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Abstract 

The importance of agriculture for Indian society and its role in economy, employment, food security, 

self-reliance and general well-being can hardly be over emphasized. Agriculture nowadays has become 

highly input and cost-intensive. Under the changed scenario today, forecasting of various aspects relating 

to agriculture are becoming more essential. In this study, Box-Jenkins’ autoregressive integrated moving 

average (ARIMA) technique was applied to forecast mustard yield in Gurugram and Mahendragarh 

districts of Haryana. ARIMA (0, 1, 1) and (1, 1, 0) model has been found suitable for Gurugram and 

Mahendragarh districts respectively. 
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Introduction 

Time series are an integral part of our daily life. Time series data refers to observations on a 

variable that occurs in a time sequence. A basic assumption in any TS analysis is that some 

aspects of the past pattern will continue to remain in future. A lot of computation and data 

processing problems can be solved by time series analysis. The most widely used technique for 

modeling and forecasting the TS data is Box-Jenkins’ Autoregressive integrated moving 

average (ARIMA) methodology. India is one of the largest rapeseed-mustard growing 

countries in the world, occupying first position in area and third position in production after 

the EU27 and China, and contributing around 12% of the world’s total production. India’s 

contributions to the world acreage and production are 28.3 and 19.8 percent, respectively 

(Source: www.mapsofindia.com/indiaagriculture). Rapeseed is a major oilseed crop in India, 

grown on nearly 13% of the cropped land. It is basically a winter crop and is grown in the rabi 

season from September-October to February-March in Haryana. 

Yule (1927) [13] discovered the notion of stochasticity in time-series by postulating that every 

time series can be regarded as the realization of a stochastic process. The first concept of 

ARIMA models were formulated by him and his co-workers. Panse (1952, 59, 64) [9-11] in a 

series of papers studied the trends in yield(s) of rice and wheat with a view to compare the 

yield rates during the plan period(s) with that of the pre-plan period(s). Verma and Grover 

(2006) [12] applied ARIMA modelling on wheat yield in Haryana. ARIMA models were fitted 

for wheat yield forecasts in all districts of the state and further a comparison was made with 

remote sensing-based wheat yield forecasts and real-time yield as well. Kumar et al. (2017) [5] 

discussed modeling and forecasting of soybean yield in India using ARIMA analysis. Kumar 

et al. (2019) [4] developed a model to forecast the yield of wheat in Haryana by using annual 

time series data from 1980-81 to 2009-10. They applied various methods as a random walk, 

random walk with drift, linear trend, moving average, simple exponential smoothing, and 

ARIMA models and compared each other to find out the best model to forecast the yield. 

Mallick and Mishra (2019) [7] developed univariate ARIMA models to forecast interest rates of 

different maturities and stress points. They found that ARIMA (2, 1, 1) forecasting model of 

interest rates produced a better forecast, both in the case of in-sample and out-of-sample 

performances. Kumar and Verma (2020) [3] conducted a study to find out mustard yield 

forecast models for Bhiwani and Hisar districts of Haryana using autoregressive integrated 

moving average (ARIMA) technique. They found that ARIMA (0, 1, 1) and ARIMA (1, 1, 0) 

model is suitable for Bhiwani and Hisar districts respectively. 

 

Materials & methods 

Data Description 

The Haryana state comprised of 22 districts is situated between 74° 25' to 77° 38' E longitude 

and 27° 40' to 30° 55' N latitude. The total geographical area of the state is 44212 sq. km. The 

present study dealt with modeling the time-series yield of mustard crop in Mahendragarh and  
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Gurugram districts of Haryana. The state Department of 

Agriculture and Farmers Welfare mustard yield data compiled 

for the period 1980-81 to 2018-19 of Mahendragarh and 

Gurugram districts were utilized for the training set. The yield 

data of post-sample period, i.e., 2016-17 to 2018-19 have 

been used for validity testing of the developed mustard yield 

forecast models. 

 

Methodology 

Box and Jenkins (1970) [1] proposed a family of algebraic 

models from which, the one that seems appropriate for 

forecasting a given time series is selected. Univariate Box-

Jenkins ARIMA models are based only on past patterns of the 

series being forecast and especially suited to short-term 

forecasting. The method applies to both discrete as well as to 

continuous data. However, the data should be available at 

equally spaced discrete time intervals. Also, building of an 

ARIMA model requires a minimum sample size of about 35-

40 observations and applies only to stationary time series 

data. A stationary time series has mean, variance and 

autocorrelation function essentially constant over time. 

However, the most non-stationary series arising in practice 

can be transformed into stationary series through some simple 

operations. 

