- Tamilnayagan T, Suganthy M, Ganapathy N, Renukadevi P and Malathi VG. Population dynamics of defoliator pests and two spotted spider mite of ash gourd. Journal of Entomology and Zoology Studies. 2017; 5(3):293-296.
- 16. Tamilnayagan T, Suganthy M, Ganapathy N, Renukadevi P and Malathi VG. Seasonal abundance of sucking pests of ash gourd (*Benincasa hispida*) (Thunb.) Cogn.) in Tamil Nadu. Journal of Entomology and Zoology Studies. 2017; 5(3):430-433.

- 17. Tindall, H.D. Vegetables in the Tropics. Manmillan Education Ltd., Basingstake, Hampshire, UK. 1986; 147.
- 18. Wei H, Zhikuan J and Qingfang H. Effects of herbivore stress by *Aphis medicaginis* Koch on the malondialdehyde contents and the activities of protective enzymes in different alfalfa varieties. Acta Ecologica Sinica. 2007; 27(6):2177-2183.