

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(6): 965-969 Received: 07-09-2019 Accepted: 09-10-2019

Kanavi MSP

Dept. of Genetics and Plant Breeding, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore, Karnataka, India

S Rangaiah

Dept. of Genetics and Plant Breeding, College of Agriculture, G.K.V.K, University of Agricultural Sciences, Bangalore, Karnataka, India

Shashidhara KS

Dept. of Genetics and Plant Breeding, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore, Karnataka, India

Corresponding Author: Kanavi MSP Dept. of Genetics and Plant Breeding, College of Agriculture, Hassan, University of Agricultural Sciences, Bangalore, Karnataka, India

Correlation coefficient studies among physiological and yield attributing traits in germplasm accessions of green gram [*Vigna radiata* (L.)] under drought condition

Kanavi MSP, S Rangaiah and Shashidhara KS

Abstract

Two hundred germplasm accessions of Green gram [*Vigna radiate* (L.) Wilczek] were screened for drought tolerance using augmented design. Augmented ANOVA revealed highly significant mean squares attributable to germplasm accessions for all the traits. Mean squares attributable to 'Genotypes *vs* check entries' were significant for all traits except seed per pod and relative water content. The correlation coefficient analysis revealed that out of 17 independent variables studied, 15 variables showed positive correlation with dependent variable yield. Two variables namely days to 50 *per cent* flowering and days to maturity did not show positive correlation with yield. Among the independent variables, pods per cluster had highest positive correlation with seed yield per plant (0.84) followed by pods per cluster (0.77) clusters per plant (0.71), plant height (0.68), proline content (0.63), spad chlorophyll meter reading (0.62), leaf water potential (0.61), harvest index and seeds per pod (0.60).

Keywords: Green gram germplasm, correlation coefficient, drought tolerance, quantitative and physiological traits

Introduction

Green gram, alternatively known as mung bean, or mugda is the third most important pulse crop of India after chickpea and pigeon pea. It is a fast-growing grain legume belonging to the family Fabaceae. Being a short-duration legume, it is an ideal legume for catch cropping, intercropping, and relay cropping (Pooja *et al.*, 2019)^[1]. Mung bean has the ability to fix nitrogen via symbiosis with nitrogen-fixing Rhizobium bacterium (Allito *et al.*, 2015)^[2]. Pulse crops are important valuable grain legumes that are widely used as food, fodder and feed. Pulses are important constituents of the Indian diet, green gram has excellent and easily digestible source of protein for humans and is said to be an alternate to animal protein such as meat, ultimately supporting food security. The mature seeds are rich in nutrients including carbohydrates, protein, fibers, minerals, antioxidants like flavonoids (Quercetin-3-Oglucoside), and phenolics. Despite being an economically important pulse crop, overall production of mung bean in India is low due to abiotic and biotic stresses (Bangar *et al.*, 2018)^[3].

Among abiotic stresses, drought stress is undoubtedly one of the most devastating environmental stresses especially in crop like green gram whose cultivation is mostly confined to marginal lands, low fertile soils and in rainfed conditions. Drought is a meteorological term and is commonly defined as a period without soil moisture availability for crop growth and development. Drought is a multidimensional complex stress, simultaneously disturbing the metabolic, physiological, morphological, biochemical, and molecular states which has direct impact on the growth, development and productivity of the crop (Basu *et al.*, 2016) ^[4]. The agricultural crops are frequently exposed to drought situations and this stress is aggravating worldwide as drought-stressed areas are expanding rapidly due to uneven rainfall, limited water sources, and other rapid and drastic changes in global environmental conditions (Fahad *et al.*, 2017)^[5].