ARIMA methodology is carried out in three stages, viz., 

Identification, estimation and diagnostic checking. At the 

identification stage, two graphical devices estimated 

autocorrelation function and estimated partial autocorrelation 

function are used to measure the statistical relationships 

within a data series and are helpful in giving a feel for the 

pattern in the available data. At the estimation stage, one gets 

precise estimates of the coefficients of the model chosen at 

the identification stage. This stage also provides some 

warning signals if the estimated coefficients do not satisfy 

certain mathematical inequality conditions. At the diagnostic 

checking stage, testing is done to see if the estimated model is 

statistically adequate i.e. whether the error terms are white 

noise which means error terms are uncorrelated, with zero 

mean and constant variance. For this purpose, Ljung-Box test 

is applied to the original series or to the residuals after fitting 

a model. A good account on Ljung-Box test can be found in 

Box et al. (1994) [2]. The null hypothesis is that the series is 

white noise, and the alternative hypothesis is that one or more 

autocorrelations up to certain lags are not zero. The test 

statistics is given by: 

 

 𝑄∗ = n(n + 2) ∑
𝑟𝑘

2

𝑛−𝑘

𝑚
𝑘=1  

 

where n is the number of observations used to estimate the 

model and m is the maximum number of lag. The statistics 

 𝑄∗ approximately follows a chi-squared distribution with (n-

k) degrees of freedom, where k is the number of parameters 

estimated in the ARIMA model and 𝑟𝑘 is the autocorrelation 

function of residual at lag k. If it is not satisfactory, return to 

the identification stage again to tentatively select another 

model. 

 

Results 

Time-trend analysis often reflects an underlying 

pattern/behaviour in a time series which would otherwise be 

partly or nearly completely hidden by noise. The following 

time versus yield graphs (Figure 1) are showing overall 

increasing trend for mustard crop in Gurugram, 

Mahendergarh and Sirsa districts. The linear time-trend based 

model(s), i.e., Tr= a + bt, where Tr = Yield (q/ha), a = 

Intercept, b= Slope and t = Year, have been fitted and 

predictions Tr, based on this model, yielded a predictor 

variable i.e. ‘trend yield’. 

 

 
 

 
 

Fig 1: Time versus Yield graph(s) of mustard crop 
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Identification of order for AR and MA polynomials 
At the identification steps, an appropriate order of AR and 

MA polynomials i.e. the values of p and q were determined 

with the help of acfs and pacfs of the stationary time series. 

The graphical presentation of mustard yield (q/ha) for 

Gurugram and Mahendragarh districts of Haryana in Figure 1 

clearly shows that the data series are non-stationary. Nearly, 

all of the acfs upto n/4th lags significantly differ from zero 

reflecting the same non-stationarity condition (Table 1). The 

plotting of acfs in Figure 2 also indicates that the acfs decline 

gradually implying non-stationarity for all the districts. Thus, 

the series considered here were transformed into stationary 

series by differencing of order one of the original ones (Figure 

4). Further, pacfs in Figure 3 show a significant spike at lag 1, 

just suggesting that the series may have an autoregressive 

component of order one. The same can be observed from the 

parameter values and corresponding t-test as well. 

 
Table 1: Autocorrelations of mustard yield for all the districts 

 

Lag Autocorrelation Std. Error 
Box-Ljung Statistic 

Value df Sig. 

Gurugram 

1 0.74 0.16 21.60 1 <0.01 

2 0.59 0.16 35.58 2 <0.01 

3 0.51 0.16 46.32 3 <0.01 

4 0.38 0.15 52.55 4 <0.01 

5 0.34 0.15 57.71 5 <0.01 

6 0.25 0.15 60.49 6 <0.01 

7 0.22 0.15 62.74 7 <0.01 

8 0.15 0.14 63.77 8 <0.01 

9 0.16 0.14 65.01 9 <0.01 

Mahendragarh 

1 0.40 0.16 6.27 1 0.01 

2 0.48 0.16 15.70 2 <0.01 

3 0.39 0.16 21.93 3 <0.01 

4 0.18 0.15 23.29 4 <0.01 

5 0.37 0.15 29.16 5 <0.01 

6 -0.01 0.15 29.17 6 <0.01 

7 0.06 0.15 29.36 7 <0.01 

8 0.00 0.14 29.36 8 <0.01 

9 0.01 0.14 29.36 9 <0.01 

 

 
 

 
 

Fig 2: Autocorrelations of mustard yield for all the districts 

 

Gurugram Yield 

 

Mahendergarh Yield 
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Fig 3: Partial autocorrelations of mustard yield for all the districts 

 

 
 

 

Gurugram Yield 

 

Mahendergarh Yield 

 

Gurugram Yield 
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Fig 4: Autocorrelations of mustard yield after 1st differencing for all the districts 

 

Parameter Estimation 
After trying with different lags of AR and MA orders; the 

models ARIMA (1, 1, 0) and ARIMA (0, 1, 1), were 

considered at the identification stage. ARIMA estimation was 

carried out using non-linear least squares (NLS) approach. 

