

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 www.phytojournal.com JPP 2021; 10(1): 2296-2300 Received: 19-11-2020 Accepted: 22-12-2020

Archana Yadav

Sam Higginbottom University of Agriculture, Technology and Sciences Naini, Prayagraj, Allahabad, Uttar Pradesh, India

VM Prasad

Sam Higginbottom University of Agriculture, Technology and Sciences Naini, Prayagraj, Allahabad, Uttar Pradesh, India

Corresponding Author: Archana Yadav Sam Higginbottom University of Agriculture, Technology and Sciences Naini, Prayagraj, Allahabad, Uttar Pradesh, India

Effect of FYM and micronutrient for plant growth and development of litchi (Litchi chine sis Sonn.)

Archana Yadav and VM Prasad

Abstract

The present investigation entailed "Effect of FYM and micronutrient for plant growth and development of litchi (Litchi chine sis Sonn.)" was conducted during season, 2018-2020 at the under Prayagraj agro climatic conditions at the Horticulture Research Farm, Department of Horticulture, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Science and Technology, Prayagraj in randomized block design with 9 treatments in 3 replications and variety Purvi. Various doses of FYM and micro nutrients (T₁ F.Y.M 1.0 Kg + 0.2% Zinc sulfate, T₂ F.Y.M 1.0 Kg + 0.2% Boron, T₃ F.Y.M 1.0 Kg + 0.2% Boron + 0.2% Copper sulfate, T₅ F.Y.M 1.0 Kg + 0.2% Zinc sulfate + 0.1% Boron, T₆ F.Y.M 1.0 Kg + 0.2% Boron + 0.1% Zinc sulfate, T₇ F.Y.M 1.0 Kg + 0.2% Copper sulfate, T₈ F.Y.M 1.0 Kg + 0.1 Zinc sulfate + + 0.2% Ferrous sulfate, T₉ F.Y.M 1.0 Kg + 0.2% Copper sulfate + 0.1% Boron) were taken along with untreated control. Broadcasting was done at different days. Observations were recorded at 30, 60, 90, 120, 150 and 180 DAS. Vegetative growth parameters like Plant height (cm), Plant spread (cm) per plant, Numbers of leaves per plant, No. of Branch per plant, Stem girth (cm), Leaf area (cm²). Broadcasting of different doses of FYM and micro nutrients influenced on all characters of litchi.

Keywords: litchi, micronutrient, Fym, plant growth

Introduction

The Litchi (Litchi Chinese L) is an important subtropical evergreen fruit crop grow nine the foothills of Himachal Pradesh. It belongs to the family Sapindaceae and 2n-30, is believed to have originated from Southern China particularly the province of Kwan tong. It is highly specific to climatic requirements and due to this reason its cultivation is restricted to few countries in the world. India is the second largest producer of litchi in the world after china, among fruit crops, litchi rank seven thin areas and ninth in production. Litchi was introduced the 18Th century through Burma and from there, it spread to many countries. India and China account for 91 per cent of the world litchi production, but it is mainly marketed locally. In India total area covered by fruit crop is 6.53 M ha, production is 96.75million metric ton and per unit area production of fruit crop is 11.6 MT/ha (Indian Horticos-2018-19) In India, litchi fruit crop covered area is 0.09Mha, production is 0.71 million metric ton and productivity of litchi crop is 7.0 MT/ha (Indian Horticos-2018-19) and in Himachal Pradesh area under litchi cultivation is 3,362 hectare the production of 3, 702MT (Anonymous, 2016). In India, litchi is successfully grown in Assam, Bihar, Orissa, and West Bengal, Tripura, Punjab Uttaranchal, Himachal Pradesh and Chhota Nagpur belts of the country. Bihar is the leading producer in litchi and accounts for the 74 per cent production of the country. The probable reasons for low yield are the narrow genetic base of the crop, non availability of superior cultivars, traditional production systems, poor technological support and high incidence of insect pests coupled with poor post-harvest management practices. Litchi being a non-climacteric fruit, does not improve in quality after harvesting, but has to ripen on the tree. It is a fruit with sweet, translucent and juicy flesh. Sugar content in different cultivars ranges from 6.74 to 18.86 per cent. Besides sugar, litchi contains (0.8-0.9%) protein, 0.3% fat, 0.7% minerals and vitamin C (40-60 mg/100g pulp). Which is immediately beneath the skin? Flavour of the aril varies with cultivar, which is distinctive. Seeds are bold but in some cultivars seeds are partially developed, due to failure of pollination, referred to as 'chicken-tongue' seed. The trees with small seeded fruits are prized because of the greater portion of pulp. Relative ratios between these sugars may be different in various cultivars, stage of maturity and invert's activity (Kumar, 2014). Micronutrients plays specific role in improving the growth, yield and quality of litchi even through these elements are needed in small quantities. Zinc is essential required for growth and development in litchi and is involved in diverse range of enzyme system.

