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Abstract 

In modern years, conventional medicinal plants analysis have constantly increased multinationally 

because plants allow them to complement modern pharmacological approaches. As computer mechanics 

developed, in silico approaches like network analysis and screening been extensively utilized to enlighten 

pharmacological basis of the functions of traditional medicinal plants. In these approach, network 

pharmacology, insilico screening and pharmacokinetic screening can augment active compounds among 

the candidates and indicate mechanism of action of medicinal plants. The present focus on the use of 

insilico ADME tool called SwissADME for pharmacological and pharmacognostic profiling of Butea 

monosperma Lam. The results of these study can be further carried forward by researcher to investigate 

the in vitro and in vivo studies to reveal the pharmacological basis of traditional medicinal plants. 
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1. Introduction 

The ancient mankind has a rich awareness of the usage of medicinal plants as herbal 

medicines. In the world, more than 80% of the living in slighter developed countries confide 

on traditional medicine and humans are reliant on herbs for their elemental obligations such as 

food stuffs, shelters, clothing, flavour, fragrance and medicines (Divya and Mini, 2011 & 

Manoj Kumar Mishra, 2016, Gurib-Fakim, 2006 and Brijesh & Madhusudan, 2015) [1, 2, 3, 4]. 

The drug discovery in medicinal plants affords improved and imperative leads against 

multifarious pharmacological targets including for diseases like cancer, malaria, 

cardiovascular diseases, diabetes and neurological disorders. 

Ayurveda recommends number of medicinal plants for treatment of different disorders, one of 

them being Butea Monosperma (Lam) Taub, frequently known as flame tree, belongs to family 

Fabaceae, distributed throughout India and south Asian peninsula (Shah GM, 1959) [5]. It is 

medium sized deciduous tree with 10-15 meter height, flowers are odorless and looks reddish 

and leaves are trifoliate. The plants has numerous medicinal properties like laxative, 

anthelmintics, aphrodisiac, appetizer etc. (Burli and Khade, 2007, Upadhyay B, 2011, 

Gaikwad SR, 2008, Katewa SS, 2004, Aher RK, 2004, Sikarwar RL and Kumar V, 2005, 

Tambekar DH and Khante BS, 2010, Jain A, 2004, Brijesh & Madhusudan, 2015) [6, 7, 8, 9, 10, 11, 

12, 13, 4]. Specifically they are used as Anti-stress (Soman et al, 2004) [14], Noortropic /Cognitive 

activity (Zafar et al, 1989) [15], Anti-bacterial (Ambersing et al, 2014. Bharathirajan and 

Prakash, 2014) [16, 17], Anti-filarial (Deshmukh et al, 2014) [18], Sunscreen activity (More et al, 

2013) [19], Anti-convulsant (Sangale et al, 2015) [20], Anti-anthelmintic (Borkar et al, 2011, 

Bibhilesh et al, 2000) [21, 22], Anti-oxidant (Raqibul et al, 2009. Singh et al, 2015. Sharma et al, 

2009. Vijay et al, 2008) [23, 24, 25, 26], Anti-diabetic (Harish et al, 2014. Samad et al, 2014) [27, 28], 

Anti-nociceptive/ Ameliorative potential (Venkata et al, 2013, Venkata et al, 2012) [29, 30] 

respectively. 

Analyzing and anticipating the pharmacological basis of the therapeutic activity of traditional 

medicinal plants are decisive for the goal of modernizing their use, considering the 

complicated and diverse phytoconstituents of the medicinal plants, defining the specific 

chemical components in such plants and their major biological functions (Koutsoukas A et al, 

2011, Fan Yi et al, 2018) [31, 32]. 

If quick and convenient pathway has been established to predict huge number of chemical 

constituents and then based on these if we perform in vivo and in vitro pharmacological 

experiments for verification, there will be significant improvement in the efficiency for 

evaluating the chemical activities of medicinal plants (Yi F et al, 2016) [33]. 

Swiss ADME is one such website which allows to compute physicochemical descriptors as 

well as to predict ADME parameters, pharmacokinetic properties, drug-like nature and 
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medicinal chemistry friendliness of one or multiple small 

molecules to support drug discovery. The present study was 

designed to submit the bioactive compounds present in Butea 

monosperma for insilico ADMET screening using Swiss 

ADME website (http://www.swissadme.ch/index.php) to 

evaluate the individual ADME behaviour and interpret the 

results. 

 

2. Materials and Methods 

2.1 Swiss ADME 

Swiss ADME software (www.swissadme.ch) of Swiss 

institute of bioinformatics (http://www.sib.swiss) was 

accessed in a web server that displays the Submission page of 

Swiss ADME in Google was used to estimate individual 

ADME behaviors of the compounds from Butea monosperma. 

The list is made to contain one input molecule per line with 

several inputs, defined by simplified molecular input line 

entry system (SMILES) and the results are presented for each 

molecule in tables, graphs and also an excel spreadsheet 

(Egan et al., 2000) [34]. 

 

2.2 Structure and bioavailability radar  

The two dimensional chemical structure with canonical 

SMILES were shown in the first section. The bioavailability 

radar empowers preliminary glimpse at the drug likeness of 

the molecules of interest which considers six physicochemical 

properties are taken in to account: LIPO (Lipophilicity), 

SIZE, POLAR (Polarity), INSOLU (Insolubility), INSATU 

(Insaturation) and FLEX (Flexibility) respectively. 

Lipophilicity: XLOGP3 between-0.7 and + 5.0, size: MW 

between 150 and 500 g/mol, polarity: TPSA between 20 and 

130 0A2, solubility: log S not higher than 6, saturation: 

fraction of carbons in the sp3 hybridization not less than 0.25 

and flexibility: no more than 9 rotatable bonds (Daina et al., 

2017) [35]. 

 

2.3 Physicochemical properties  

These section comprises of clean molecular and 

physicochemical characteristics like molecular formula, 

molecular weight, number of heavy atoms, number of 

aromatic heavy atoms, fraction csp3, number of rotatable 

bonds, number of H-bond acceptors, number of H-bond 

donors, molar refractivity, TPSA respectively. The values 

were computed with open babel version 2.3.0 (O’Boyle, 2011 

& Daina et al., 2017) [36, 35].  

