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Abstract 

Seed germination, emergence and crop growth are often constrained by multiple environmental stress 

under field condition limiting productivity. