

E-ISSN: 2278-4136 **P-ISSN:** 2349-8234

www.phytojournal.com JPP 2020; 9(2): 142-146 Received: 07-01-2020 Accepted: 09-02-2020

AM Rajesh

College of Horticulture, Tamaka, Kolar, Karnataka, India

KV Jayaprasad

Department of Horticulture, University of Agricultural Sciences, Bangalore, Karnataka, India

HA Yathindra

College of Horticulture, Hunsur road, Yalawala Yalachanahalli farm Mysore, Karnataka, India

M Harshavardhan

College of Horticulture, Banavasi road, Sirsi, Uttara Kannada, India

Corresponding Author: AM Rajesh College of Horticulture, Tamaka, Kolar, Karnataka, India

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

Different levels of fertigation, growth regulators and their interaction effects on growth characters of rose cultivars under polyhouse condition

AM Rajesh, KV Jayaprasad, HA Yathindra and M Harshavardhan

Abstract

Increased concentration of gibberellic acid combined with 120 percent of recommended dose of fertilizers as fertigation significantly increased the plant height, mean number of branches per plant, number of leaves per plant and internodal length in both the seasons respectively. Though all the varieties positively responded for the treatments but variety Grand gala produced significantly superior quality of growth characters when plants were treated with 120 per cent of fertigation in combination with 300 ppm of GA₃.

Keywords: Fertigation, ppm

Introduction

The productivity and quality of a crop mainly depends on its genetic potential and its interaction with the environmental conditions in addition to its response to fertigation and exogenous application of growth substances. Balanced use of nutrients is known to result in the overall improvement of any crop in terms of growth, yield and quality. An interruption in the supply of plant nutrients even for a short period will have a negative effect on yield and quality. Many times, a portion of the recommended nutrients applied to the soil for taking up by the plant, go waste. Moreover, the amount of nutrients taken up also depends on the form of nutrients applied. It has also been observed that in many commercial flowers, the response of a crop to growth regulators were significant in achieving desirable characters.

Although, breeders have developed several rose cultivars having desirable characters, but all the characters could not be incorporated into a single variety. Hence, there is a great need to improve the quality of rose flowers to emulate the flowers of international standard. There are various ways by which quality of flowers can be improved and use of growth regulators combined with fertigation have played a vital role in retarding the senescence, improving the quality and prolonging the vase life of flowers (Bhattacharjee and Bose, 1978; Gowda, 1985) ^[3, 5]. Hence, studies were conducted to know the Effect of different levels of fertigation and growth regulators on growth, yield and quality of rose cultivars under polyhouse condition.

Material and Methods

Two years old healthy budded plants were pruned. The cut ends were treated with blitox (copper oxychloride) at the rate of 2 per cent. Channels were opened at the centre of each bed. They were filled with well decomposed FYM at the rate of 50 kg per bed (bed length 24 m). The beds were irrigated thoroughly to maintain the optimum soil moisture condition. Major nutrients (N, P & K) as per the recommendations were supplied by fertigation in the morning hours. Micronutrients (Multiplex) were supplied as foliar spray at 0.2 per cent at monthly intervals. The nutrients were given in splits at weekly intervals as per treatment.

Growth regulators at required concentrations were prepared. To prepare 200 ppm GA₃, 200 mg of GA₃ was dissolved in 1ml 0.1 N NaOH and volume was increased up to one liter using distilled water. Whereas, humic acid was directly dissolved in water and then applied to plants as foliar spray. The experiment was carried out in two seasons.

Results and Discussion

Treatments V_4 (75.46 cm & 73.48 cm), G_2 (69.21 cm & 68.28 cm) and F_2 (67.18 cm & 68.28 cm) produced plants of maximum height in the seasons 1 and 2 respectively. While, V_4 treated plants (4.54 & 4.61), G_2 (4.70 & 5.00) and F_2 (4.93 & 5.32) induced maximum number of branches in the seasons 1 and 2 respectively. Interestingly the same treatments produced

higher number of leaves per plant in the treatment V_4 (259.83 & 235.02), G_2 (206.86 & 205.08) and F_2 (206.86 & 230.88). Internodal length was also maximum in treatment V_4 (5.32 cm & 5.20 cm), G_2 (4.85 cm & 4.63 cm) and F_2 (4.78 cm & 4.59 cm) in the seasons 1 and 2 respectively (Table 1 & 2).