 

2.4 Lipophilicity  

Lipophilicity is a paramount parameter in drug discovery and 

design (Leeson & Springthorpe, 2007) [37] on the grounds that 

it complements the single most informational and successful 

physicochemical property in medicinal chemistry (Testa et 

al., 2000) [38]. It is experimentally demonstrated as partition 

coefficients (log P) or as distribution coefficients (log D). Log 

P portrays partition equilibrium of an un-ionized solute amidst 

water and an immiscible organic solvent. Larger the log P 

values corresponds greater lipophilicity (Arnott & Planey, 

2012) [39]. To evaluate the lipophilicity character in a 

compound, Swiss ADME provides five freely available 

models i.e. XLOGP3, WLOGP, MLOGP, SILICOS-IT and 

iLOGP respectively. XLOGP3, an atomistic accost including 

corrective factors and knowledge based library (Cheng, 2007) 

[40]; WLOGP, application of purely atomistic method 

stationed on fragmental system (Wildman and Crippen, 1999) 

[41]; MLOGP, an archetype of topological method suggested 

on a linear relationship with implemented 13 molecular 

descriptors (Moriguchi et al., 1992 & Moriguchi et al., 1994) 

[42, 43]; SILICOS-IT, an mongrel method entrust on 27 

fragments and 7 topological descriptors; iLOGP, a physics 

based method lean on free energies of solvation in n-octanol 

and water calculated by the generalized-born and solvent 

accessible surface area (GB/SA) model; Consensus log P o/w 

is an arithmetic mean of the values predicted by the five 

proposed methods (Daina et al, 2017) [35]. 

 

2.5 Solubility  

Solubility of a compound radically confide on the solvent 

used, ambient temperature and pressure. The breadth of 

solubility measured as the saturation concentration where 

upon adding more solute does not increase its concentration in 

the solution (Lachman et al., 1986 & Savjani et al., 2012) [44]. 

A drug is considered highly soluble when the highest dose 

strength is soluble in 250 mL or less of aqueous media over 

the pH range of 1 to 7.5. Two topological approaches 

included in Swiss ADME to predict water solubility, the first 

one is the application of ESOL model (Solubility class: Log S 

Scale: Insoluble<-10 poorly<-6, moderately<-4 soluble<-2 

very<0<highly) and the second one is adapted from Ali et al, 

2012 (Solubility class: Log S Scale: Insoluble<-10 poorly<-6, 

moderately<-4 soluble<-2very<0<highly). Both differ from 

the fundamental general solubility equation (Yalkowsky & 

Valvani, 1980) [45] since they avoid the melting point 

parameter but the linear correlation between predicted and 

experimental values were strong (R2=0.69 and 0.81 

respectively). The third predictor of Swiss ADME was 

developed by SILICOS-IT (Solubility class: Log S Scale: 

Insoluble<-10 poorly<-6, moderately<-4 soluble<-2 

very<0<highly) where the linear coefficient is corrected by 

molecular weight (R2=0.75). All predicted values are the 

decimal logarithm of the molar solubility in water (log S). 

Swiss ADME also provides solubility in mol/l and mg/ml 

along with qualitative solubility classes. 

 

2.6 Pharmacokinetics  

The delineation exists in a region of agreeable properties for 

GI absorption on a plot of two computed descriptors; ALOGP 

versus PSA respectively. The region most populated by well 

absorbed molecules is elliptical, it was called Egan egg, 

which is used to assess the predictive power of the model for 

GI passive absorption and prediction for brain access by 

passive diffusion to finally lay the BOILED-Egg (Brain or 

Intestina L Estimate D permeation predictive model). The 

BOILED-Egg model produces a rapid, spontaneous, 

efficiently imitate yet boisterous method to forecast the 

passive GI absorption helpful for drug discovery and 

development (Di et al., 2012 & Brito-Sanchez et al., 2015) 

[46]. The white region is the space of the molecules with 

greater extent of absorption by GI tract, the yellow region 

(yolk) is the space with highest probability to permeate to the 

brain (Daina et al., 2017, Daina et al., 2016 & Montanari and 

Ecker, 2015) [35]. Cytochrome p450 (CYP) isoenzymes 

biotransforms more than 50-90% of therapeutic molecules 

from its five major isoforms (CYP1A2, CYP3A4, CYP2C9, 

CYP2C19, CYP2D6). P-gp is broadly dispersed in intestinal 

epithelium which pumps xenobiotic back in to the intestinal 

lumen and from the capillary endothelial cells of the brain 

back in to the capillaries (Ogu & Maxa, 2000 and Ndombera 

et al., 2019) [49, 50]. Swiss ADME adopts support vector 

machine algorithm (SVM) for the datasets of known 

substrates/non- substrates or inhibitors/non-inhibitors for 

binary classification. The resultant molecule will return “Yes” 
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or “No” if the molecule under investigation expected to be 

substrate for both P-gp and CYP respectively. The SVM 

model for P-gp substrate was built on 1033 molecules 

(training set) and tested on 415 molecules (test set), 10 fold 

CV: ACC=0.72/AUC=0.77, External: ACC=0.88/AUC=0.94 

respectively. The SVM model for Cytochrome P-450 1A2 

inhibitor molecule was built on 9145 molecule (training set) 

and tested on 3000 molecules (test set), 10 fold CV: 

ACC=0.83/AUC=0.90, External: ACC=0.84/AUC=0.91. The 

SVM model for Cytochrome P-450 2C19 inhibitor molecule 

was built on 9272 molecule (training set) and tested on 3000 

molecules (test set), 10 fold CV: ACC=0.80/AUC=0.86, 

External: ACC=0.80/AUC=0.87. The SVM model for 

Cytochrome P-450 2C9 inhibitor molecule was built on 5940 

molecule (training set) and tested on 2075 molecules (test 

set), 10 fold CV: ACC=0.78/AUC=0.85, External: ACC= 

0.71/AUC=0.81. The SVM model for Cytochrome P-450 2D6 

inhibitor molecule was built on 3664 molecule (training set) 

and tested on 1068 molecules (test set), 10 fold CV: 

ACC=0.79/AUC=0.85, External: ACC=0.81/AUC=0.87. The 

SVM model for Cytochrome P-450 3A4 inhibitor molecule 

was built on 7518 molecule (training set) and tested on 2579 

molecules (test set), 10 fold CV: ACC=0.77/ AUC=0.85, 

External: ACC=0.78/AUC=0.86. 

