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Abstract 

Virus infection in plants lead to the alteration of physiological, biochemical and metabolic processes such 

as total protein synthesis, activation or synthesis of defence peptides and proteins, rapid production of 

reactive oxygen species (ROS) as well as synthesis of phenols. Banana Bract Mosaic Disease (BBrMD) 

is one of the most destructive viral diseases of banana, however, information on physiological and 

biochemical changes during banana-BBrMV interaction is still unexplained. Therefore, the present 

investigation was conducted to find out the quantifiable changes in biochemical parameters such as total 

proteins, phenolic compounds, peroxidase (PO), polyphenol oxidase (PPO), catalase (CAT) ascorbate 

peroxidase (APX), guaiacol peroxidase (GPX) and superoxide dismutase (SOD) activities in leaves of 

commercial banana cultivar Poovan (AAB) and a plantain cv. Nendran (AAB). The amount of phenols, 

total protein, GPX and SOD activities were significantly higher in leaves of BBrMV infected plants of 

both the cultivars over the healthy plants, whereas PO, PPO, CAT and APX activities reduced in infected 

than healthy plants. Overall the results suggest that BBrMV infection induces significant changes in 

biochemical and enzyme levels leading to irreversible symptom development and significant yield loss. 
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Introduction 

Plants undergo many characteristic physiological and metabolic changes upon virus infection 
[1]. Plant virus interaction triggers defence response which lead to the accumulation of reactive 

oxygen species (ROS) such as superoxide ions, hydrogen peroxide, hydroxyl radicals and the 

singlet oxygen. The burst of ROS is a common feature of incompatible and compatible plant-

virus interactions and this could be a key step in the activation of the defence against virus 

infection. ROS is responsible for eliciting pathogen restriction and death of plant cells at the 

infection site and it also induces defence response in adjoining cells. Early ROS accumulation 

at the virus infection site determines the outcome of the defence in host plants. A slow 

response in the host may lead to virus infection resulting in oxidative stress and programmed 

cell death (PCD). The concentration of ROS varies in different patho-systems and is 

influenced by antioxidant capacity of the plant. Both enzymatic and non-enzymatic systems 

play an important role in maintaining the levels of ROS in plants upon pathogen entry. Among 

these, enzymatic ROS scavenger ameliorates the effects caused by the presence of cellular 

oxidants [2]. 

Banana and plantain are the most important food crops of the world. Banana cultivation is 

subjected to many natural calamities, but pests and diseases constitutes major problem. Among 

pest and diseases, viral diseases cause serious yield losses [3, 4]. Banana bract mosaic disease 

(BBrMD) caused by Banana bract mosaic virus (BBrMV), a member of the genus Potyvirus 

and family Potyviridaeis one of the most important viral diseases which was first observed in 

Philippines in the year 1988. The virus occurrence was discovered in few countries in Asia and 

South Pacific, including India, the Philippines, Samoa, Sri Lanka, Thailand, Vietnam, 

Colombia and Ecuador [5, 6]. In Hawaii (USA), BBrMV was detected in ornamental ginger 

plants (Alpinia purpurata) but not in Musa and it has also been reported in small cardamom in 

India [7]. BBrMV is found in plants of all age group and primarily transmitted through infected 

suckers and secondary spread is through aphid vectors with non-persistent transmission. The 

incidence of disease ranges from 5 to 36 per cent and more in cv. Nendran in Kerala. The 

infected plant yields bunch, but the fingers are smaller in size and malformed. Very severely 

affected plants may fail to flower and may die by stunted growth and necrosis of pseudostem. 

The male buds are dark purple in color with mosaic patches.  
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There are varietal differences in the symptomatology of the 

disease. The disease has a great impact on the yield of the 

crop with maximum yield reduction in cv. Robusta (AAA) 

(70%), followed by cv. Nendran (AAB) (52%). Besides yield 

reduction, the fingers become malformed and curved, which 

reduce the market acceptability of fruits [6]. 