Interaction between V₄F₂ (82.29 cm & 80.54 cm) recorded maximum plant height, while G₂F₂ (74.57 cm & 72.29 cm) and G₁F₂ (73.06 cm & 74.31) were on par with each other for the character plant height. However, V₄G₂ (90.27 cm) interaction resulted in maximum plant height only in one season. Meanwhile, the interaction between V₄F₂ (5.90 & 5.98) and G₂F₂ (5.48 & 5.93) recorded the highest mean number of primary branches per plant respectively. Whereas, interaction between V₄G₂ (5.21) recorded maximum number of primary branches per plant only in first season and minimum branches were noticed in the interaction V₃G₄ (2.39) (Table 3 & 4).

Interaction between V_4G_2 (238.89) and V_2G_2 (248.21), G_2F_2 (242.24) and G_1F_2 (231.09) were on par with each other and recorded maximum number of leaves per plant. Meanwhile, interaction between V_2F_2 (291.13) resulted in plants that of higher number of leaves. Interaction between V_4G_2 (5.98 cm & 5.75 cm) and V_4G_1 (5.89 cm & 5.63 cm) were on par with each other and produced shoots of maximum length (Table 5 & 6).

Increased concentration of gibberellic acid combined with 120 percent of recommended dose of fertilizers as fertigation significantly increased the internodal length and in turn plant height respectively. When varieties were compared, it was found that Grand Gala showed a tendency of vigorous growth. The results obtained were in accordance with (Palai et al., 2002) ^[10] who noticed increased plant height with the application of 400:300:200ppm NPK per plant per week in rose cv. Montezuma, Suganya et al, 2007 and (Qasim et al., 2008) ^[12] who stated that NPK at 500 ml applied at 2 days interval in rose was optimum for vegetative growth. However humic acid reduced the plant height drastically in all the varieties. These results are in accordance with the findings (Meybodi et al., 2012)^[7] who stated that, an increase in humic acid concentration caused a reduction in the height of the plants.

The increment in plant height with the application of GA is primarily due to cell division and cell elongation resulting in increase in internodal distance and number of internodes there by the mean plant height was increased. The steep increase in plant height with GA was also in conformity with Bankar and Mukhopadhyay (1982) ^[2] who found that GA₃ at 100 to 250 ppm increased the stem length and internodal length in rose Cv. Queen Elizabeth. Padmapriya and Chezhiyan (2003) ^[9] studied morphological characters of 4 cultivars of chrysanthemum as influenced by GA₃ and reported that plant height was increased drastically with increase in concentration of GA₃. These results are in accordance with the findings of Gowda (1980) ^[4] in rose Cv. Super Star, Gowda (1988) ^[6] in rose Cv. American Heritage, Sadanand *et al.* (2000) ^[14] in rose Cv. First Red, Ramesh and Singh (2003) ^[13] in Carnation.

Grand Gala produced plants with maximum number of branches as compared to other varieties. The productivity of the crop depends primarily on the framework and cultural operations. This could be the reason why varieties differed significantly with each other with respect to number of primary branches produced. However, fertigation with 120 percent of recommended dose (4.93 and 5.32) and Gibberellic acid at 300 ppm (4.70 & 5.00) concentration produced significantly higher number of primary branches per plant. This could probably due to application of optimum level of nutrients in a readily available form. Similar views were expressed by Anwar et al, (1999)^[3] who studied the effect of N, K fertilizers on vegetative growth of Rose, Vidhya Sankar and Bhattacharjee (2000)^[17] who obtained increased number of basal shoots with optimum level of nitrogen in roses and (Qasim et al., 2008)^[12] who stated that NPK at 500 ml applied at 2 days interval in rose was optimum for vegetative growth.

Increase in the number of branches per plant as a result of GA_3 application can be explained in the light of the fact that GA_3 interacts with auxins thus reducing the apical dominance and thereby results in the increased number of axillary branches. Similar results have been reported by Prabhat Kumar *et al.* (2003)^[11] in China Aster.

Meanwhile, more leaves appeared by application of GA attributed to increased shoot length, more nodes as well as the physiological role played by GA in increasing the area of photosynthesis to produce more carbohydrate. These results are in conformity with the results of Nanjan and Muthuswamy (1975)^[8] who noted increase in number of leaves with increased shoot length by the application of GA₃ at 300 ppm in Edward rose.