The functional role of zinc includes auxin meta bolism, influence on activating enzyme synthesis and stability of ribosomal fractions (Tisdale *et al*, 1985).

Material and Methods

The present investigation entailed "Effect of FYM and micro nutrients on growth, and development of Litchi (Litchi chine sis Sonn.)" was carried out under Prayagraj agro climatic conditions at the Horticulture Research Farm, Department of Horticulture, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Science and Technology, Prayagraj. The experimental site is situated between latitude 25°57' North and longitude of 80° 5' east and at an altitude of 98 meters above mean sea level (MSL). The experimental land is situated in the river basin of the Ganga and the Yamuna. The experiment was conducted in Randomized Block Design having 9 treatments in 3 replications. The allocation of the different treatments of the individual newly growth litchi planted plots of field using random number in each replication. The treatments were using for measuring the effect of FYM and micronutrient, treatment viz, T₀ (control), T₁ (F.Y.M 1.0 Kg + 0.2% Zinc sulfate), T₂ (F.Y.M 1.0 Kg + 0.2% Boron), T₃ (F.Y.M 1.0 Kg + 0.2% Ferrous sulfate), T₄ (F.Y.M 1.0 Kg + 0.2% Boron + 0.2% Copper sulfate), T₅ (F.Y.M 1.0 Kg + 0.2% Zinc sulfate + 0.1% Boron), T₆ (F.Y.M 1.0 Kg + 0.2% Boron + 0.1% Zinc sulfate), T₇ (F.Y.M 1.0 Kg + 0.2 Zinc sulfate + 0.1% Ferrous sulfate), T₈ (F.Y.M 1.0 Kg + 0.1 Zinc sulfate + + 0.2% Ferrous sulfate), T_9 (F.Y.M 1.0 Kg +0.2% Copper sulfate +0.1% Boron). To keep experimental plot free from the weed manually hand weeding should be done and for the control of insect and pest using chlorpyriphos 2ml/ltt. The observation were recorded Plant height (cm), plant spread (cm² per plant), Numbers of leaves per plant, No. of Branch per plant, Stem girth (cm) at 30, 60, 90, 120, 150 and 180 DAS, Leaf area (cm²).

Result and Discussion

The maximum plant height was recorded from 30th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (93.86cm) followed by T5:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boran, T6:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T4:FYM1.0kg+0.2% Copper sulfate. However minimum plant height was recorded T₀ control (77.77 cm). At 60th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (99.73cm) followed byT7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate, T6:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant height was recorded T₀ control (88.47cm). At 90th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (106.96cm) followed byT₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate, T5:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron and T₃:FYM1.0kg+0.2% Ferrous sulfate. However minimum plant height was recorded T₀ control (98.44). At 120th day T9:FYM1.0kg+0.2% Copper followed sulfate +0.1%Boron (117.13cm) byT7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate.T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate and T8:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant height was recorded T₀ control (107.38). At 150th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1%Boron (130.46cm) followed byT7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate.T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate and T8:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant height was recorded T_0 control (115.58). maximum plant canopy was recorded for 30th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (44.39cm) followed by T₄:FYM1.0kg+0.2% Copper sulfate, T2: FYM+1.0kg+0.2% Boron, T3:FYM1.0kg+0.2% Ferrous sulfate and T8:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant height was recorded T₀ control (26.33 cm).