To improve stress tolerance in agricultural crops, many studies have been conducted to identify tolerant genotypes against abiotic stresses for domesticated accessions as reported by Munns and James (2003) ^[6], Torres *et al.* (2013) ^[7], Sardouie-Nasab *et al.* (2014) ^[8] and Monkham *et al.* (2015) ^[9]. Several biochemical and morpho-physiological parameters have been established for drought stress tolerance assessment in plants based on proline accumulation, high relative water content, leaf area index, yield components, antioxidant enzymatic activities and PEG mediation and the same has been reported by Mafakheri *et al.* (2010) ^[10], Almeselmani *et al.* (2011) ^[11], Ranawake *et al.* (2012) ^[12],

Alderfasi *et al.* (2017) ^[13] and Swathi *et al.* (2017) ^[14]. Therefore designing an effective phenotypic screening strategy for crop improvement and a better understanding of the responses of mung bean varieties under different drought stress conditions is essential (Abenavoli *et al.*, 20161) ^[15]. Assessment of variability parameters and their correlation under drought conditions would be helpful in selecting diverse valuable varieties with defined growth strategies, which may be useful in breeding programs focused on drought tolerance as referred by Abraha *et al.* (2015) ^[16], Mishra and Panda (2017) ^[17] and Tiwari *et al.* (2018) ^[18].

Material and Methods

The study material consisted of 200 germplasm accessions collected from different research institutions / organizations representing different agro-climatic zones. List of germplasm accessions used in the study with their source is given in table No1.

Layout of the experiment

The experiment was conducted in an Augmented Randomized Complete Block Design with 200 germplasm accessions and 5 check varieties. As per the augmented RCBD requirement, the check entries were replicated twice randomly in each of the block. There were 5 blocks, each block had 5 plots of size 3x3m² thus each block size was 15 m². The gross area of experimental plot was 75 m². The row spacing was 30 cm and inter plant distance was 10 cm. The experiment was conducted during *summer* 2015. Recommended crop production practices were followed during the crop growth period to raise healthy crop.

Imposing drought condition

Drought condition was imposed by withholding irrigation 25 days after sowing. The same practice of inducing drought is reported by Baroowa and Gogoi (2015) ^[19] and Pooja *et al.* (2019) ^[1]. Since the experiment was conducted during *summer* season, there were no unpredicted rains during the entire cropping period hence the drought condition was effectively imposed. The rainfall data of experimental site during the cropping period is given in table2.

Plant sampling and data collection

Observations were recorded on five randomly chosen competitive plants from each germplasm accession for all the characters except days to 50 *per cent* flowering and days to maturity, which were recorded on plot basis. The values of five competitive plants were averaged and expressed as mean of the respective characters. The observations were taken on the traits like; Days to 50% flowering, Days to maturity, Plant height (cm), Clusters per plant, Pods per cluster, Pods per plant, Pod length (cm), Seeds per pod, test weight, Threshing %, Harvest index (%), SCMR (SPAD Chlorophyll meter reading), Leaf water potential(Mpa), Proline content ($\mu g g^{-1}$), Relative water content, Specific leaf area and Seed yield per plant.