 

2.7 Drug likeness  

Swiss ADME performs filtering of chemical libraries to 

exclude molecules with peculiarities incompatible with an 

acceptable pharmacokinetics profile with five disparate ruled 

based filters elemental from considerable Pharma companies 

intended to improve the condition of proprietary chemical 

collections (Daina et al., 2017) [35]. The Lipinski filter (Pfizer) 

is the pioneer rule of five that characterize small molecules 

based on physicochemical property profiles which includes 

Molecular Weight (MW) less than 500, MLOGP ≤ 4.15, N or 

O ≤ 10, NH or OH ≤ 5. Lipinski considers stringently that all 

nitrogens and oxygen as H-bond acceptor and all nitrogens 

and oxygens with at least one hydrogen as H-bond donors. 

Besides, aliphatic fluorines are acceptors and alinine nitrogen 

are neither donors nor acceptors (Lipinski et al., 2001). The 

Ghose filter (Amgen) describes small molecules stationed on 

physicochemical property, existence of functional groups and 

substructures. The qualifying range includes of molecular 

weight is between 160 and 480 Da, WlogP is between -0.4 to 

5.6, molar refractivity (MR) is between 40 to 130 for total 

number of atom; the qualifying range is between 20 and 70 

atoms in a small molecule (Ghose et al., 1998 & Ghose et al., 

1999) [52, 53]. Veber filter (GSK filter) model symbolize 

molecules as drug like if they have ≤ 10 rotatable bonds and a 

TPSA equal to or less than 140 Å2 with 12 or fewer H-bond 

donors and acceptors. Compounds with these properties will 

have good oral bioavailability, reduced TPSA correlates 

increased permeation rate, increased rotatable bonds counts 

has a negative effect on the permeation rate (Veber et al., 

2002) [54]. Egan filter (Pharmacia filter) anticipates drug 

absorption depend on processes involved in membrane 

permeability of a small molecule. These model symbolizes 

molecule as a drug like if they have WLOGP ≤ 5.88 and 

TPSA ≤ 131.6 respectively. The Egan computational model 

for human passive intestinal absorption (HIA) of small 

molecule accounts for active transport and efflux mechanisms 

and is therefore robust in predicting absorption of drugs (Egan 

et al., 2000) [34]. Muegge filter (Bayer filter) is a self-reliant 

Pharmacophore point filter that segregates drug like and non-

drug like molecules. These model symbolizes molecule as a 

drug like if they have molecular weight between 200 to 600 

Da, XLOGP between -2 and 5, TPSA ≤ 150, Number of rings 

≤ 7, Number of carbon atoms > 4, number of heteroatoms > 1, 

number of rotatable bonds ≤ 15, H-bond acceptor ≤ 10, H-

bond donor ≤ 5 respectively. Abbott bioavailability score 

seeks to predicts the probability of a compound to have at 

least 10% oral bioavailability in rat or measurable Caco-2 

permeability which predicts probability of a compound to 

have F>10% based on the predominant charge at biological 

pH in a rat model. It focusses on fast screening of chemical 

libraries to select best molecules to be synthesized (Martin, 

2005) [56]. 

 

2.8 Medicinal chemistry  

The aim of these section is to bolster medicinal chemists in 

their daily drug discovery endeavours. PAINS (Pan Assay 

Interference Compounds or frequent hitters or promiscuous 

compounds) are the molecules which shows potent response 

in assays irrespective of the protein targets, notably such 

compounds are reported to be active in many different assays, 

which can be considered as potential starting points for 

further exploration. SwissADME returns warnings if such 

moieties are found in the molecule under evaluation (Baell & 

Holloway, 2010) [57]. In other model, Brenk considers 

compounds that are smaller and less hydrophobic and not 

those defined by “Lipinski’s rule of 5” to widen opportunities 

for lead optimization. This was after exclusion of compounds 

with potentially mutagenic, reactive and unfavorable groups 

such as nitro groups, sulfates, phosphates, 2-halopyridines and 

thiols. Brenk model restricts the ClogP/ClogD to between 0 

and 4, the number of hydrogen-bond donors and acceptors to 

fewer than 4 and 7, respectively, and the number of heavy 

atoms to between 10 and 27 respectively. Additionally, only 

compounds with limited complexity defined as fewer than 8 

rotatable bonds, fewer than 5 ring systems and no ring 

systems with more than 2 fused rings are considered 

medicinal (Brenk et al., 2008). The concept of lead likeness 

designed to provide leads with tremendous affinity in high 

throughput screening (HTS) that avow for exploitation of 

additional interactions in the lead optimization phase. Leads 

are exposed to chemical modifications that will most likely 

decrease size and increase lipophilicity which is less 

hydrophobic than drug like molecules. Lead optimization has 

been done by rule based method consisting of molecules with 

molecular weight in between 100 and 350 Da, ClogP between 

1 and 3.0 and are greatly considered as superior to those of 

drug like compounds and therefore lead like (Hann & Keseru, 

2012 and Teague et al., 1999) [58, 59]. 

 

3. Results 

 
Table 1: General Characteristics of Phytoconstituents of Butea Monosperma Lam. 

 

Sl. 

No 

Small 

molecule 

Pubchem 

ID 

Molecular 

formula 
Canonical SMILES 

Molecular weight 

(in g/mol) 

1 Butrin 164630 C27H32O15 

C1C(OC2=C(C1=O)C=CC(=C2) 

OC3C(C(C(C(O3)CO)O)O)O)C4=CC(=C(C=C4)O) 

OC5C(C(C(C(O5)CO)O)O)O 

596.53 
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2 Isobutrin 5281256 C27H32O15 
C1=CC(=C(C=C1C=CC(=O)C2=C(C=C(C=C2) 