At 60th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (46.76cm) followed byT₄:FYM1.0kg+0.2% Copper sulfate, T2: FYM+1.0kg+0.2% Boron, T3:FYM1.0kg+0.2% Ferrous sulfate, T8:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate and T7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate. However minimum plant canopy (cm) was recorded T₀ control (28.42cm). At 90th day T₉:FYM1.0kg+0.2% sulfate +0.1%Copper Boron (48.57) followed byT4:FYM1.0kg+0.2% Copper sulfate, T7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate, T8:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate and T₂: FYM+1.0kg+0.2% Boron. However minimum plant canopy (cm) was recorded T_0 control (31.16). At 120th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (53.11cm) byT4:FYM1.0kg+0.2% followed Copper sulfate, T7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate, T8:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate, T2: FYM+1.0kg+0.2% Boron and T3:FYM1.0kg+0.2% Ferrous sulfate. However minimum plant canopy (cm) was recorded T₀ control (37.49). At 150th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1%Boron (56.54cm) followed byT₄:FYM1.0kg+0.2% Copper sulfate. T7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate, T8:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate, T₂: FYM+1.0kg+0.2% Boron and T3:FYM1.0kg+0.2% Ferrous sulfate. However minimum plant canopy (cm) was recorded T₀ control (40.49). maximum stem diameter (cm) was recorded for 30th day T9:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (2.08) followed by T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate,T₂:FYM+1.0kg+0.2% Boron, T₁:FYM+1.0kg +0.2% Zinc sulfate, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate and T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate. However minimum stem diameter (cm) was recorded T_0 control (1.47). At 60th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (2.21) followed byT₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate, T6:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T5:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron and T3:FYM1.0kg+0.2% Ferrous sulfate. However minimum stem diameter (cm) was recorded T_0 control (1.62cm). At 90th day T₃:FYM1.0kg+0.2% Ferrous sulfate (2.44) followed byT₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron, T6:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T2: FYM+1.0kg+0.2% Boron and T7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate. However minimum stem diameter (cm) was recorded T₀ control (1.94). At 120th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (2.47cm) Ferrous byT3:FYM1.0kg+0.2% followed sulfate, T5:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron and T6:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate. However minimum stem diameter (cm) was recorded T_0 control (2.01). At 150th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (2.51) followed byT₃:FYM1.0kg+0.2% Ferrous sulfate, T5:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T8:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate and T2: FYM+1.0kg+0.2% Boron. However minimum stem

