

# Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com



E-ISSN: 2278-4136 P-ISSN: 2349-8234

www.phytojournal.com JPP 2020; 9(6): 2128-2130 Received: 29-08-2020 Accepted: 11-10-2020

#### **B** Tirumalesh

Department of Horticulture, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India

#### Urfi Fatmi

Department of Horticulture, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India

Corresponding Author: B. Tirumalesh

Department of Horticulture, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India

# A comparative study on growth, flowering and corm production as influenced by cut corms and growth regulators in gladiolus (*Gladiolus grandiflorus* L.)

# **B** Tirumalesh and Urfi Fatmi

#### Abstract

The present investigation was carried out during *rabi* season of 2019-2020 at field Experiment. Department of Horticulture, Naini Agriculture Institute, Sam Higginbottom University of Agriculture Technology and Science Prayagraj (U.P.), India. The experiment was laid out in randomized block design with three replications. Treatments consisted of  $\frac{1}{2}$ ,  $\frac{1}{3}$ ,  $\frac{1}{4}$  cut corms and growth regulators (GA<sub>3</sub> 150ppm, 200ppm, 250ppm and BA200ppm, 250ppm, 300ppm) along with control (full corms). Among the different cut corms  $\frac{1}{2}$  cut corm as planting material gave the best performance in terms of good growth, flowering and number of daughter corms and spikes/ha and for corm yield and spike yield/100 corms is  $\frac{1}{4}$  cut corm performed best. Among the growth regulators, GA<sub>3</sub> @250 ppm performed better with respect to growth quality, flowering and for number of daughter corms and spikes/ha, corm yield and spike yield/100 corms is BA @ 300ppm performed best. Comparison between cut corms and growth regulators, GA<sub>3</sub> @250 ppm performed best. BA @ 300ppm gave maximum B:C ratio followed by  $\frac{1}{4}$  cut corm. Hence, GA<sub>3</sub> @250 ppm can be recommended for good growth, flowering quality and corm production while for corm multiplication, BA @ 300ppm and  $\frac{1}{4}$  cut corms can be used.

Keywords: Gladiolus, cut corms, GA3, BA

#### Introduction

Gladiolus (*Gladiolus spp.*) is an important bulbous crop belongs to family Iridaceae, which is originated from South Africa. It is attributed as 'Queen of Bulbous ornamentals' due to its popularity among the bulbous ornamental cultivated in the world. This flower bears an economic and aesthetic value for its beauty and elegance. The long flower spikes are excellent as cut flower for ornamentation when arranged in vases.

Gladiolus is grown as flower bed in gardens and used in floral arrangements for interior decoration as well as making high quality bouquets (Lepcha *et al.* 2007)<sup>[1]</sup>. In India, it is commercially cultivated in West Bengal, Himachal Pradesh, Sikkim, Karnataka, Uttar Pradesh, Tamil Nadu, Punjab and Delhi over an area of 9.37 thousand ha with a production of 707 million spikes. Presently the crop is trading in domestic and international markets with great demand. Any attempt made to encourage cut flower production in the region not only helps the florists and consumers to get fresh and quality cut flowers regularly, but also helps the small and marginal farmers in the region to improve their economic condition (Naresh *et al.* 2015)<sup>[2, 6]</sup>.

The gladiolus propagation done by cutting the corms into several pieces for increasing plant materials. Division of the corms in this regard is one of the best economical alternatives to increase the yield of corms and cormels. Corm division is mainly based on the size of the mother corms and existing buds on the corms (Gromov, 1972)<sup>[4]</sup>. Reported that medium corms are divided into 3 to 4 parts depending upon the number of buds. Each division should have a bud and a portion of root. The use of different plant growth regulators induces early flowering, enhances plant growth in terms of plant height, flower number and corm yield in gladiolus (Singh *et al* 2013)<sup>[3]</sup>. The concentration of GA<sub>3</sub> is highest in mature propagated have also be effective in overcoming both kinds of dormancy, buds as well as seeds. Gibberellic acid stimulates growth, break dormancy and delay senescence. BA it major role in plants like cell division, elongation and enlargement, induction of flowering, apical dormance-over coming in present days different treatment are given to gladiolus crop to improving its physiological characters.

#### **Material and Methods**

A field experiment entitled "A Comparative Study on Growth, Flowering and Corm Production as influenced by cut corms and growth regulators in Gladiolus" has been carried out at Department of Horticulture, Sam Higginbottom University of Agriculture, Science and Technology, Prayagraj-211007.The cut corms treated with fungicide and full corms are treated with  $GA_3$  and BA were planted at spacing of  $30 \text{cm} \times 30 \text{cm}$  at a depth of 5-6 in the month of November. The experiment was laid out in Randomized Block Design (RBD) with three replications.

# **Results and Discussion**

The data presented in Table 1 shows that significantly higher no. of sprouts pre corms in BA @ 300ppm (3.2). Maximum plant height (cm) in 60 DAS in GA<sub>3</sub> @250 ppm (63.5). Maximum number of leaves in 60 DAS in GA<sub>3</sub> @250 ppm (6.74). Significantly minimum Days to spike emergence is  $GA_3@250ppm$  (60.1). Significantly minimum Days to opening of first floret is  $GA_3@250ppm$  (86.81). Significantly maximum Spike length (cm) (112), Rachis length (cm) (52.6) in  $GA_3$  @ 250 ppm. Significantly maximum Number of florets/ spikes in  $GA_3$  @ 250ppm (12). The maximum vase life (days) in  $GA_3$  @200ppm (14). Significantly maximum Spike yield / 100 corms in <sup>1</sup>/<sub>4</sub> cut corn (400). Significantly maximum Number of spikes /ha in BA @ 300ppm (355555.3). Significantly maximum daughter corm sin <sup>1</sup>/<sub>4</sub> cut corm (400). Significantly maximum daughter corms / ha in BA @ 300ppm (355555.2).

http://www.phytojournal.com

 Table 1: Effect of cut corms and growth regulators on growth, flowering and corm production in gladiolus

| Treatment                    |             | No. of sprouts per<br>corms |           | Plant height 60<br>das |          | No. of leaves per plant 60 das |           | Days to spike<br>emergence | Days to opening of<br>first floret |
|------------------------------|-------------|-----------------------------|-----------|------------------------|----------|--------------------------------|-----------|----------------------------|------------------------------------|
| T1 (control full corm)       |             | 1.4                         |           | 58.5                   |          | 5.36                           |           | 72.8                       | 89                                 |
| T2 (1/2 corm)                |             | 1.1                         |           | 59.3                   |          | 5.19                           |           | 71.0                       | 92.3                               |
| T3 (1/3 corm)                |             | 1.0                         |           | 54.9                   |          | 4.44                           |           | 76.4                       | 94.9                               |
| T4 (1/4 corm)                |             | 1.0                         |           | 49.8                   |          | 3.7                            |           | 83.8                       | 97.1                               |
| T5 (GA <sub>3</sub> @150ppm) |             | 2.0                         |           | 578                    |          | 6.07                           |           | 71.7                       | 87.4                               |
| T6 (GA3@200ppm)              |             | 2.3                         |           | 60.4                   |          | 5.96                           |           | 67.6                       | 86.4                               |
| T7 (GA <sub>3</sub> @250ppm) |             | 2.9                         |           | 63.5                   |          | 6.74                           |           | 60.1                       | 84.8                               |
| T8 (BA@200ppm)               |             | 2.1                         |           | 51.7                   |          | 5.19                           |           | 74.0                       | 90.8                               |
| T9 (BA@250ppm)               |             | 2.8                         |           | 56.4                   |          | 4.74                           |           | 68.7                       | 90.1                               |
| T10 (BA@300ppm)              |             | 3.2                         |           | 59.8                   |          | 6.07                           |           | 64.6                       | 87.0                               |
| Mean                         |             | 2.0                         |           | 57.2                   |          | 5.34                           |           | 71.12                      | 90.01                              |
| f-test                       |             | S                           |           | S                      |          | S                              |           | S                          | S                                  |
| SE. d (±)                    |             | 0.19                        |           | 1.56                   |          | 0.62                           |           | 2.50                       | 0.82                               |
| CD (P=0.05)                  |             | 0.40                        |           | 3.27                   |          | 1.30                           |           | 5.26                       | 1.72                               |
| CV                           |             | 71.99                       |           | 16.40                  |          | 70.04                          |           | 22.98                      | 5.67                               |
| Treatment                    | Rachis      | Spike length                | No. of fl | orets per              | Vase lif | e Spike yield/100              | No. of    | Daughter corm yield/1      | 00 Daughter corm                   |
|                              | length (cm) | (cm)                        | spi       | ike                    | (Days)   | corms                          | spikes/ha | corms                      | yield/ha                           |
| T1                           | 44.5        | 91                          | 10.06     |                        | 10       | 133.3                          | 144444.3  | 146.6                      | 162962.8                           |
| T2                           | 42.0        | 75.3                        | 10.1      |                        | 11       | 213.3                          | 185518.4  | 233.3                      | 129629                             |
| T3                           | 41.0        | 73.5                        | 10.0      |                        | 10       | 300                            | 111111    | 300                        | 111111                             |
| T4                           | 37.7        | 70                          | 9.3       |                        | 9        | 400                            | 111111    | 400                        | 111111                             |
| T5                           | 45.2        | 101                         | 10.8      |                        | 12       | 200                            | 222222    | 200                        | 222222                             |
| T6                           | 47.7        | 106                         | 11.1      |                        | 14       | 216                            | 255555.3  | 230                        | 255555                             |
| T7                           | 52.6        | 112                         | 12.0      |                        | 13       | 256                            | 325925    | 293                        | 325925                             |
| T8                           | 44.6        | 92                          | 11.3      |                        | 12       | 203                            | 237036    | 213                        | 237036.8                           |
| Т9                           | 46.5        | 95                          | 11.0      |                        | 13       | 266                            | 314814    | 283                        | 314814                             |
| T10                          | 50.3        | 103                         | 11        | 11.6                   |          | 300                            | 355555    | 320                        | 355555                             |
| Mean                         | 45.2        | 91.88                       | 10        | 10.8                   |          | 248.76                         | 226295    | 261.9                      | 222592                             |
| f-test                       | S           | S                           | 5         | S                      |          | S                              | S         | S                          | S                                  |
| SE. d (±)                    | 1.00        | 0.86                        | 0.        | 61                     | 0.15     | 17.64                          | 20310.61  | 23.22                      | 20044.8                            |
| CD P=0.05)                   | 2.10        | 1.81                        | 1.        | 28                     | 0.31     | 37.06                          | 42367.81  | 48.78                      | 41812.7                            |
| CV                           | 12.65       | 1.15                        | 32.       | .87                    | 1.54     | 72.01                          | 12.09     | 88.86                      | 12.13                              |

# Conclusion

From the research conducted, it is concluded that among the different cut corms  $\frac{1}{2}$  cut corm as planting material gave the best performance in terms of good growth, flowering and number of daughter corms and spikes/ha and for corm yield and spike yield/100 corms is  $\frac{1}{4}$  cut corm performed best. Among the growth regulators, GA<sub>3</sub>@250 ppm performed better with respect to growth quality, flowering and for number of daughter corms and spikes/ha, corm yield and spike yield/100 corms is BA @ 300ppm performed best. Comparing the cut corms and growth regulators, GA<sub>3</sub>@250 ppm performed best. BA @ 300ppm gave maximum B:C ratio followed by  $\frac{1}{4}$  cut corm. Hence, GA<sub>3</sub>@250 ppm can be recommended for good growth, flowering quality and corm production while for corm multiplication, BA @ 300ppm and  $\frac{1}{4}$  cut corms can be used.

# References

- 1. Lepcha B, Nautiyal MC, Rao VK. Variability Studies in Gladiolus under Mid Hill Conditions of Uttarakhand. Journal of Ornamental Horticulture 2007;10(3):169-172.
- Naresh S, Dorajee RAVD, Vijaya BV, Uma KK, Paratpara RM. Evaluation of gladiolus hybrids under coastal Andhra Pradesh conditions. Plant Archives 2015;15(1):451-454.
- 3. Singh AK, Kumar R, Sisodia A. Effect of GA<sub>3</sub> on growth and flowering attributes of gladiolus cultivars. Annals of Agriculture Research New Series 2013;34:315-19.
- Gromov AN. Propagation of Gladiolus corms and cormels. The world of the gladiolus. NAGC, USA 1972, P98-102.
- 5. Mckay E, Byth DE, Tommerup J. The Effect of Corms Size and division of the Mother corms in Gladiolus.

Austrailan Journal of Experimental Agriculture 1981;21 (110):343-348.

- Candyman SA, Langthasa DN, Hazarika B, Gautam P, Goswami RK. Influence of GA<sub>3</sub> and BA on Morphological, Phenological and Yield Attributes in Gladiolus cv. Red IOSR Journal of Agriculture and Veterinary Science 2015;8(6):37-42.
- Asil MH, Roen Z, Abbasi J. Response of tuberose (*Polian thustuberosa* L.) to gibberellic acid and benzyladenine. Horticulture, Env and Biotech 2011;52: 46-51.
- 8. Khan FN, Rahman MM, Hossian MM. Effect of benzyladenine and gibberellic acid on dormancy breaking, growth and yield of gladiolus corms over different storage periods. Journal of Ornnamental Horticulture 2012;3:59-71.