Table 1: List of germplasm accessions used in the study and their source

S. No.	Germplasm	Location	Sl. No.	Germplasm	Location
1	KM13-16	ARS, Bidar	29	VGG10-010	TNAU, Coimbatore
2	KM13-19	ARS, Bidar	30	VGG04-011	TNAU, Coimbatore
3	KM13-39	ARS, Bidar	31	VGG04-007	TNAU, Coimbatore
4	GG13-7	ARS, Bidar	32	COGG-93	TNAU, Coimbatore
5	GG13-6	ARS, Bidar	33	VBNGG-2	TNAU, Coimbatore
6	KM13-44	ARS, Bidar	34	TARM-2013	TNAU, Coimbatore
7	GG13-10	ARS, Bidar	35	VGG04-005	TNAU, Coimbatore
8	SML-668	ARS, Bidar	36	COGG-920	TNAU, Coimbatore
9	KM13-9	ARS, Bidar	37	VGG07-003	TNAU, Coimbatore
10	IPM99-125	ARS, Bidar	38	VGG10-002	TNAU, Coimbatore
11	LGG-596	RARS, Guntur	39	VGG-112	TNAU, Coimbatore
12	LGG-572	RARS, Guntur	40	IC-92048	NBPGR, Akola
13	LGG-450	RARS, Guntur	41	NBPGR, Akola	
14	LGG-583	RARS, Guntur	42	AKL-39	NBPGR, Akola
15	LGG-590	RARS, Guntur	43	AKL-106	NBPGR, Akola
16	LGG-588	RARS, Guntur	44	AKL-225	NBPGR, Akola
17	LGG-589	RARS, Guntur	45	AKL-95	NBPGR, Akola
18	LGG-579	RARS, Guntur	46	AKL-194	NBPGR, Akola
19	LGG-562	RARS, Guntur	47	AKL-212	NBPGR, Akola
20	LGG-582	RARS, Guntur	48	AKL-195	NBPGR, Akola
21	LGG-585	RARS, Guntur	49	AKL-211	NBPGR, Akola
22	AKL-170	NBPGR, Akola	50	KM13-11	ARS, Bidar
23	PLM-110	UAS, Bangalore	51	KM13-30	ARS, Bidar
24	LGG-577	RARS, Guntur	52	KM13-45	ARS, Bidar
25	IC-436624	IIPR, Kanpur	53	KM13-18	ARS, Bidar
26	IC-436723	IIPR, Kanpur	54	KM13-5	ARS, Bidar
27	IC-413316	IIPR, Kanpur	55	KM13-02	ARS, Bidar
28	IC-436746	IIPR, Kanpur	56	KM13-37	ARS, Bidar
57	KM13-23	ARS, Bidar	98	LGG-592	NBPGR, Akola
58	KM13-55	ARS, Bidar	99	LGG-555	NBPGR, Akola
59	KM13-12	ARS, Bidar	100	LGG-564	NBPGR, Akola
60	GG13-9	ARS, Bidar	101	LGG-460	RARS, Guntur
61	KM13-49	ARS, Bidar	102	LGG-595	RARS, Guntur
62	GG13-4	ARS, Bidar	103	LGG-566	RARS, Guntur
63	GG13-54	ARS, Bidar	104	IC-553514	IIPR, Kanpur
64	KM13-20	ARS, Bidar	105	IC-413319	IIPR, Kanpur