diameter (cm) was recorded T_0 control (2.06). maximum number of leaves plant⁻¹ was recorded for 30th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (125.49) followed by T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate,T2:FYM+1.0kg+0.2% Boron, T1:FYM+1.0kg +0.2% Zinc sulfate, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate and T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate. However minimum number of leaves plant⁻¹ was recorded T₀ control (96.07). At 60th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1%Boron (142.06)followed byT₈:FYM1.0kg+0.2%Ferrous sulfate +0.1% Zinc sulfate, T6:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate. T5:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron and T3:FYM1.0kg+0.2% Ferrous sulfate. However minimum number of leaves plant⁻¹ was recorded T₀ control (115.89). At 90th day T9:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (160.54) followed byT9:FYM1.0kg+0.2% Copper sulfate +0.1% Boron, T6:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T2: FYM+1.0kg+0.2% Boron and T7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate. However minimum number of leaves plant⁻¹ was recorded T_0 control (130.59). At 120th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (182.95) byT3:FYM1.0kg+0.2% followed Ferrous sulfate, T5:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron and T6:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate. However minimum number of leaves plant⁻¹ was recorded T₀ control (150.14). At 150th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (183.55) followed byT₃:FYM1.0kg+0.2% Ferrous sulfate, T5:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T8:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate and T2: FYM+1.0kg+0.2% Boron. However minimum number of leaves plant⁻¹ was recorded T₀ control (228.81). maximum Leaf area (cm) was recorded for 30th day T9:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (25.38) followed by T1:FYM+1.0kg +0.2% Zinc sulfate, T2:FYM+1.0kg+0.2% Boron, T3:FYM1.0kg+0.2% Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum Leaf area (cm) was recorded T₀ control (20.17). At 60th day T9:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (25.76) followed byT1:FYM+1.0kg T₂:FYM+1.0kg+0.2% +0.2%Zinc sulfate, Boron. T₃:FYM1.0kg+0.2% Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum Leaf area (cm) was recorded T₀ control (20.70). At 90th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (26.52) followed T₁:FYM+1.0kg +0.2% Zinc sulfate, T2:FYM+1.0kg+0.2% Boron, T3:FYM1.0kg+0.2% Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc 0.1% Boron, sulfate+ sulfate. T₆:FYM1.0kg+0.2% Boron+0.1% Zinc T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum Leaf area (cm) was recorded T₀ control (26.52). At 120th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (27.36) followed byT₁:FYM+1.0kg +0.2% Zinc sulfate, T₂:FYM+1.0kg+0.2% Boron, T₃:FYM1.0kg+0.2% Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron,

T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum Leaf area (cm) was recorded T₀ control (22.36). At 150th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (28.73) followed byT₁:FYM+1.0kg +0.2% Zinc sulfate, T₂:FYM+1.0kg+0.2% Boron, T₃:FYM1.0kg+0.2% Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc 0.1% sulfate+ Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate. T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum Leaf area (cm) was recorded T₀ control (23.20). maximum number of branches per plant was recorded for 30th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (6.15) followed byT1:FYM+1.0kg +0.2% Zinc sulfate, T2:FYM+1.0kg+0.2% Boron, T3:FYM1.0kg+0.2% Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T5:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boran, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum number of branches per plant was recorded T₀ control (4.41). At 60th day T₉:FYM1.0kg+0.2% sulfate +0.1%Boron (5.84) Copper followed byT1:FYM+1.0kg +0.2% Zinc sulfate, T2:FYM+1.0kg+0.2% T₃:FYM1.0kg+0.2% Boron, Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boran, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum number of branches per plant was recorded T₀ control (7.96). At 90th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (9.32) followed T₁:FYM+1.0kg +0.2%Zinc sulfate, T₂:FYM+1.0kg+0.2% Boron, T₃:FYM1.0kg+0.2% Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boran, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum number of branches per plant was recorded T₀ control (7.96). At 120th day T₉:FYM1.0kg+0.2% sulfate +0.1%Boron (12.86) Copper followed byT1:FYM+1.0kg +0.2% Zinc sulfate, T2:FYM+1.0kg+0.2% T₃:FYM1.0kg+0.2% Ferrous sulfate. Boron. T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boran, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum number of branches per plant was recorded T₀ control (9.82). At 150th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1%Boron (16.49)followed byT1:FYM+1.0kg +0.2% Zinc sulfate, T2:FYM+1.0kg+0.2% T₃:FYM1.0kg+0.2% Boron. Ferrous sulfate. T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boran, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. maximum plant spread (cm) (N-S) was recorded for 30th day T9:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (42.89) followed by T₁:FYM+1.0kg +0.2%Zinc sulfate, T₂:FYM+1.0kg+0.2% Boron, T₃:FYM1.0kg+0.2% Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate,