With the emergence of BBrMV in India, identifying the 

resistance source and breeding for resistance is the need of the 

hour. Disease resistance against BBrMV in banana is 

associated with genetic background and activation of defense 

enzymes that interferes with pathogen establishment. 

However, the biochemical alteration in the host induced by 

the infection of BBrMV remains unexplored. Hence, the 

present investigation was undertaken to determine the 

biochemical and physiological changes upon virus infection 

indicating their role in two widely grown susceptible 

commercial bananas. 

 

Materials and Methods 

Virus inoculation and sample collection 

Banana cultivars, Nendran (AAB) and Poovan (AAB) were 

used in the present investigation. Three-month-old suckers 

were planted in pots containing a mixture of sand, loam and 

compost (1:1:2). These pots were kept in insect-proof glass 

house. The transmission was carried out as described by 

Selvarajan et al. (2006) [8]. The banana black aphids, 

Pentalonia nigronervosa (Fifteen adult or late instar aphids) 

were collected, allowed to starve for 30 min and transferred to 

bract mosaic infected banana plants having four to five well 

developed leaves for acquisition access period of 5-10 min. 

Then the viruliferous aphids were allowed for inoculation 

feeding for 30 min at 25±1.0 °C with 12h light/dark 

photoperiod. At the completion of inoculation-feeding period 

plants were sprayed with insecticide imidacloprid (0.1%) and 

kept in the insect-proof glasshouse for monitoring the 

symptoms. All the plants showed typical BBrMV symptoms 

after 30-40 days of inoculation. The mock inoculated healthy 

plantsof each cultivar were maintained as control. Leaf 

samples were collected from BBrMV inoculated plants after 

symptom development and healthy control plants to 

determine the enzyme activity.  

 

Preparation of enzyme extract 

One gram of leaf sample was homogenized at 4 °C in 1 ml of 

extraction buffer [0.1Msodium phosphate buffer (pH 7.0), 1% 

Triton X-100 and 7mM 2-mercaptoethanol] with mortar and 

pestle. The homogenate was then centrifuged at 12000 rpm 

for 20 min at 4 oC and the supernatant was used as the crude 

extract for the estimation of different biochemical parameters. 

 

Estimation of total protein content 

Total protein was estimated calorimetrically by using 

Bradford method [9] recording absorbance at 595 nm. Bovine 

serum albumin was used as standard. Protein content in leaf 

samples was recorded as μg of protein per gram of leaf.  

 

Estimation of phenol  

The phenolic content was estimated using Folin-Ciocalteau 

reagent. 80% ethanol was used for extraction of phenols. One 

gram of plant material was ground in two 5 ml portions of 

80% ethanol and centrifuged. The extracts were pooled and 

made up to 10ml. 0.1ml of ethanol extract was evaporated on 

a water bath, to which 6 ml water was added and shaken well 

before addition of 0.5 ml Folin-Ciacalteau reagent. After 5 

min, 2 ml of 20% sodium carbonate solution was added. After 

incubation for 30 min, absorbance at 660 nm was measured. 

Using pyrocatechol as standard, the phenol content in the leaf 

extract was calculated [10].  

 

Enzyme assays 

Peroxidase (PO) activity was measured by following the 

protocol of Malik and Singh (1980) [11]. In this method, 3.5 ml 

of phosphate buffer (PH-6.5) and 0.2ml of enzyme extract 

were added to a mixture of 0.1ml of freshly prepared O-

dianisidine solution and 0.2ml of 0.2M H2O2in a test tube. 

The development of an orange color indicates the presence of 

the peroxidase enzyme and immediately absorbance of the 

reaction mixture was read at 430 nm at every 30 sec 

intervalupto 3 min.  

The specific activity of all the enzymes assayed in this study 

were expressed as units /min/mg of protein on fresh weight 

basis. 

Polyphenol oxidase (PPO) activity was measured as described 

by Ngadze et al. (2012) [12]. One ml of enzyme extract 

supernatant was transferred to a test tube and mixed with 2.9 

ml of 0.05 M sodium phosphate buffer and 1 ml of 0.1 M 

catechol (Sigma). The mixture was aliquoted into three 

portions for measurement of PPO activity. The absorbance at 

546 nm was measured for 4 min at 20 sec intervals. 

For the estimation of CAT activity, assay solution (3 mL) was 

prepared by mixing 50 mM phosphate buffer (pH 7.0), 5.9 

mM H2O, and 0.1 mL enzyme extract. Reduction in 

absorbance of the reaction solution at 240 nm was recorded 

after every 20 sec [13].  

Ascorbate peroxidase (APX) activity was determined 

according to the method of Chen and Asada (1989) [14] with 

minor modification. Reaction mixture (1 ml) contained 50 

mM phosphate buffer (pH 7.0), 0.1 mM EDTA, 0.5 mM 

ascorbate, 1.54 mMH2O2 and 50 µl of enzyme extract. 

Decrease in the absorbance at 240 nm indicates the oxidation 

of ascorbate. One unit of APX was defined asthe amount of 

enzyme that oxidized1 μmol of ascorbate per min at 25°C. 

Guaiacol peroxidase (GPX) activity was measured as per the 

protocol described by Upadhyaya et al. (1985) [15]. The 

reaction mixture contained 2.5 ml of 50 mM phosphate buffer 

(pH-6.1), 1 ml of 1% H2O2, 1 ml of 1%guaiacol and 20 µl of 

enzyme extract. The increase in absorbance was monitored 

spectrophotometrically for 1 min at 470 nm. 

Superoxide dismutase (SOD) activity was assayed by 

measuring its ability to inhibit the photochemical reduction of 

nitroblue tetrazolium (NBT) using the method of Dhindsa et 

al. (1981) [16]. Three ml reaction mixture contained 50 mM 

phosphate buffer (pH 7.8), 13 mM methionine, 75M NBT, 2 

M riboflavin, 0.1 mM EDTA and 50 µl of enzyme extract. 

Riboflavin was added last and the tubes were shaken and 

placed 30 cm below a light bank consisting of two 15 W 

fluorescent lamps for 10 min. The absorbance of the reaction 

mixture was read at 560 nm. One unit of SOD activity was 

defined as the amount of enzyme required to cause 50% 

inhibition of the reaction of NBT. 

 

Statistical analysis  

The experiment was carried out following two factorial 

completely randomized design (FCRD) with three replicates. 

The data set of biochemical analysis were submitted to two-

way analysis of variance (two-way ANOVA), followed by the 

LSD at 5% for mean comparison among the factors and their 

interactions. The two-way ANOVA, of the data set were 

performed using OPSTAT (http://14.139.232.166/opstat/) [17].  
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Results and Discussion 

The total protein content in banana cultivar Poovan was 

significantly higher than that of Nendran (Fig. 1A). In 

infected plants, the total protein content increased 

significantly in comparison to the un-inoculated control 

irrespective of the cultivars. An increase of 1.5-fold and 1.01-

fold total protein was recorded in BBrMV infected Nendran 

and Poovan cultivars in comparison to un-inoculated control, 

respectively. Infected plants showed higher protein content, 

which could be due to both the activation of host defence 

mechanisms [2] and synthesis of virus specific proteins during 

pathogenesis and accumulation of virus particles. Similar 

findings have been reported by several workers in many host 

– virus systems viz., Cucurbita pepo infected with Zucchini 

yellow mosaic virus (ZYMV) [18], black gram infected with 

Urdbean leaf crinkle virus (ULCV) [19], mungbean infected 

with Mungbean yellow mosaic virus (MYMV) [20], cucurbits 

infected with Cucumber mosaic virus (CMV) [21] and 

Sunflower necrosis tospo virus (SNV) infected sunflower [22]. 

The total phenolic content was significantly elevated in 

response to BBrMV infection as compared to control in both 

the cultivars. We also recorded that there was a natural 

variation in the total phenolic content among the cultivars. In 

cultivar Nendran the phenolic content was significantly higher 

than Poovan and similar observations have been reported in 

banana [23]. In BBrMV infected Nendran and Poovan, 2.3-fold 

and 1.36-fold increase in total phenol was observed 

respectively as compared to the healthy (Fig. 1B). Increased 

level of phenolics could be due to the acceleration of phenol 

synthesizing pathway upon virus infection and it also 

attributes to induced resistance for restricting further invasion 

by BBrMV. The phenolic accumulation may be regarded as a 

sign of avoidance of virus infection and establishment [24, 25, 

26]. Both the cultivars studied were relatively susceptible to 

BBrMV, but the symptom development was faster in Poovan 

than cultivar Nendran (Selvarajan, unpublished). In the 

present study, 2.3-foldincrease in phenol was observed in 

Nendran after BBrMV infection which might be the reason 

for delayed symptom development and this corroborates with 

the results of Tanuja et al. (2019) [27] in banana infected with 

Banana bunchy top virus (BBTV). The increase in phenolics 

in response to virus has also been reported in mothbean 

infected with Yellow mosaic virus (YMV) [28], Capsicum 

annum infected with Gemini virus [29], black gram infected 

with ULCV [19], papaya infected with Papaya meleira virus 

(PMeV) [30] and CMV infected cucurbits [21]. 

The changes in the enzyme activities (PPO, PO, CAT, APX, 

GPX and SOD) due to BBrMV infection in Nendran and 

Poovan are furnished in Fig. 2.  

PPO activity was significantly higher in control plants as 

compared to BBrMV infected leaf samples of both cultivars. 

PPO activity was significantly lowered by 0.4- and 0.5-fold in 

Nendran and Poovan plants inoculated with BBrMV in 

comparison to control (Fig. 2A). It has been demonstrated that 

higher soluble phenols, together with higher PPO may play a 

role in resistance toviral pathogens [31], but reverse trend have 

been observed in this study. The decrease in the activity of 

PPO can be correlated with accumulation of phenols in 

BBrMV infected leaves. Tanuja et al. (2019) have reported 

similar results in banana upon BBTV infection. 

The PO activity was significantly decreased by 0.4-fold and 

0.72-fold in Nendran and Poovan plants inoculated with 

BBrMV as compared to control (Fig. 2B). POs are involved in 

plant defense by the production of pathogenesis-related 

proteins and in the formation of lignin around the cell which 

limits pathogens to cross from the place of penetration [32]. 

Similar reduction in the PPO activity results were observed in 

kenaf and roselle plants infected with Mesta yellow vein 

mosaic virus (MeYVMV) [33] and cotton infected with Cotton 

leaf curl viruses (CLCuBV) [34]. PO and PPO enzyme 

probably affects synthesis of compounds effective in 

conferring resistance.  

In this study, catalase activity was significantly reduced by 

0.37-fold and 0.69- fold in BBrMV infected samples than 

healthy samples of Nendran and Poovan, respectively (Fig. 

2C) suggests that, a sharp decrease inactivity of CAT may be 

due to inhibition of the enzyme substrate - H2O2 
[35]. CAT 

enzyme acts as a monitoring index for plant response to 

viruses. Catalase scavenges hydrogen peroxide (H2O2) and it 

directly dismutates it to H2O and O2 
[27, 31]. CAT activity has 

also, been reported to decrease in cells undergoing 

hypersensitive reaction (HR) [36]. Reduced catalase activity 

was observed in Phaseolus vulgaris infected with White 

clover mosaic virus (WCLMV) [37], ULCV infected urdbean 
[38], Plum pox virus (PPV) infected apricot [39], Kenaf and 

Roselle plants infected with MeYVMV [33] and Nicotiana 

benthamiana infected with Pepper mild mottle virus 

(PMMoV) [40]. Decrease in catalase and peroxidase activity in 

both the cultivars upon BBrMV infection can be correlated 

well with disease severity and indicates breakdown of 

resistance against pathogen [41].  

APX activity was significantly lowered by 0.97-fold and 0.38-

fold in BBrMV infected Nendran and Poovan cultivars than 

the healthy, respectively (Fig. 2D) thereby reducing the 

capability of cells to scavenge H2O2 resulting in HR cell 

death. Similar result was observed by Vanacker et al. (1998) 
[42] in barley. Activity of GPX was increased significantly in 

the BBrMV infected leaf by 1.2-fold and 1.55-fold in 

comparison with control plants of Nendran and Poovan, 

respectively (Fig. 2E). Induced GPX activity can be attributed 

primarily to resistance against the viral pathogen. Similar 

results were observed in peanut mottle virus infected peanut 

plants [43], mungbean infected with MYMV [44] and banana 

infected with BBTV [31]. 
SOD activity was found to be significantly higher by 1.8-fold 
in Nendran and 1.12-fold in Poovan infected with BBrMV 
than healthy (Fig. 2F). As such the SOD activity was higher 
in Nendran than Poovan under natural conditions which might 
be the reason for delayed expression of symptoms due to 
BBrMV(data not shown). The higher SOD activity in infected 
leaves indicates a probable mechanism of overcoming the 
stress situation [33]. Increased SOD activity has been proved 
upon virus infection in prunus [45], mesta [33], sunflower [46], 
peanut [43] and papaya [30]. Overall, the enzyme activity in case 
of Nendran, is significantly higher as compared to Poovan 
which may be attributed to their genetic makeup.  
The activities of anti-oxidative enzymes were studied in 

banana cultivars Nendran and Poovan which showed 

significant changes in response to BBrMV infection. There 

has been a significant increase of GPX, SOD and substantial 

decrease in CAT, PPO, PO and APX activity upon challenge 

inoculation with BBrMV in banana. Similar trend was 

observed in many plant species infected with viruses. 

Therefore, we conclude that the BBrMV infection in banana 

triggers ROS accumulation and induce changes in the 

antioxidative enzymes. These anti-oxidative enzymes could 

be shortlisted for developing biomarker for the use in 

diagnosis and to study the virus response in banana. The 

putative biomarker could be validated in 320 core banana 

germplasm collections being maintained in the field gene 

bank of ICAR-NRCB, Trichy for resistance to BBrMV. 
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(A) 

 

 
Results are expressed as mean ± SE (n = 3) using two-way ANOVA. [Means followed by the same small alphabet 

(Variety), by the same capital alphabet (upon BBrMV infection) and by the same lower case alphabet in italics 

(Interaction = Variety x BBrMV) are not significantly different (p ≤ 0.05) by LSD test;NH = Nendran Healthy; NI= 

Nendran Infected; PH=Poovan Healthy; PI= Poovan Infected]. 
 

(B) 
 

Fig 1: Total protein (A) and total phenol (B) content of healthy and BBrMV infected Nendranand Poovanleaf tissue. 
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(E) 

 

 
Results are expressed as mean ± SE (n = 3) using two-way ANOVA. [Means followed by the same small alphabet 

(Variety), by the same capital alphabet (upon BBrMV infection) and by the same lower case alphabet in italics 

(Interaction = Variety x BBrMV) are not significantly different (p ≤ 0.05) by LSD test;NH = Nendran Healthy; NI= 

Nendran Infected; PH=Poovan Healthy; PI= Poovan Infected]. 
 

(F) 
 

Fig 2: Changes in enzyme activities of A) PPO,B) POX, C) CAT, D) APX, E) GPX, F) SOD in healthy and BBrMV infected Nendranand 

Poovanleaf tissue 
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