		120 211	101	70 10 17 10	
65	GG13-5	ARS, Bidar	106	IC-436542	IIPR, Kanpur
66	Chinamung	ARS, Bidar	107	IC-546493	IIPR, Kanpur
67	GG13-2	ARS Bidar	108	IC-436594	IIPR Kanpur
67	VM12.20		100	IC 42((20)	
68	KM13-26	ARS, Bidar	109	IC-436630	IIPR, Kanpur
69	KM13-47	ARS, Bidar	110	IC-436668	IIPR, Kanpur
70	KM13-41	ARS, Bidar	111	IC-436555	IIPR, Kanpur
71	KM12 11	ADS Didor	112	IC 412214	IIDD Konpur
/1	KW115-11	AKS, bluar	112	IC-415514	IIPR, Kalipur
72	KM13-42	ARS, Bidar	113	AKL-20	NBPGR, Akola
73	GG13-11	ARS, Bidar	114	AKL-89	NBPGR, Akola
74	GG13-8	ARS Bidar	115	AKI -228	NBPGR Akola
75	0013-0		115	A KL 104	NDDCD AL 1
75	6613-12	ARS, Bidar	116	AKL-184	NBPGR, Akola
76	KM13-48	ARS, Bidar	117	AKL-182	NBPGR, Akola
77	IPM2-3	ARS, Bidar	118	AKL-230	NBPGR, Akola
70	IDM2 14	ADC Didor	110	AKL 220	NDDCD Alcolo
/0	IPW12-14	ARS, bluar	119	AKL-229	NDPOK, Akola
79	PDM-139	ARS, Bidar	120	AKL-86	NBPGR, Akola
80	LGG-580	RARS, Guntur	121	IC-436646	IIPR, Kanpur
81	PM_112	TNAU Coimbatore	122	IC-3/306/	IIPR Kannur
01	101-112	INAO, Collibratore	122	IC-J4J704	III K, Kaipu
82	LGG-578	NBPGR, Akola	123	IC-436528	IIPR, Kanpur
83	LGG-563	NBPGR, Akola	124	IC-436723	IIPR, Kanpur
84	LGG-594	NBPGR Akola	125	IC-546491	IIPR Kanpur
07	TM 06.2	NDDCD Alsola	125	IC 54(491	HDD Kammen
85	1M-96-2	NBPGR, Akola	126	IC-546481	IIPR, Kanpur
86	LGG-593	NBPGR, Akola	127	IC-398988	IIPR, Kanpur
87	LGG-591	NBPGR. Akola	128	VGG10-005	TNAU. Coimbatore
89	PM_115	NRPGR Akola	120	VBN_222	TNALL Coimbatore
00	1 101-113	NDECE ALL	129	V DIN-223	TNAU, COIIIDaIOIE
89	LGG-587	NBPGR, Akola	130	COGG-912	TNAU, Coimbatore
90	PM-113	NBPGR, Akola	131	VBN(G9)-3	TNAU, Coimbatore
91	LGG-586	NBPGR Akola	132	ML-1165	TNAU Coimbatore
02	LCC 42(775	NDDCD Alsola	122	VCC04.025	TNAU Coinchatana
92	IC-430/75	NBPGR, Akola	155	VGG04-025	INAU, Colmbatore
93	IC-413311	NBPGR, Akola	134	VGG04-004	TNAU, Coimbatore
94	IC-398984	NBPGR, Akola	135	VGG04-149	TNAU. Coimbatore
05	IC 426767	NPDCD Alcolo	126	COCC 054	TNAU Coimhetere
95	IC-430707	NBFOR, AROla	130	0000-934	TNAU, Collibatore
96	IC-436573	NBPGR, Akola	137	VGG08-002	TNAU, Coimbatore
97	LGG-584	NBPGR, Akola	138	VBN-1	TNAU, Coimbatore
130	VGG-110	TNAU Combatore	170	AKI -84	NBPGR Akola
137	V00-11)	TNAU, Collidatore	1/)	AKL-04	NDI GR, AKOla
140	VC3890-A	TNAU, Coimbatore	180	AKL-82	NBPGR, Akola
141	DGGV-4	UAS, Raichur	181	AKL-97	NBPGR, Akola
142	KPS-1	UAS, Raichur	182	AKL-226	NBPGR, Akola
1/2	CCC 072	UAS Deichur	192		NPDCP Alcola
145	000-975	UAS, Kalchur	165	AKL-24	NDPOK, Akola
144	CN9-5	UAS, Raichur	184	AKL-174	NBPGR, Akola
145	KPS-2	UAS, Raichur	185	AKL-161	NBPGR, Akola
146	VC-6173	UAS Raichur	186	4KL-180	NBPGR Akola
147	VC-0175		100	AKL 222	NDDCD AL 1
147	VC-6368	UAS, Raichur	187	AKL-222	NBPGR, Akola
148	CO-6	UAS, Raichur	188	AKL-187	NBPGR, Akola
149	Harsha	UAS, Raichur	189	AKL-216	NBPGR. Akola
150	PI M_02	LIAS Bangalore	100	AKI -20	NBPGR Akola
150	1 LNI-72		101	AIZE 00	
151	MH-709	UAS, Raichur	191	AKL-90	NBPGR, Akola
152	LGG-460	RARS, Guntur	192	AKL-227	NBPGR, Akola
153	KGS-5	UAS. Raichur	193	AKL-200	NBPGR. Akola
154	Barimung 4	LIAS Raichur	10/	AKI 02	NRPGR Akola
157	AVI 100		107	AVI 102	
155	AKL-189	NBPGK, Akola	195	AKL-183	NBPGR, Akola
156	AKL-168	NBPGR, Akola	196	AKL-176	NBPGR, Akola
157	AKL-218	NBPGR. Akola	197	AKL-191	NBPGR. Akola
150	AKI 170	NRPCD Alcolo	100	AKI 165	NRPCD Alcolo
130	AKL-1/9	NDI OK, AKOIa	190	AIL-103	NDI OK, AKOla
159	AKL-185	NBPGR, Akola	199	AKL-164	NBPGR, Akola
160	AKL-163	NBPGR, Akola	200	AKL-192	NBPGR, Akola
161	COGG-912	TNAU Coimbatore			,
1.01	IC 72451	NDDCD A1 1			
162	IC-/3451	INDPGK, Akola			
163	IC-105690	NBPGR, Akola			
164	IC-73534	NBPGR. Akola			
165	IC 72412	NRDCD Alcolo			
105	10-73412	NDI OK, AKOIa			
166	IC-39605	NBPGR, Akola			
167	IC-73472	NBPGR, Akola			
168	IC-92053	NBPGR Akola			
100	10 72770	NDDCD A1 1		ł	
109	10-73/79	INDPUK, AKOla			
170	IC-73462	NBPGR, Akola			
171	IC-118992	NBPGR. Akola			
172	IC-53783	NRPGR Alcola		1	
172	10-33/03	NDDOD ALL			
173	IC-73456	NBPGR, Akola			
174	IC-73458	NBPGR, Akola			