T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant spread (cm) (N-S) was recorded T₀ control (36.10). At 60th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (51.48) followed byT1:FYM+1.0kg +0.2%Zinc sulfate. T₂:FYM+1.0kg+0.2% Boron, T₃:FYM1.0kg+0.2% Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant spread (cm) (N-S) was recorded T₀ control (44.86). At 90th day T9:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (61.29) followed T₁:FYM+1.0kg +0.2% Zinc sulfate, T2:FYM+1.0kg+0.2% Boron, $T_3:FYM1.0kg+0.2\% \ \ Ferrous \ \ sulfate, \ \ T_4:FYM1.0kg+0.2\%$ Copper sulfate, T5:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant spread (cm) (N-S) was recorded T₀ control (48.64). At 120th day T9:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (69.95) followed byT1:FYM+1.0kg Zinc sulfate, T₂:FYM+1.0kg+0.2% +0.2%Boron, T₃:FYM1.0kg+0.2% Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant spread (cm) (N-S) was recorded T₀ control (54.81). At 150th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (80.40) followed byT1:FYM+1.0kg +0.2%Zinc sulfate, T₂:FYM+1.0kg+0.2% Boron. $T_3:FYM1.0kg+0.2\% \ \ Ferrous \ \ sulfate, \ \ T_4:FYM1.0kg+0.2\%$ Copper sulfate, T5:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T7:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant spread (cm) (N-S) was recorded T₀ control (60.33). maximum plant spread (cm) (N-S) was recorded for 30th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (28.20) followed by T₁:FYM+1.0kg +0.2%sulfate, T₂:FYM+1.0kg+0.2% Zinc Boron, T₃:FYM1.0kg+0.2% Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T5:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and

T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant spread (cm) (N-S) was recorded T₀ control (23.78). At 60th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (39.17) followed byT1:FYM+1.0kg +0.2%Zinc sulfate, T₂:FYM+1.0kg+0.2% Boron, T₃:FYM1.0kg+0.2% Ferrous sulfate, T₄:FYM1.0kg+0.2% Copper sulfate, T₅:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant spread (cm) (N-S) was recorded T₀ control (30.88). At 90th day T₉:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (49.57) followed T₁:FYM+1.0kg +0.2% Zinc sulfate. T₂:FYM+1.0kg+0.2% Boron, $T_3:FYM1.0kg+0.2\% \ Ferrous \ sulfate, \ T_4:FYM1.0kg+0.2\% \ Copper \ sulfate, \ T_5:FYM1.0kg+0.2\% \ Zinc \ sulfate+ \ 0.1\% \ Copper \ sulfate, \ T_5:FYM1.0kg+0.2\% \ Zinc \ sulfate+ \ 0.1\% \ Copper \ sulfate, \ T_5:FYM1.0kg+0.2\% \ Zinc \ sulfate+ \ 0.1\% \ Sulfate+ \ 0.1\% \ Sulfate+ \$ Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant spread (cm) (N-S) was recorded T₀ control (38.67). At 120th day T9:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (56.31) followed byT1:FYM+1.0kg T2:FYM+1.0kg+0.2% +0.2%Zinc sulfate, Boron, $T_3:FYM1.0kg+0.2\% \quad Ferrous \quad sulfate, \quad T_4:FYM1.0kg+0.2\%$ Copper sulfate, T₅:FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant spread (cm) (N-S) was recorded T₀ control (47.42). At 150th day T9:FYM1.0kg+0.2% Copper sulfate +0.1% Boron (66.47) followed byT1:FYM+1.0kg +0.2%Zinc sulfate. T₂:FYM+1.0kg+0.2% Boron, $T_3:FYM1.0kg+0.2\%\ Ferrous\ sulfate,\ T_4:FYM1.0kg+0.2\%\ Copper\ sulfate,\ T_5:FYM1.0kg+0.2\%\ Zinc\ sulfate+\ 0.1\%$ Boron, T₆:FYM1.0kg+0.2% Boron+0.1% Zinc sulfate, T₇:FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate and T₈:FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate. However minimum plant spread (cm) (N-S) was recorded T₀ control (57.75).

The increase in vegetative growth due to application of boric acid and zinc sulfate are in agreement with the work of Awasthi *et al.* (1975) ^[2] and Hoda. These findings are also in congruence with work of Sharma (2001) on apple, Khan *et al.* (2012) ^[5] on citrus, Meena *et al.* (2014) on Aonla and Prakash *et al.* (2017) ^[8] on Capegoose berry, of Das *et al.*, (2006) in sapota and Putulndriyani (2011) in pineapple.

Table 1: Effect of FYM and micro	o nutrients on growt	h of Litchi (<i>Litchi chin</i>	e sis L.) cv. Purvi
Tuble It Effect of I This and finer	o nautento on growa	I OI DICOIII (Dicoiti cittin	\mathcal{L}

Treatment	Plant height (cm)								Plan	nt can	opy (cm)		Stem diameter (cm)						
No.	Treatments Combinations	Initial	30 Days	60 Days	90 Days	120 Days	150 Days	Initial	30 Days	60 Days	90 Days	120 Days	150 Days	Initial	30 Days	60 Days	90 Days	120 Days	150 Days	
Т0	Control	65.23	77.77	88.47	98.44	107.38	115.58	24.55	26.33	28.42	31.16	37.49	40.49	1.30	1.47	1.62	1.94	2.01	2.06	
T1	FYM+1.0kg +0.2% Zinc sulfate	76.03	82.50	91.04	101.77	106.67	120.20	32.58	34.49	36.50	38.33	42.17	44.68	1.80	2.00	2.13	2.24	2.33	2.39	
T2	FYM+1.0kg+0.2% Boron	81.05	87.58	93.50	102.40	112.17	122.66	39.45	42.49	43.59	47.41	49.23	51.38	1.83	2.01	2.16	2.35	2.41	2.46	
T3	FYM1.0kg+0.2% Ferrous sulfate	77.15	88.93	96.96	102.49	109.67	124.69	38.99	40.36	42.78	45.68	49.01	52.54	1.67	1.94	2.05	2.44	2.46	2.48	
T4	FYM1.0kg+0.2% Copper sulfate	82.80	91.33	95.10	102.02	112.99	128.92	39.44	43.32	46.72	48.34	51.10	53.50	1.40	1.93	2.07	2.22	2.36	2.39	
Т5	FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron	66.65	93.41	98.26	102.51	112.64	124.50	30.51	33.71	36.76	38.54	40.82	43.47	1.71	1.93	2.12	2.24	2.33	2.38	
T6	FYM1.0kg+0.2% Boron+0.1% Zinc sulfate	73.55	92.53	99.31	101.06	114.02	125.16	34.84	36.32	38.44	40.95	44.03	46.72	1.82	1.98	2.10	2.29	2.30	2.35	
Τ7	FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate	76.52	91.23	98.63	101.09	114.99	133.33	36.82	38.37	40.60	42.69	46.05	49.52	1.84	1.98	2.15	2.23	2.28	2.34	
Т8	FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate	84.48	91.71	96.89	102.80	112.83	129.13	40.97	42.34	44.34	46.52	49.88	51.44	1.81	2.02	2.10	2.22	2.32	2.47	
Т9	FYM1.0kg+0.2% Copper sulfate +0.1% Boron	86.63	93.86	99.73	106.96	117.13	130.46	42.57	44.39	46.76	48.57	53.11	56.54	1.95	2.08	2.21	2.36	2.47	2.51	
	F-Test	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	

S.Ed (+) 1.449 0.754 1.449 0.754 1.974 0.941 1.374 0.192 0.397 0.4340.4660.150 0.048 0.033 0.051 0.0	1070.1120.0750.075).0700.107	0.100 0.0	0.316	0.980	0.912	0.833	0.403	2.888	2.580	1.976	4.148	1.583	3.044	3.044	C.D.at 0.5%	
$(\underline{\tau})$ $(1.449)0.754(1.449)0.754(1.974)0.941(1.574)0.192(0.597)0.454(0.400)0.150(0.046)0.055(0.051)0.051(0.051)$	0510.0530.0360.036).0330.051	0.048 0.0	0.150	0.466	0.434	0.397	0.192		0.941	1.974	0.754	1.449	0.754	1.449	S.Ed (<u>+</u>)	

T	The sector sector	Number of leaves per plant							eaf ar	ea (cr	n)	Number of branches per plant								
Treatment No.	Treatments Combinations	Initial	30	60	90	120	150	30	60	90		150	Initial	30	60	90	120	150		
140.	Combinations		Days	Days								Days	mua	Days	Days	Days	Days	150 Days		
T0	Control	70.41	96.07	115.89	130.59	150.14	183.55	20.17	20.70	21.23	22.36	23.20	2.91	4.41	5.84	7.96	9.82	11.71		
T1	FYM+1.0kg +0.2% Zinc sulfate	84.78	98.16	122.42	132.74	156.56	192.80	23.70	24.11	25.76	26.65	27.43	4.03	5.23	6.99	8.49	11.05	15.06		
T2	FYM+1.0kg+0.2% Boron	91.50	98.31	127.08	140.59	169.62	198.42	23.49	24.09	25.75	26.83	26.81	4.06	5.98	7.51	8.44	11.72	15.32		
Т3	FYM1.0kg+0.2% Ferrous sulfate	90.98	112.13	131.29	144.90	162.73	187.20	24.50	24.21	26.20	27.23	27.65	3.44	5.57	7.50	8.76	12.53	14.98		
T4	FYM1.0kg+0.2% Copper sulfate	92.57	105.79	129.51	147.19	171.58	195.42	24.69	24.41	25.76	26.35	27.75	3.78	5.31	7.52	8.40	12.22	15.21		
T5	FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron	96.19	110.85	135.80	150.86	174.85	196.29	23.42	24.09	25.24	26.75	27.79	3.55	6.08	8.18	9.02	11.57	14.89		
T6	FYM1.0kg+0.2% Boron+0.1% Zinc sulfate	94.21	111.23	135.83	155.17	180.53	207.79	23.82	24.30	25.49	26.73	27.28	3.53	5.91	6.95	9.00	12.84	16.16		
Τ7	FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate	94.29	114.89	132.52	151.60	174.80	216.45	24.15	24.66	25.22	26.84	28.27	3.73	5.52	7.79	8.49	12.52	15.69		
Т8	FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate	92.11	112.51	135.19	143.55	181.15	220.19	24.34	24.54	25.80	26.80	28.31	3.47	5.81	7.52	9.22	12.13	15.59		
Т9	FYM1.0kg+0.2% Copper sulfate +0.1% Boron	98.85	125.49	142.06	160.54	182.95	228.81	25.38	25.76	26.52	27.36	28.73	4.28	6.15	7.96	9.32	12.86	16.49		
	F-Test	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S		
	C.D.at 0.5%	3.087	5.263	4.636	2.568	1.852	5.491	0.540	0.188	0.165	0.192	0.197	0.510	0.934	0.514	0.663	1.064	1.084		
	S.Ed (<u>+</u>)	1.469	2.505	2.207	1.222	0.881	2.614	0.257	0.089	0.079	0.091	0.094	0.243	0.444	0.245	0.315	0.506	0.516		