Treatment Mean pla		height (cm)	Mean no. of bra	anches per plant
Variety	Season 1	Season 2	Season 1	Season 2
V ₁ -First Red	62.60	63.57	4.41	4.43
V ₂ -Noblesse	60.22	61.09	3.79	4.07
V ₃ -Gold Strike	46.54	47.89	3.47	4.00
V4- Grand Gala	75.46	73.48	4.54	4.61
F-test	*	*	*	*
$SEm \pm$	0.29	0.64	0.04	0.06
CD at 5%	1.02	2.24	0.13	0.24
Growth regulator				
G1-200 ppm GA3	64.54	66.01	4.27	4.35
G2 - 300 ppm GA3	69.21	68.28	4.70	5.00
G ₃ -0.2% Humic acid	56.06	57.07	3.63	3.79
G ₄ .0.4% Humic acid	55.02	54.66	3.63	3.96
F-test	*	*	*	*
SEm ±	0.25	0.40	0.03	0.06
CD at 5%	0.87	1.40	0.12	0.22
Fertigation				
F ₀ -100% RDF Soil application	55.97	54.85	3.30	3.44

Table 1: Plant height and number of branches per plant as influenced by varieties, growth regulators and levels of fertigation

F ₁ - 80% Fertigation	60.46	61.39	3.94	4.06
F ₂ -120% Fertigation	67.18	68.28	4.93	5.32
F-test	*	*	*	*
$SEm \pm$	0.83	1.93	0.13	0.29
CD at 5%	2.87	6.69	0.45	1.00

* Significant at 5% level

Table 2: Number of leaves per plant and internodal length as influenced by varieties, growth regulators and levels of fertigation

Treatment	tMean interno	dal length (cm)		
Variety	Season 1	Season 2	Season 1	Season 2
V ₁ -First Red	158.38	156.48	4.57	4.32
V ₂ -Noblesse	191.75	216.99	3.43	3.38
V ₃ -Gold Strike	145.69	154.22	3.34	3.29
V ₄ - Grand Gala	259.83	235.02	5.32	5.20
F-test	*	*	*	*
SEm ±	17.12	2.02	0.01	0.04
CD at 5%	59.26	7.01	0.04	0.14
Growth regulator				
G1-200 ppm GA3	191.54	188.21	4.54	4.35
G2-300 ppm GA3	206.86	205.08	4.85	4.63
G ₃ -0.2% Humic acid	176.71	182.53	3.82	3.75
G ₄ . 0.4% Humic acid	180.54	186.89	3.45	3.47
F-test	*	*	*	*
SEm ±	5.16	1.65	0.02	0.03
CD at 5%	17.84	5.72	0.07	0.12
Fertigation				
Fo-100% RDF Soil application	176.71	153.71	3.63	3.53
F ₁ - 80% Fertigation	191.54	187.43	4.09	4.03
F ₂ -120% Fertigation	206.86	230.88	4.78	4.59
F-test	*	*	*	*
SEm ±	6.97	7.78	0.06	0.15
CD at 5%	27.92	26.92	0.24	0.53

* Significant at 5% level

Table 3: Plant height and number of branches per plant as influenced by interaction between variety, growth regulators and fertigation

Particulars	Mean plant	t height (cm)	Mean no. of bra	anches per plant
V X G	Season 1	Season 2	Season 1	Season 2
V_1G_1	66.59	68.20	4.71	4.69
V_1G_2	67.83	69.47	5.09	5.02
V_1G_3	58.99	59.59	3.88	3.92
V_1G_4	42.74	42.75	2.96	3.06
V_2G_1	62.94	65.60	4.10	4.13
V_2G_2	65.34	67.83	5.09	4.83
V_2G_3	56.13	56.27	3.22	3.43
V_2G_4	56.47	54.66	3.29	3.61
V_3G_1	60.04	59.27	3.86	4.25
V_3G_2	53.38	55.57	3.92	4.81
V ₃ G ₃	42.16	42.88	3.12	3.64
V ₃ G ₄	30.51	31.08	2.39	2.88
V_4G_1	81.73	80.21	4.67	4.94
V_4G_2	90.27	80.25	5.21	5.34
V ₄ G ₃	50.19	52.15	3.20	3.15
V_4G_4	49.43	49.17	3.07	3.21
F-test	*	NS	*	NS
SEm ±	0.50	0.81	0.06	0.13
CD at 5%	1.74	-	0.24	-
		V X F		
V_1F_0	56.57	56.70	3.69	3.79
V_1F_1	59.03	61.17	4.46	4.41
V_1F_2	72.25	72.83	5.07	5.09
V_2F_0	56.17	57.88	3.33	3.31
V_2F_1	61.00	60.27	3.60	3.74
V_2F_2	63.49	65.12	4.44	4.94
V_3F_0	42.80	39.35	2.77	3.21
V_3F_1	46.07	49.66	3.34	3.70
V_3F_2	50.74	54.65	4.29	5.30
V_4F_0	68.33	65.47	3.4	3.44
V_4F_1	75.76	74.45	4.33	4.41