175	AKL-105	NBPGR, Akola		
176	AKL-213	NBPGR, Akola		
177	AKL-169	NBPGR, Akola		
178	AKL-220	NBPGR, Akola		

Table 2: Meteorological data of experimental site for the year 2015

Year	Months	Temperature (°C)	Relative humidity (%)	Rainfall (mm)
2015	January	21.32	61.03	0.59
	February	23.10	50.72	Nil
	March	25.34	58.70	2 mm (25.03.2015)
	April	25.87	66.55	Nil

Results and Discussions

Screening of germplasm accessions for drought tolerance Analysis of variance

Analysis of variance revealed highly significant mean squares attributable to germplasm accessions for all traits. (Table 3). Mean squares attributable to 'Genotypes *vs* check entries' were significant for all traits except seeds per pod and relative water content. These results suggest significant differences among the germplasm accessions. The germplasm accessions as group differed significantly for all of the traits under investigation, similarly, check entries as group differed significantly for most the traits under study.

Correlation coefficients

Correlation coefficients are used to measure the strength of the relationship between two variables (dependent and independent). Pearson *correlation* is one of the most commonly used statistics hence, Pearson correlation was performed and is presented in table 4. The correlation

coefficient analysis revealed that out of 17 independent variables studied, 15 variables showed positive correlation with dependent variable yield. Two variables which did not show positive correlation with yield are; days to 50% flowering, and days to maturity. Among the independent variables, pods per cluster had highest positive correlation with seed yield per plant (0.84) followed by pods per cluster (0.77), clusters per plant(0.71), plant height (0.68), proline content (0.63), spad chlorophyll meter reading (0.62), leaf water potential (0.61), harvest index and seeds per pod (0.60). Other independent variables showed lower positive magnitude of relation with dependent variable yield such as; pod length (0.56), primary branches per plant (0.52), relative water content (0.51), specific leaf area (0.41), test weight (0.40) and threshing percentage (0.17). Sandhiya and Saravanan (2018) ^[20] have also reported significant positive correlation with the traits; number of pods per plant, number of clusters per plant and number of pods per cluster.