Treatment		Plant spread (cm) (N-S)							lant s	pread	(cm)	(E-W)
No.	Treatments Combinations	Initial	30 Days	60 Days	90 Days	120 Days	150 Days	Initial	30 Days	60 Days	90 Days	120 Days	150 Days
TO	Control	20.39	50.10	44.00	40.04	34.01	60.33	18.30	23.78	30.88	38.67	47.42	57.75
T1	FYM+1.0kg +0.2% Zinc sulfate	30.72	37.94	48.71	56.32	63.82	70.37	21.17	27.86	35.85	43.27	52.47	63.08
T2	FYM+1.0kg+0.2% Boron							21.58					
T3	FYM1.0kg+0.2% Ferrous sulfate	31.31	38.31	48.75	59.32	68.72	74.34	20.69	27.38	37.51	48.28	55.28	61.32
T4	FYM1.0kg+0.2% Copper sulfate	32.64	39.53	48.50	60.34	61.63	79.61	19.27	27.21	38.47	48.90	53.28	61.98
T5	FYM1.0kg+0.2% Zinc sulfate+ 0.1% Boron	31.87	38.56	48.65	61.32	70.04	78.38	20.17	27.64	37.18	48.95	54.52	63.04
T6	FYM1.0kg+0.2% Boron+0.1% Zinc sulfate							21.45					
T7	FYM1.0kg+0.2%Zinc sulfate+0.1% Ferrous sulfate	31.44	40.51	50.54	59.41	67.40	79.24	22.19	27.14	37.78	45.80	54.76	63.83
T8	FYM1.0kg+0.2% Ferrous sulfate +0.1% Zinc sulfate	30.09	41.22	50.31	58.51	68.41	79.52	22.20	27.10	37.31	48.35	54.72	65.57
T9	FYM1.0kg+0.2% Copper sulfate +0.1% Boron	33.78	42.89	51.48	61.29	69.95	80.40	22.68	28.20	39.17	49.57	56.31	66.47
	F-Test	S	S	S	S	S	S	S	S	S	S	S	S
	C.D.at 0.5%	1.851	0.819	0.526	0.573	0.951	1.909	0.801	1.419	2.160	1.001	3.056	8.531
	0.881	0.390	0.250	0.273	0.453	0.909	0.381	0.675	1.028	0.447	1.455	4.060	

Reference

- 1. Ali MR, Mehta H, Jamal Udine AFM. Effects of foliar application of zinc and boron on growth and yield of summer tomato. Journal of Bioscience and Agriculture Research 2015;06(01):512-517.
- 2. Awash RP, Tripathi BR, Singh A. Effect of foliar sprays of zinc on the rut drop and quality of litchi. Punjab J Hort 1975;15:14-16.
- 3. Devadas VS, Kuriakose KP. Evaluation of different organic manures on yield and quality of pineapple var. Mauritius. Act Horticulture 2005;666:185-189.
- 4. Hoda MN, Syamal NB. Effect of zinc and growth regulators on sex, fruit formation and abscission layer in litchi. Sci. Culture 1975;41:448-450.
- Khan AS, Ullah W, Malik AU, Ahmad R, Saleem BA, Rajwana IA. Exogenous applications of boron and zinc influence leaf nutrient status, tree growth and fruit quality of Neutral's early (*Citrus reticulate* Blanco). Pakistan J Agric. Sci 2012;49(2):113-119.
- 6. Kumar Maneesh Dhurve, Sharma TR, Manmohan Singh Bhooriya, Govardhan Lodha. 20Effect of foliar application of zinc and boron on growth, reproductive

and yield of pomegranate cv. Gnash in hast bather. International Journal of Chemical Studies 2018;6(5):499-503.

- Kumar Manor, Jagannath Mandal, Raj Kumar Gupta, Praveen Kumar Mishra. Effect of Micronutrients and Plant Growth Regulators on Yield and Quality of Litchi (*Litchi chinese* Sonn.) Fruits. Advances in Life Sciences 2016;5(21), Print: ISSN 2278-3849, 9663-9666, 2016.
- Prakash O, Kumar A, Singh Y. Effect of Nitrogen, Zinc Sulfate and Boron on Growth and Yield of Cape Gooseberry (*Physalis peruviana* L.), Int. J Pure App. Biosci 2017;5(3):74-84.