V ₄ F ₂	82.29	80.54	5.9	5.98
F-test	*	*	*	*
SEm ±	0.41	0.96	0.06	0.14
CD at 5%	1.43	3.34	0.22	0.50

Table 4: Plant height and number of branches per plant as influenced by interaction between growth regulators and fertigation

Particulars	Mean plant height (cm)		Mean no. of branches per plan	
G X F	Season 1	Season 2	Season 1	Season 2
G ₁ F ₀	57.09	59.06	3.26	3.37
G_1F_1	63.49	64.65	4.05	4.08
G_1F_2	73.06	74.31	5.45	5.61
G_2F_0	64.21	60.12	3.56	3.80
G_2F_1	65.31	66.70	4.56	4.61
G_2F_2	74.57	72.29	5.48	5.93
G_3F_0	52.64	51.66	3.17	3.19
G ₃ F ₁	56.32	58.24	3.48	3.75
G ₃ F ₂	59.20	61.31	4.19	4.44
G ₄ F ₀	49.93	48.56	3.20	3.38
G_4F_1	56.74	55.96	3.64	3.82
G ₄ F ₂	58.37	59.47	4.08	4.66
F-test	*	*	*	*
SEm ±	0.43	0.70	0.06	0.11
CD at 5%	1.51	2.43	0.20	0.39

* Significant at 5% level

Table 5: Number of leaves per plant and internodal length as influenced by interaction between variety, growth regulators and fertigation

Particulars	Mean number of leaves		Mean internodal length (cm)		
V X G	Season 1	Season 2	Season 1	Season 2	
V_1G_1	157.66	149.49	5.00	4.72	
V_1G_2	174.44	173.76	5.58	5.15	
V_1G_3	152.55	151.75	3.93	3.85	
V_1G_4	111.66	113.20	2.82	2.68	
V_2G_1	191.11	234.84	3.85	3.65	
V_2G_2	212.11	248.21	4.03	3.93	
V ₂ G ₃	183.11	226.10	3.10	3.12	
V_2G_4	180.66	230.91	2.75	2.83	
V_3G_1	190.03	172.40	4.28	4.26	
V ₃ G ₂	154.91	159.48	3.83	3.68	
V ₃ G ₃	136.71	151.49	3.21	3.08	
V_3G_4	106.67	116.62	2.05	2.14	
V_4G_1	270.24	226.61	5.89	5.63	
V_4G_2	286.00	238.89	5.98	5.75	
V_4G_3	175.85	150.57	3.78	3.70	
V_4G_4	187.80	157.68	3.41	3.47	
F-test	NS	*	*	*	
SEm ±	10.31	3.30	0.04	0.07	
CD at 5%	-	11.44	0.14	0.25	
	•	V X F			
V_1F_0	130.91	124.96	3.97	3.81	
V_1F_1	157.25	153.02	4.47	4.19	
V_1F_2	187.00	191.47	5.26	4.97	
V_2F_0	158.41	181.11	2.95	2.95	
V_2F_1	192.75	232.81	3.27	3.30	
V_2F_2	224.08	291.13	4.08	3.89	
V_3F_0	137.12	144.67	3.02	2.98	
V_3F_1	146.27	147.21	3.36	3.25	
V_3F_2	153.70	170.79	3.65	3.66	
V_4F_0	226.94	164.12	4.60	4.36	
V_4F_1	275.59	216.70	5.25	5.39	
V_4F_2	276.90	270.15	6.12	5.84	
F-test	NS	*	*	*	
SEm ±	18.48	3.89	0.03	0.07	
CD at 5%	-	13.46	0.12	0.26	

* Significant at 5% level

Table 6: Number of leaves per plant and internodal length as influenced by interaction between fertigation and growth regulators