OC3C(C(C(C(O3)CO)O)O)O)O)OC4C(C(C(C(O4)CO)O)O)O)O 
596.53 

3 Coreopsin 12303942 C21H22O10 
C1=CC(=C(C=C1C=CC(=O)C2=C(C=C(C=C2) 

OC3C(C(C(C(O3)CO)O)O)O)O)O)O 
434.39 

4 Isocoreopsin 12309899 C21H22O10 
C1C(OC2=C(C1=O)C=CC(=C2)OC3C(C(C(C(O3) 

CO)O)O)O)C4=CC(=C(C=C4)O)O 
434.39 

5 Monospermoside 42607524 C21H22O10 
C1=CC(=C(C=C1C=CC(=O)C2=C(C=C(C=C2)O)O) 

OC3C(C(C(C(O3)CO)O)O)O)O 
434.39 

6 Isomonospermoside 42607822 C21H22O10 
C1C(OC2=C(C1=O)C=CC(=C2)O)C3=CC(=C(C=C3) 

O)OC4C(C(C(C(O4)CO)O)O)O 
434.39 

7 Palasitrin 42607742 C27H30O15 
C1=CC(=C(C=C1C=C2C(=O)C3=C(O2)C=C(C=C3) 

OC4C(C(C(C(O4)CO)O)O)O)OC5C(C(C(C(O5)CO)O)O)O)O 
594.52 

8 Myricyl alcohol 68972 C30H62O CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO 438.81 

9 Pyrocatechin 289 C6H6O2 C1=CC=C(C(=C1)O)O 110.11 

10 Jalaric ester I 101277336 C31H48O7 
CC1(C2CCC(C23CC1C(=CC3OC(=O) 

CCCCCCCC=CCCCCCCO)C(=O)O)C=O)CO 
532.71 

11 Jalaric ester II 102239795 C31H50O9 
CC1(C2CCC(C23CC1C(=CC3OC(=O) 

CCCCCCCC(C(CCCCCCO)O)O)C(=O)O)C=O)CO 
566.72 

12 α-amyrin 73170 C30H50O 
CC1CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)C)O)C)C)C2C1

C)C)C 
426.72 

13 Nonacosanoic acid 20245 C29H58O2 CCCCCCCCCCCCCCCCCCCCCCCCCCCCC(=O)O 438.77 

14 Stearic acid 5281 C18H36O2 CCCCCCCCCCCCCCCCCC(=O)O 284.48 

15 Palmitic acid 985 C16H32O2 CCCCCCCCCCCCCCCC(=O)O 256.42 

16 Arachidic acid 10467 C20H40O2 CCCCCCCCCCCCCCCCCCCC(=O)O 312.53 

17 Lignoceric acid 11197 C24H48O2 CCCCCCCCCCCCCCCCCCCCCCCC(=O)O 368.64 

18 Oleic acid 445639 C18H34O2 CCCCCCCCC=CCCCCCCCC(=O)O 282.46 

19 Linoleic acid 5280450 C18H32O2 CCCCCC=CCC=CCCCCCCCC(=O)O 280.45 

20 Allophanic acid 150833 C2H4N2O3 C(=O)(N)NC(=O)O 104.07 

21 Butolic acid 5312870 C14H28O3 CCCCCCCCC(CCCCC(=O)O)O 244.37 

22 Shellolic acid 20055026 C15H20O6 CC1(C2CCC(C23CC1C(=CC3O)C(=O)O)C(=O)O)CO 296.31 

23 Gallic acid 370 C7H6O5 C1=C(C=C(C(=C1O)O)O)C(=O)O 170.12 

24 Cyanidin 128861 C15H11O6
+ C1=CC(=C(C=C1C2=[O+]C3=CC(=CC(=C3C=C2O)O)O)O)O 287.24 

25 Lupenone 92158 C30H48O 
CC(=C)C1CCC2(C1C3CCC4C5(CCC(=O)C(C5CCC4(C3(CC2)C)C)(

C)C)C)C 
424.70 

26 Lupeol 259846 C30H50O 
CC(=C)C1CCC2(C1C3CCC4C5(CCC(C(C5CCC4(C3(CC2)C)C)(C)C

)O)C)C 
426.72 

27 (-) -Medicarpin 336327 C16H14O4 COC1=CC2=C(C=C1)C3COC4=C(C3O2)C=CC(=C4)O 270.28 

28 Miroestrol 165001 C20H22O6 
CC1(C2CC3(CC(=O)C(C2C3O)(C4=COC5=C(C41)C=CC(=C5)O)O)

O)C 
358.39 

29 
3,9-

dimethoxypterocarpan 
101795 C17H16O4 COC1=CC2=C(C=C1)C3COC4=C(C3O2)C=CC(=C4)OC 284.31 

30 β-Sitosterone 9801811 C29H48O 
CCC(CCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(=O)C4)C)C)C(C)

C 
412.69 

31 n-heneicosanoic acid 16898 C21H42O2 CCCCCCCCCCCCCCCCCCCCC(=O)O 326.56 

 
Table 2: Lipophilicity of the Phytoconstituents of Butea monosperma Lam. 

 

Sl. No. Small molecule iLOGP XLOGP3 WLOGP MLOGP SILICOS-IT Consensus Log Po/w 

1 Butrin 1.72 -1.67 -2.87 -3.50 -2.23 -1.71 

2 Isobutrin 1.88 -0.79 -2.76 -3.58 -2.11 -1.47 

3 Coreopsin 1.83 1.02 -0.23 -1.50 -0.05 0.21 

4 Isocoreopsin 2.08 0.14 -0.34 -1.42 -0.11 0.07 

5 Monospermoside 1.66 1.02 -0.23 -1.50 -0.05 0.18 

6 Isomonospermoside 1.77 0.14 -0.34 -1.42 -0.11 0.01 

7 Palasitrin 2.14 -1.08 -2.74 -3.58 -1.96 -1.44 

8 Myricyl alcohol 7.67 14.70 10.92 7.46 11.84 10.52 

9 Pyrocatechin 1.13 0.88 1.10 0.79 0.94 0.97 

10 Jalaric esters I 4.38 5.30 5.38 3.26 6.51 4.97 

11 Jalaric esters II 4.08 3.17 3.55 1.78 5.17 3.55 

12 α-amyrin 4.77 9.01 8.02 6.92 6.52 7.05 

13 Nonacosanoic acid 6.87 14.16 10.62 7.01 10.98 9.93 

14 Stearic acid 4.30 8.23 6.33 4.67 6.13 5.93 

15 Palmitic acid 3.85 7.17 5.55 4.19 5.25 5.20 

16 Arachidic acid 4.56 9.29 7.11 5.13 7.01 6.62 

17 Lignoceric acid 5.62 11.46 8.67 6.00 8.77 8.10 

18 Oleic acid 4.27 7.64 6.11 4.57 5.95 5.71 

19 Linoleic acid 4.14 6.98 5.88 4.47 5.77 5.45 

20 Allophanic acid -0.63 -0.07 -0.67 -1.53 -1.71 -0.92 

21 Butolic acid 3.31 4.14 3.74 2.81 3.65 3.53 

22 Shellolic acid 0.98 -0.02 0.49 0.79 0.23 0.49 
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23 Gallic acid 0.21 0.70 0.50 -0.16 -0.20 0.21 

24 Cyanidin -2.59 1.94 2.91 0.32 0.24 0.56 

25 Lupenone 4.54 9.56 8.23 6.82 7.41 7.31 

26 Lupeol 4.89 9.87 8.02 6.92 6.82 7.31 

27 (-)- medicarpin 2.54 2.77 2.69 1.87 2.75 2.52 

28 Miroestrol 1.66 0.19 1.22 0.71 1.42 1.04 

29 3,9-dimethoxypterocarpan 3.25 3.09 2.99 2.11 3.27 2.94 

30 β-Sitosterone 4.70 8.98 8.23 6.62 7.63 7.23 

31 n-heneicosanoic acid 4.78 9.83 7.50 5.36 7.45 6.98 

 
Table 3: Water solubility of the Phytoconstituents of Butea monosperma Lam 

 

Small molecule 

ESOL Ali SILICOS-IT 

Log S 

(ESOL) 

Solubility 
Class 

Log S 

(ESOL) 

Solubility 
Class 

Log S 

(ESOL) 

Solubility 
Class 

mg/mL mol/L mg/mL mol/L mg/mL mol/L 

Butrin -2.24 3.47e+00 5.81e-03 Soluble -2.97 6.40e-01 1.07e-03 Soluble 0.09 7.27e+02 1.22e+00 Soluble 

Isobutrin -2.66 1.31e+00 2.20e-03 Soluble -4.11 4.59e-02 7.70e-05 
Moderately 

soluble 
0.85 4.23e+03 7.10e+00 Soluble 

Coreopsin -3.07 3.73e-01 8.58e-04 Soluble -4.33 2.03e-02 4.68e-05 
Moderately 

soluble 
-0.94 4.98e+01 1.15e-01 Soluble 

Isocoreopsin -2.64 9.86e-01 2.27e-03 Soluble -3.19 2.83e-01 6.53e-04 Soluble -1.71 8.55e+00 1.97e-02 Soluble 

Monospermoside -3.07 3.73e-01 8.58e-04 Soluble -4.33 2.03e-02 4.68e-05 
Moderately 

soluble 
-0.94 4.98e+01 1.15e-01 Soluble 

Isomonospermoside -2.64 9.86e-01 2.27e-03 Soluble -3.19 2.83e-01 6.53e-04 Soluble -1.71 8.55e+00 1.97e-02 Soluble 

Palasitrin -2.60 1.51e+00 2.54e-03 Soluble -3.58 1.56e-01 2.62e-04 Soluble 0.10 7.52e+02 1.26e+00 Soluble 

Myricyl alcohol -9.97 4.66e-08 1.06e-10 
Poorly 

soluble 
-15.23 2.58e-13 5.89e-16 Insoluble -11.32 2.11e-09 4.82e-12 Insoluble 

Pyrocatechin -1.63 2.57e+00 2.33e-02 
Very 

soluble 
-1.31 5.34e+00 4.85e-02 

Very 

soluble 
-1.18 7.21e+00 6.55e-02 Soluble 

Jalaric esters I -5.23 3.15e-03 5.92e-06 
Moderatel

y soluble 
-7.59 1.35e-05 2.54e-08 

Poorly 

soluble 
-5.52 1.59e-03 2.99e-06 

Moderately 

soluble 

Jalaric esters II -4.03 5.28e-02 9.32e-05 
Moderatel

y soluble 
-6.23 3.31e-04 5.83e-07 

Poorly 

soluble 
-4.34 2.60e-02 4.58e-05 

Moderately 

soluble 

α-amyrin -8.16 2.94e-06 6.89e-09 
Poorly 

soluble 
-9.33 2.02e-07 4.72e-10 

Poorly 

soluble 
-6.71 8.23e-05 1.93e-07 

Poorly 

soluble 

Nonacosanoic acid -9.70 8.77e-08 2.00e-10 
Poorly 

soluble 
-15.03 4.11e-13 9.37e-16 Insoluble -10.46 1.54e-08 3.50e-11 Insoluble 

Stearic acid 

 
-5.73 5.26e-04 1.85e-06 

Moderatel

y soluble 
-8.87 3.80e-07 1.33e-09 

Poorly 

soluble 
-6.11 2.19e-04 7.71e-07 

Poorly 

soluble 

Palmitic acid -5.02 2.43e-03 9.49e-06 
Moderatel

y soluble 
-7.77 4.31e-06 1.68e-08 

Poorly 

soluble 
-5.31 1.25e-03 4.88e-06 

Moderately 

soluble 

Arachidic acid -6.44 1.13e-04 3.61e-07 
Poorly 

soluble 
-9.97 3.31e-08 1.06e-10 

Poorly 

soluble 
-6.91 3.84e-05 1.23e-07 

Poorly 

soluble 

Lignoceric acid -7.89 4.71e-06 1.28e-08 
Poorly 

soluble 
-12.23 2.19e-10 5.94e-13 Insoluble -8.49 1.18e-06 3.21e-09 

Poorly 

soluble 

Oleic acid -5.41 1.09e-03 3.85e-06 
Moderatel

y soluble 
-8.26 1.54e-06 5.46e-09 

Poorly 

soluble 
-5.39 1.14e-03 4.04e-06 

Moderately 

soluble 

Linoleic acid -5.05 2.49e-03 8.87e-06 
Moderatel

y soluble 
-7.58 7.42e-06 2.64e-08 

Poorly 

soluble 
-4.67 5.93e-03 2.11e-05 

Moderately 

soluble 

Allophanic acid -0.31 5.11e+01 4.91e-01 
Very 

soluble 
-1.42 3.96e+00 3.81e-02 

Very 

soluble 
1.18 1.56e+03 1.50e+01 Soluble 

Butolic acid -3.17 1.65e-01 6.74e-04 Soluble -5.06 2.15e-03 8.80e-06 
Moderately 

soluble 
-3.57 6.53e-02 2.67e-04 Soluble 

Shellolic acid -1.47 1.01e+01 3.42e-02 
Very 

soluble 
-1.95 3.35e+00 1.13e-02 

Very 

soluble 
-0.12 2.27e+02 7.67e-01 Soluble 

Gallic acid -1.64 3.90e+00 2.29e-02 
Very 

soluble 
-2.34 7.86e-01 4.62e-03 Soluble -0.04 1.55e+02 9.10e-01 Soluble 

Cyanidin -3.34 1.31e-01 4.56e-04 Soluble -3.96 3.12e-02 1.09e-04 Soluble -2.66 6.34e-01 2.21e-03 Soluble 

Lupenone -8.43 1.58e-06 3.72e-09 
Poorly 

soluble 
-9.83 6.28e-08 1.48e-10 

Poorly 

soluble 
-7.44 1.54e-05 3.63e-08 

Poorly 

soluble 

Lupeol -8.64 9.83e-07 2.30e-09 
Poorly 

soluble 
-10.22 2.58e-08 6.05e-11 Insoluble -6.74 7.69e-05 1.80e-07 

Poorly 

soluble 

(-)- medicarpin -3.64 6.21e-02 2.30e-04 Soluble -3.43 1.00e-01 3.70e-04 Soluble -4.31 1.32e-02 4.90e-05 
Moderately 

soluble 

Miroestrol -2.35 1.59e+00 4.44e-03 Soluble -2.00 3.58e+00 1.00e-02 
Very 

soluble 
-2.57 9.62e-01 2.69e-03 Soluble 

3,9-

dimethoxypterocarpan 
-3.84 4.11e-02 1.44e-04 Soluble -3.53 8.33e-02 2.93e-04 Soluble -5.01 2.79e-03 9.82e-06 

Moderately 

soluble 

β-Sitosterone -7.66 9.03e-06 2.19e-08 
Poorly 

soluble 
-9.23 2.44e-07 5.91e-10 

Poorly 

soluble 
-6.88 5.39e-05 1.31e-07 

Poorly 

soluble 

n-heneicosanoic 

acid 
-6.80 5.13e-05 1.57e-07 

Poorly 

soluble 
-10.54 9.53e-09 2.92e-11 Insoluble -7.31 1.61e-05 4.93e-08 

Poorly 

soluble 
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Table 4: Pharmacokinetic Parameters of the Phytoconstituents of Butea monosperma Lam 

 

Small molecule 
GI 

absorption 

BBB 

permeantt 

P-gp 

substrate 

CYP1A2 

inhibitor 

CYP2C19 

inhibitor 

CYP2C9 

inhibitor 

CYP2D6 

inhibitor 

CYP3A4 

inhibitor 

Log Kp 

(cm/s) 

Butrin Low No No No No No No No -11.12 

Isobutrin Low No No No No No No No -10.50 

Coreopsin Low No Yes No No No No No -8.23 

Isocoreopsin Low No Yes No No No No No -8.85 

Monospermoside Low No Yes No No No No No -8.23 

Isomonospermoside Low No Yes No No No No No -8.85 

Palasitrin Low No Yes No No No No No -10.69 

Myricyl alcohol Low No Yes No No No No No 1.46 

Pyrocatechin High Yes No No No No No Yes -6.35 

Jalaric esters I Low No Yes No Yes No No Yes -5.79 

Jalaric esters II Low No No No Yes No No Yes -7.51 

α-amyrin Low No No No No No No No -2.51 

Nonacosanoic acid Low No Yes No No No No No 1.08 

Stearic acid High No No Yes No No No No -2.19 

Palmitic acid High Yes No Yes No Yes No No -2.77 

Arachidic acid Low No No Yes No No No No -1.61 

Lignoceric acid Low No No Yes No No No No -0.41 

Oleic acid High No No Yes No Yes No No -2.60 

Linoleic acid High Yes No Yes No Yes No No -3.05 

Allophanic acid High No No No No No No No -6.98 

Butolic acid High Yes No No No No Yes No -4.85 

Shellolic acid High No Yes No No No Yes No -8.12 

Gallic acid High No No No No No No Yes -6.84 

Cyanidin High No Yes Yes No No No No -6.67 

Lupenone Low No No No No No No No -2.10 

Lupeol Low No No No No No No No -2.10 

(-)- medicarpin High Yes Yes Yes Yes No Yes Yes -5.98 

Miroestrol High No Yes No No No No No -8.35 

3,9-

dimethoxypterocarpan 
High Yes Yes Yes Yes No Yes Yes -5.84 

β-Sitosterone Low No No No No No No No -2.44 

n-heneicosanoic acid Low No No Yes No No No No -1.31 

 
Table 5: Drug likeness of the Phytoconstituents of Butea monosperma Lam 

 

Small molecule Lipinski Veber Egan Muegge 
Bioavailability 

score 

Butrin 
No; 3 violations: MW>500, 

NorO>10, NHorOH>5 

No; 1 violation: 

TPSA>140 

No; 1 violation: 

TPSA>131.6 

No; 3 violations: TPSA>150, H-

acc>10, H-don>5 
0.17 

Isobutrin 
No; 3 violations: MW>500, 

NorO>10, NHorOH>5 

No; 1 violation: 

TPSA>140 

No; 1 violation: 

TPSA>131.6 

No; 3 violations: TPSA>150, H-

acc>10, H-don>5 
0.17 

Coreopsin 
Yes; 1 violation: 

NHorOH>5 

No; 1 violation: 

TPSA>140 

No; 1 violation: 

TPSA>131.6 

No; 2 violations: TPSA>150, H-

don>5 
0.55 

Isocoreopsin 
Yes; 1 violation: 

NHorOH>5 

No; 1 violation: 

TPSA>140 

No; 1 violation: 

TPSA>131.6 

No; 2 violations: TPSA>150, H-

don>5 
0.55 

Monospermoside 
Yes; 1 violation: 

NHorOH>5 

No; 1 violation: 

TPSA>140 

No; 1 violation: 

TPSA>131.6 

No; 2 violations: TPSA>150, H-

don>5 
0.55 

Isomonospermoside 
Yes; 1 violation: 

NHorOH>5 

No; 1 violation: 

TPSA>140 

No; 1 violation: 

TPSA>131.6 

No; 2 violations: TPSA>150, H-

don>5 
0.55 

Palasitrin 
No; 3 violations: MW>500, 

NorO>10, NHorOH>5 

No; 1 violation: 

TPSA>140 

No; 1 violation: 

TPSA>131.6 

No; 3 violations: TPSA>150, H-

acc>10, H-don>5 
0.17 

Myricyl alcohol 
Yes; 1 violation: 

MLOGP>4.15 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 

No; 3 violations: XLOGP3>5, 

Heteroatoms<2, Rotors>15 
0.55 

Pyrocatechin Yes; 0 violation Yes Yes No; 1 violation: MW<200 0.55 

Jalaric esters I Yes; 1 violation: MW>500 
No; 1 violation: 

Rotors>10 
Yes 

No; 2 violations: XLOGP3>5, 

Rotors>15 
0.56 

Jalaric esters II Yes; 1 violation: MW>500 

No; 2 violations: 

Rotors>10, 

TPSA>140 

No; 1 violation: 

TPSA>131.6 

No; 2 violations: TPSA>150, 

Rotors>15 
0.11 

α-amyrin 
Yes; 1 violation: 

MLOGP>4.15 
Yes 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Heteroatoms<2 
0.55 

Nonacosanoic acid 
Yes; 1 violation: 

MLOGP>4.15 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Rotors>15 
0.56 

Stearic acid 
Yes; 1 violation: 

MLOGP>4.15 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Rotors>15 
0.56 

Palmitic acid 
Yes; 1 violation: 

MLOGP>4.15 

No; 1 violation: 

Rotors>10 
Yes No; 1 violation: XLOGP3>5 0.56 
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Arachidic acid 
Yes; 1 violation: 

MLOGP>4.15 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Rotors>15 
0.56 

Lignoceric acid 
Yes; 1 violation: 

MLOGP>4.15 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Rotors>15 
0.56 

Oleic acid 
Yes; 1 violation: 

MLOGP>4.15 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 
No; 1 violation: XLOGP3>5 0.56 

Linoleic acid 
Yes; 1 violation: 

MLOGP>4.15 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 
No; 1 violation: XLOGP3>5 0.56 

Allophanic acid Yes; 0 violation Yes Yes No; 2 violations: MW<200, #C<5 0.56 

Butolic acid Yes; 0 violation 
No; 1 violation: 

Rotors>10 
Yes Yes 0.56 

Shellolic acid Yes; 0 violation Yes Yes Yes 0.56 

Gallic acid Yes; 0 violation Yes Yes No; 1 violation: MW<200 0.56 

Cyanidin Yes; 0 violation Yes Yes Yes 0.55 

Lupenone 
Yes; 1 violation: 

MLOGP>4.15 
Yes 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Heteroatoms<2 
0.55 

Lupeol 
Yes; 1 violation: 

MLOGP>4.15 
Yes 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Heteroatoms<2 
0.55 

(-)- medicarpin Yes; 0 violation Yes Yes Yes 0.55 

Miroestrol Yes; 0 violation Yes Yes Yes 0.55 

3,9-

dimethoxypterocarpan 
Yes; 0 violation Yes Yes Yes 0.55 

β-Sitosterone 
Yes; 1 violation: 

MLOGP>4.15 
Yes 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Heteroatoms<2 
0.55 

n-heneicosanoic acid 
Yes; 1 violation: 

MLOGP>4.15 

No; 1 violation: 

Rotors>10 

No; 1 violation: 

WLOGP>5.88 

No; 2 violations: XLOGP3>5, 

Rotors>15 
0.56 

 
Table 6: Medicinal Chemistry Properties of Phytoconstituents of Butea monosperma Lam 

 
Sl. 