The relatively popular method due to Marquardt (1963) [8] 

was used for the purpose. Parameter estimates of the fitted 

ARIMA models are given in Table 2 subsequently followed 

by the related results shown in Tables 3 and 4. 

 
Table 2: Parameter estimates of ARIMA models for mustard yield in all the districts 

 

District (s) Models Parameter Estimate Standard Error Approx. Prob. 

Gurugram 
ARIMA (1,1,0) AR(1) -0.26 0.18 0.16 

ARIMA (0,1,1) MA(1) 0.59 0.16 <0.01 

Mahendragarh 
ARIMA (1,1,0) AR(1) -0.58 0.14 <0.01 

ARIMA (0,1,1) MA(1) 1.00 98.23 0.99 

 
Table 3: Selection criteria values for choosing ARIMA models 

 

District(s) Models RMSE MAPE BIC 

Gurugram ARIMA (0,1,1) 2.20 16.67 1.80 

Mahendragarh ARIMA (1,1,0) 3.14 23.48 2.50 

 

ARIMA (0,1,1) for Gurugram and ARIMA (1,1,0) for 

Mahendragarh districts were fitted for district-level mustard 

yield(s) estimation. These models were used to obtain 

mustard yield forecasts for the post-sample period 2016-17 to 

2018-19 as has been given in Table 6. 

 
Table 4: Results on Stationarity and Invertibility conditions for AR 

and MA coefficients of fitted ARIMA models 
 

District(s) Model Stationarity Invertibility 

Gurugram ARIMA (0,1,1) * 0.59. 

Mahendragarh ARIMA (1,1,0) -0.58 ** 

*Stationarity condition is not applicable since the model is MA 

model 

**Invertibility condition is not applicable since the model is AR 

model 
 

Parameter estimates of the fitted models satisfied the 

stationarity and invertibility conditions since absolute value of 

AR and MA coefficients is less than one for all the districts. 

 

Diagnostic checking 
The model verification concerns with checking the residuals 

to see if they contained any systematic pattern which can be 

removed to improve the chosen ARIMA models. 

Approximate t-values were calculated for residual acfs using 

Bartlett's approximation for the standard error of the 

estimated autocorrelations. All Chi-Squared statistic(s) in this 

concern were calculated using the Ljung-Box (1978) [6] 

formula as has been shown in Table 5. The graphical Figure 5 

shows that none of the residual acfs in any of the districts 

were significantly different from zero at a reasonable level. 

This ruled out any systematic pattern in the residuals. 

The fitted ARIMA (0,1,1) model for Gurugram districts may 

be elaborated as: 

(1 – B) Yt= (1 - θ1B)at 

Yt-Yt-1= at -θ1Bat 

Yt= Yt-1 -θ1 at-1 + at 

 

For Mahendragarh district; fitted ARIMA (1,1,0) model is 

expressed as: 

(1 - ϕ1B) (1 – B) Yt = at 

(1 - ϕ1B) (Yt - BYt) = at 

Yt - ϕ1Yt-1 - Yt-1 + ϕ1Yt-2 = at 

Yt = (1 + ϕ1) Yt-1 - ϕ1 Yt-2 + at 

 

 

Mahendergarh Yield 
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Table 5: Diagnostic checking of residual autocorrelations based on fitted ARIMA models 

 

District(s) Model 
Ljung-box Q Statistic 

Statistic df Sig 

Gurugram ARIMA (0,1,1) 9.46 17 0.93 

Mahendragarh ARIMA (1,1,0) 23.74 17 0.13 

 

 
s 

 
 

Fig 5: Residual acfs and pacfs plots based on fitted ARIMA models 

 
Table 6: District-specific estimated mustard yield(s) based on ARIMA models and their associated percent relative deviations (RD%) = 

100×(Obs. Yield-Fitted Yield)/Obs. Yield) 
 

District/Model Forecast Year Observed Yield (q/ha) Fitted Yield (q/ha) Percent Relative Deviation 

Gurugram ARIMA (0,1,1) 

2016-17 20.03 -6.24 -6.24 

2017-18 23.25 6.84 6.84 

2018-19 22.36 1.48 1.48 

Av. Abs. percent dev.  4.85 

Mahendragarh ARIMA (1,1,0) 

2016-17 19.58 17.85 8.84 

2017-18 18.83 18.07 4.04 

2018-19 20.54 18.34 10.71 

Av. Abs. percent dev.  7.86 
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Discussion 

The forecast performance(s) of alternative models were 

observed in terms of per cent deviations of mustard yield 

forecasts about the real-time yield(s). It has been observed 

that ARIMA technique is appropriate to forecast the mustard 

yield. The ARIMA model can be improved the forecast 

accuracy when it incorporates by several variables as weather 

variables, diseases effects etc. Finally, the fitted models are 

accomplished of providing satisfactory estimates of mustard 

yield well in advance of the crop harvest. 
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