Particulars	Mean number of leaves		Mean internodal length (cm)		
G X F	Season 1	Season 2	Season 1	Season 2	
G_1F_0	164.75	148.11	3.97	3.81	
G_1F_1	190.12	185.42	4.41	4.30	
G_1F_2	219.76	231.09	5.25	4.93	
G_2F_0	177.16	161.80	4.08	3.90	
G_2F_1	212.91	202.80	4.72	4.55	
G_2F_2	225.08	242.24	5.51	5.07	
G_3F_0	147.81	149.75	3.42	3.28	
G_3F_1	185.88	180.05	3.76	3.80	
G_3F_2	196.44	217.78	4.28	4.16	
G_4F_0	163.66	155.20	3.07	3.11	
G_4F_1	182.94	181.47	3.46	3.48	
G ₄ F ₂	195.03	224.01	3.81	3.83	
F-test	NS	*	*	*	
SEm ±	8.93	2.86	0.03	0.06	
CD at 5%	-	9.91	0.12	0.22	

* Significant at 5% level

References

- Anwar U-Haq, Pervez MA, Manzur A. Effect of nitrogen, Phosphorous and Potassium on vegetative and reproductive growth of rose (*Rosa centifolia*). International Journal of Agricultural and Biology. 1999; 1(1):27-29.
- Banker GJ, Mukhopadhya A. Gibberellic acid influences growth and flowering of rose cv. Queen Elizabeth. Indian J Hort. 1982; 39:130-133.
- 3. Bhattacharjee SK, Bose TK. Effect of growth retardant on several varieties of rose. Haryana Journal of Horticulture Science. 1978; 8(3-4):209-215.
- 4. Gowda JVN. Effect of gibberellic acid on growth and flowering of rose cv. Super Star. Indian Rose Annual. 1980; IV:185-188.
- 5. Gowda JVN. Effect of gibberelic acid on growth and flowering of rose cv. Super Star. Indian Rose Annual, 1985; 4:185-187.
- 6. Gowda JVN. Effect of gibberellic acid on growth and flowering of rose cv. American Heritage. Indian Rose Ann. 1988; 7:155-157.
- Meybodi NDH, Kafi M, Nikbakht A, Rejali F. The effect of humic acid on some qualitative and quantitative traits of speedygreen turfgrass. Iranian J Hort. Sci. 2012; 42(4):403-412.
- 8. Nanjan K, Muthuswamy S. Growth and flowering responses of Edward rose (*Rose bourboriana*) to certain growth regulant sprays. South Indian Hort. 1975; 23:94-99.
- 9. Padmapriya S, Chezhiyan N. Effect of growth regulators on total phenol content and IAA oxidase activity in chrysanthemum (*Dendranthema grandiflora* Tzelev) cultivars. Orissa J Hort. 2003; 31(1):119-122.
- Palai SK, Mishra M. Response of rose cv. Montezuma to different levels of N, P and K fertigation. Orissa J Hort. 2002; 30(1):51-53.
- 11. Prabhat Kumar SPS, Raghava RL, Mishra, Krishna P Singh. Effect of GA₃ on growth and yield of China aster. J Ornamental Hort. 2003; 6(2):110-112.
- Quasim M, Iftikhar A, Tanveer A. Optimizing fertigation frequency for *Rosa hybrida* L. Pakistan J Bot. 2008; 40(2):533-545.
- Ramesh K, Kartar S. Effect of growth regulator and shoot tip pinching on carnation. J Ornamental Hort. 2003; 6(2):134-136.

- Sadanand DA, Ashok AD, Rangaswamy P. Effect of some growth regulating chemicals on growth and flowering of rose cv. First Red under greenhouse conditions. J Ornamental Horticulture, New Series. 2000; 3(1):51-53.
- 15. Singh VC, Bhattacharjee SK. Effect of preharvest treatment of SADH, CCC and ethrel on post harvest life of 'Raktagandha' roses. Indian J Pl. Physiol. 1988; 3(1):65-67.
- Suganya S, Anitha A, Appavu K. Movement and distribution of moisture, phosphorus and potassium under drip fertigation in rose. Asian J Soil Sci. 2007; 2(2):60-64.
- 17. Vidhya Sankar M, Bhattacharjee SK. Effect of nitrogen on growth, flowering and post harvest life of rose cv. Arjun. J Ornamental Hort. 2000; 3(1):22-25.