No. 
Small molecule Pains Brenk Leadlikeness 

Synthetic 

accessibility 

1 Butrin 0 alert 0 alert No; 1 violation: MW>350 6.22 

2 Isobutrin 0 alert 1 alert: michael_acceptor_1 No; 2 violations: MW>350, Rotors>7 6.23 

3 Coreopsin 
1 alert: 

catechol_A 

2 alerts: catechol, 

michael_acceptor_1 
No; 1 violation: MW>350 4.98 

4 Isocoreopsin 
1 alert: 

catechol_A 
1 alert: catechol No; 1 violation: MW>350 5.00 

5 Monospermoside 0 alert 1 alert: michael_acceptor_1 No; 1 violation: MW>350 4.96 

6 Isomonospermoside 0 alert 0 alert No; 1 violation: MW>350 5.03 

7 Palasitrin 0 alert 1 alert: michael_acceptor_1 No; 1 violation: MW>350 6.29 

8 Myricyl alcohol 0 alert 0 alert 
No; 3 violations: MW>350, Rotors>7, 

XLOGP3>3.5 
3.97 

9 Pyrocatechin 
1 alert: 

catechol_A 
1 alert: catechol No; 1 violation: MW<250 1.00 

10 Jalaric esters I 0 alert 2 alerts: aldehyde, isolated_alkene 
No; 3 violations: MW>350, Rotors>7, 

XLOGP3>3.5 
7.42 

11 Jalaric esters II 0 alert 1 alert: aldehyde No; 2 violations: MW>350, Rotors>7 7.76 

12 α-amyrin 0 alert 1 alert: isolated_alkene 
No; 2 violations: MW>350, 

XLOGP3>3.5 
6.17 

13 Nonacosanoic acid 0 alert 0 alert 
No; 3 violations: MW>350, Rotors>7, 

XLOGP3>3.5 
3.86 

14 Stearic acid 0 alert 0 alert 
No; 2 violations: Rotors>7, 

XLOGP3>3.5 
2.54 

15 Palmitic acid 0 alert 0 alert 
No; 2 violations: Rotors>7, 

XLOGP3>3.5 
2.31 

16 Arachidic acid 0 alert 0 alert 
No; 2 violations: Rotors>7, 

XLOGP3>3.5 
2.77 

17 Lignoceric acid 0 alert 0 alert 
No; 3 violations: MW>350, Rotors>7, 

XLOGP3>3.5 
3.24 

18 Oleic acid 0 alert 1 alert: isolated_alkene 
No; 2 violations: Rotors>7, 

XLOGP3>3.5 
3.07 

19 Linoleic acid 0 alert 1 alert: isolated_alkene 
No; 2 violations: Rotors>7, 

XLOGP3>3.5 
3.10 

20 Allophanic acid 0 alert 0 alert No; 1 violation: MW<250 1.27 

21 Butolic acid 0 alert 0 alert 
No; 3 violations: MW<250, Rotors>7, 

XLOGP3>3.5 
2.58 

22 Shellolic acid 0 alert 0 alert Yes 5.72 

23 Gallic acid 
1 alert: 

catechol_A 
1 alert: catechol No; 1 violation: MW<250 1.22 

24 Cyanidin 1 alert: 2 alerts: catechol, Yes 3.15 
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catechol_A charged_oxygen_sulfur 

25 Lupenone 0 alert 1 alert: isolated_alkene 
No; 2 violations: MW>350, 

XLOGP3>3.5 
5.38 

26 Lupeol 0 alert 1 alert: isolated_alkene 
No; 2 violations: MW>350, 

XLOGP3>3.5 
5.49 

27 (-)- medicarpin 0 alert 0 alert Yes 3.54 

28 Miroestrol 0 alert 0 alert No; 1 violation: MW>350 5.29 

29 
3,9-

dimethoxypterocarpan 
0 alert 0 alert Yes 3.64 

30 β-Sitosterone 0 alert 1 alert: isolated_alkene 
No; 2 violations: MW>350, 

XLOGP3>3.5 
6.33 

31 n-heneicosanoic acid 0 alert 0 alert 
No; 2 violations: Rotors>7, 

XLOGP3>3.5 
2.88 

 

 
 

Fig 1: Boiled Egg Model of the Phytoconstituents of Butea monosperma Lam 

 

4. Discussion 

Ayurveda is one of the earliest system of medicine providing 

extensive leads to discover the effective and therapeutically 

useful compounds for drug development from herbs, currently 

the use of herbal medicine is widespread in both developing 

and developed countries due to its checked adverse effects 

and from its natural source (Ekor, 2013) [60]. World Health 

Organization reports over 30% of all plant species have at one 

time or another used for medicinal purposes (Schippmann et 

al, 2002) [61]. Currently, due to continuous advancement in 

computer science, lot of successful findings drugs from 

natural products using computer aided drug design methods 

for example the development of Dazamide, Imatinib, 

Dasatinib and Ponatinib etc. (Ghosh AK, Gemma, 2015) [62]. 

Computer based drug designing has been employed in the 

prediction of ADMET properties of the drugs which leads to 

budding stage drug discovery (Lipinski et al. 1997; Lombardo 

et al, 2003; Gleeson et al, 2011) [63, 64, 65]. The rationale behind 

these insilico approaches are due to relatively lower cost time 

factor involved compared to standard ADMET profiling 

(DiMasi et al. 2003; Darvas et al, 2002) [66, 67]. As an example, 

it takes a minute in an in silico model to screen 20,000 

molecules, but takes 20 weeks in the “wet” laboratory to do 

the same exercise (Hodgson 2001) [68]. Due to the 

accumulated ADMET data in the late 1990s, many 

pharmaceutical companies are now using computational 

models that, in some cases, are replacing the “wet” screens 

(Hodgson 2001) [68]. This paradigm shift has therefore spurred 

up the development of several theoretical methods for the 

prediction of ADMET parameters. A host of these theoretical 

models have been implemented in a number of software 

programs currently available for drug discovery protocols 

(OCHEM platform 2009; Lhasa 2010; Schrodinger 2011a; 

Cruciani et al, 2000) [69, 70, 71, 72], even though some of the 

predictions are often disappointing (Tetko et al, 2006) [73]. The 

software tools currently used to predict the ADMET 

properties of potential drug candidates often make use of 

quantitative structure-activity relationships, QSAR (Tetko et 

al, 2006; Hansch et al, 2004) [73, 74] or knowledge-base 

methods (Greene et al. 1999; Button et al. 2003; Cronin 2003) 

[75, 76, 77]. 

In the present study we used SwissADME online software 

tool which is available free for the users to evaluate the 

ADME properties of Butea monosperma Lam respectively. 

The phytoconstituents of the plants were enlisted through the 

software includes, Isobutrin, Coreopsin, Isocoreopsin, 

Monospermoside, Isomonospermoside, Jalaric ester I, Jalaric 

ester II, α-amyrin, β-Sitosterone, n-heneicosanoic acid, 

Pyrocatechin, Gallic acid, 3,9-dimethoxypterocarpan, Stearic 

acid, Arachidic acid, Myricyl alcohol, Palmitic acid, 

Lignoceric acid, Oleic acid, Linoleic acid, Allophanic acid, 

Butolic acid, Shellolic acid, Butrin, Cyanidin, Lupenone, 

Lupeol, (-)- medicarpin, Miroestrol, Palasitrin and 

Nonacosanoic acid (Gupta et al, 1970, Rastogi and Mehrotra, 
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1979; Singh et al, 1974, Nadkarni, 2002, Shukla et al, 2002, 

Murti et al, 1940 and Mishra et al, 2000, Barua et al, 1970, 

Ghosh et al, 1981, Guha et al, 1990, Gunakkunru et al, 2005, 

Gupta et al, 1970a, Gupta et al, 1970b, Mehta and Bokadia, 

1981) [78]. Accordingly the phytoconstituents were analyzed 

for ADME properties and depicted in respected tables and 

figures. Further, the values can be used as monographs by 

researchers and scientists for development of potential 

semisynthetic and synthetic drugs for multifarious usage. 

 

5. Conclusion 

With the rapid increase in biological and chemical 

information, CADD has been dramatically reshaping research 

and development pathways in drug candidate identification. 

Use of computational techniques in drug discovery and 

development process is widely appreciated in terms of 

implementation, time and money. A freely available 

SwissADME, a web based tool is presented in these study to 

evaluate the ADME properties of phytoconstituents present in 

Butea monosperma Lam plant. These information can be used 

as a primary tool for further evaluating the biological and 

pharmacological properties of the plant.  
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