Table 3: Summary of Augmented ANOVA for grain yield and component traits of germplasm accessions under drought condition

Sources of Variations	DF	DFF	DM	PH	CPP	PPC	PPP	PL	SPP	TW
Blocks (b)	4	14.74 **	8.18***	65.31**	2.23**	0.11*	25.23**	1.49**	5.05**	1.77 **
Entries (e) (Genotypes + Checks)	204	17.10 **	18.01**	84.47**	3.60**	0.51**	72.94**	0.75**	2.70**	0.35 **
Checks	4	34.57 **	37.01**	22.56**	1.40**	0.42**	12.50**	0.87**	3.98**	0.81 **
Genotypes	199	14.215 **	15.14**	85.71**	3.67**	0.51**	73.91**	0.73**	2.69**	0.31 **
Checks vs Genotypes	1	521.64 **	513.06**	85.01**	0.16**	1.45**	121.60**	4.52**	0.03	5.42 **
Error	16	1.32	0.74	0.98	0.04	0.02	0.98	0.009	0.05	0.05

Sources of Variations	DF	ТР	HI	SCMR	LWP	PC	RWC	SLA	SYPP
Blocks (b)	4	37.12*	247.54 **	396.55 **	1.17 **	470.90 **	423.68 *	4067.34 *	2.11 **
Entries (e) (Genotypes + Checks)	204	37.20 **	54.41 *	98.71 **	2.45 **	1707.90 **	425.40 **	4283.10 **	7.01 **
Checks	4	17.09	64.39 *	24.49	0.82 **	942.07 **	63.06	1924.20	3.76 **
Genotypes	199	27.67 *	53.01 *	79.58 *	2.33 **	1712.67 **	433.68 **	4294.15**	7.10 **
Checks vs Genotypes	1	2014.79 **	293.20 **	4203.25 **	32.57 **	3822.09 **	227.32	11518.68**	0.42*
Error	16	9.83	19.57	31.14	0.03	1.48	130.64	1339.95	0.09

*Significant at P =0.05, ** Significant at P=0.01

DFF : Days to 50% flowering	PPP : Pods per plant	HI : Harvest index (%)	SLA : Specific leaf area
DM : Days to maturity	PL : Pod length (cm)	SCMR : SPAD Chlorophyll meter reading	SYPP : Seed yield per plant
PH : Plant height (cm)	SPP : Seeds per pod	LWP : Leaf water potential(Mpa)	
CPP : Cluster per plant	TW: Test weight	PC : Proline content ($\mu g g^{-1}$)	
PPC : Pods per cluster	TP : Threshing %	RWC : Relative water content (%)	

Table 4: Correlation	ı matrix	(Pearson	(n))
----------------------	----------	----------	------

Variables	DFF	DM	PH	CPP	PPC	PPP	PL	SPP	TW	ТР	HI	SCMR	LWP	PC	RWC	SLA	SYPP
DFF	1	0.97*	-0.20*	-0.28*	-0.10	-0.23*	-0.18*	-0.03	-0.23*	0.04	-0.13	-0.23*	-0.15*	-0.15*	-0.14*	-0.04	-0.22*
DM	0.97*	1	-0.23*	-0.27*	-0.12	-0.23*	-0.21*	-0.09	-0.21*	0.05	-0.16*	-0.28*	-0.21*	-0.20*	-0.22*	-0.10	-0.24*
PH	-0.20*	-0.23*	1	0.56*	0.59*	0.63*	0.41*	0.45*	0.29*	0.20*	0.39*	0.46*	0.49*	0.47*	0.39*	0.31*	0.68*
CPP	-0.28*	-0.27*	0.56*	1	0.53*	0.93*	0.12	0.09	0.10	0.13	0.32*	0.19*	0.24*	0.19*	0.06	0.01	0.71*
PPC	-0.10	-0.12	0.59*	0.53*	1	0.78*	0.38*	0.40*	0.21*	0.09	0.44*	0.50*	0.57*	0.52*	0.36*	0.32*	0.77*
PPP	-0.23*	-0.23*	0.63*	0.93*	0.78*	1	0.22*	0.20*	0.18*	0.13*	0.40*	0.32*	0.39*	0.32*	0.17*	0.12	0.84*
PL	-0.18*	-0.21*	0.41*	0.12	0.38*	0.22*	1	0.74*	0.26*	0.26*	0.53*	0.78*	0.64*	0.78*	0.74*	0.65*	0.56*
SPP	-0.03	-0.09	0.45*	0.09	0.40*	0.20*	0.74*	1	0.09	0.15*	0.55*	0.78*	0.72*	0.82*	0.76*	0.65*	0.60*

TW	-0.23*	-0.21*	0.29*	0.10	0.21*	0.18*	0.26*	0.09	1	-0.03	0.20*	0.19*	0.11	0.15*	0.15*	0.06	0.40*
TP	0.04	0.05	0.20*	0.13	0.09	0.13*	0.26*	0.15*	-0.03	1	0.10	0.16*	-0.02	0.09	0.02	0.13*	0.17*
HI	-0.13	-0.16*	0.39*	0.32*	0.44*	0.40*	0.53*	0.55*	0.20*	0.10	1	0.70*	0.70*	0.74*	0.61*	0.34*	0.60*
SCMR	-0.23*	-0.28*	0.46*	0.19*	0.50*	0.32*	0.78*	0.78*	0.19*	0.16*	0.70*	1	0.80*	0.91*	0.79*	0.60*	0.62*
LWP	-0.15*	-0.21*	0.49*	0.24*	0.57*	0.39*	0.64*	0.72*	0.11	-0.02	0.70*	0.80*	1	0.93*	0.77*	0.60*	0.61*
PC	-0.15*	-0.20*	0.47*	0.19*	0.52*	0.32*	0.78*	0.82*	0.15*	0.09	0.74*	0.91*	0.93*	1	0.86*	0.67*	0.63*
RWC	-0.14*	-0.22*	0.39*	0.06	0.36*	0.17*	0.74*	0.76*	0.15*	0.02	0.61*	0.79*	0.77*	0.86*	1	0.66*	0.51*
SLA	-0.04	-0.10	0.31*	0.01	0.32*	0.12	0.65*	0.65*	0.06	0.13*	0.34*	0.60*	0.60*	0.67*	0.66*	1	0.41*
SYPP	-0.22*	-0.24*	0.68*	0.71*	0.77*	0.84*	0.56*	0.60*	0.40*	0.17*	0.60*	0.62*	0.61*	0.63*	0.51*	0.41*	1
Values in b	alues in bold* are significantly different at alpha=0.05																

DFF : Days to 50% flowering	PPP : Pods per plant	HI : Harvest index (%)	SLA : Specific leaf area
DM : Days to maturity	PL : Pod length (cm)	SCMR : SPAD Chlorophyll meter reading	SYPP : Seed yield plant ⁻¹
PH : Plant height (cm)	SPP : Seeds per pod	LWP : Leaf water potential(Mpa)	
CPP : Cluster per plant	TW: Test weight(g)	PC : Proline content($\mu g g^{-1}$)	
PPC : Pods per cluster	TP : Threshing %	RWC : Relative water content (%)	

Acknowledgement

Kanavi, M.S.P., thanks Director of Research, University of Agricultural Sciences, Bangalore for giving financial assistance to carry out the research work

References

- Pooja, Bangar, Ashok Chaudhury, Bhavana Tiwari, Sanjay Kumar, Ratna Kumari, Kangila Venkataramana Bhat. Morphophysiological and biochemical response of mung bean [*Vigna radiata* (L.) Wilczek] varieties at different developmental stages under drought stress. Turkish J Biol. 2019; 43(1):58-69.
- 2. Allito BB, Nana EM, Alemneh AA. Rhizobia strain and legume genome interaction effects on nitrogen fixation and yield of grain legume: a review. Mol. Soil Biol. 2015; 20:1-6.
- Bangar P, Chaudhury A, Umdale S, Kumari R, Tiwari B, Kumar S *et al.* Detection and characterization of polymorphic simple sequence repeats markers for the analysis of genetic diversity in Indian mung bean [*Vigna radiata* (L.) Wilczek]. Indian J Genet. Pl. Br. 2018; 78:111-117.
- 4. Basu S, Ramegowda V, Kumar A, Pereira A. Plant adaptation to drought stress. Faculty Rev. 2016; 1554:1-11.
- Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A *et al.* Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci. 2017; 8:1147.
- 6. Munns R, James RA. Screening methods for salinity: a case study with tetraploid wheat. Plant Soil. 2003; 253:201-218.
- Torres RO, Mcnally KL, Cruz CV, Serraj R, Henry A. Screening of rice genebank germplasm for yield and selection of new drought donors. Field Crops Res. 2013; 147:12-22.
- 8. Sardouie-Nasab S, Mohammadi-Nejad G, Nakhoda B. Field screening of salinity tolerance in Iranian bread wheat lines. Crop Sci. 2014; 54:1489-1496.
- 9. Monkham T, Jongdee B, Pantuwan G, Sanitchon J, Mitchell JH, Fukai S. Genotypic variation in grain yield and flowering pattern in terminal and intermittent drought screening methods in rainfed lowland rice. Field Crops Res. 2015; 175:26-36.
- Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian J Crop Sci. 2010; 4:580.

- 11. Almeselmani M, Abdullah F, Hareri F, Naaesan M, Ammar MA, Zuher Kanbar O *et al.* Effect of drought on different physiological characters and yield component in different varieties of Syrian durum wheat. J Agric. Sci. 2011; 3:127.
- Ranawake AL, Dahanayaka N, Amarasingha UG, Rodrigo WD, Rodrigo UT. Effect of water stress on growth and yield of mung bean (*Vigna radiata* L). Tropical Agric. Res. Exten. 2012; 14:76-79.
- 13. Alderfasi AA, Alzarqaa AA, Al-Yahya FA, Roushdy SS, Dawabah AA, Alhammad BA. Effect of combined biotic and abiotic stress on some physiological aspects and antioxidant enzymatic activity in mung bean (*Vigna radiate* L.). African J Agric. Res. 2017; 12:700-705.
- 14. Swathi L, Reddy DM, Sudhakar P, Vineela V. Screening of mung bean (*Vigna radiata* L. Wilczek) genotypes against water stress mediated through polyethylene glycol. Int. J Curr. Microbiol. App. Sci. 2017; 6:2524-2531.
- Abenavoli MR, Leone M, Sunseri F, Bacchi M, Sorgona A. Root phenotyping for drought tolerance in bean landraces from Calabria (Italy). J Agron. Crop Sci. 2016; 202: 1-12.
- Abraha T, Githiri SM, Kasili R, Araia W, Nyende AB. Genetic variation among Sorghum (*Sorghum bicolor* L. Moench) landraces from Eritrea under post-flowering drought stress conditions. Canadian J Plant. Sci. 2015; 6:1410-1424.
- 17. Mishra SS, Panda D. Leaf traits and antioxidant defense for drought tolerance during early growth stage in some popular traditional rice landraces from Koraput, India. Rice Sci. 2017; 24:207-217.
- 18. Tiwari B, Kalim S, Bangar P, Kumari R, Kumar S, Gaikwad A *et al.* Physiological, biochemical, and molecular responses of thermo- tolerance in moth bean (*Vigna aconitifolia* [Jacq.] Marechal). Turkish J Agric. For. 2018; 42:176-184.
- 19. Baroowa B, Gogoi N. Changes in plant water status, biochemical attributes and seed quality of black gram and green gram genotypes under drought. Int. lett. Nat. Sci. 2015; 42:1-12.
- Sandhiya V, Saravanan S. Genetic variability and correlation studies in green gram (*Vigna radiata* L. Wilczek). Electron. J Plant Breed. 2018; 9(3):1094-1099.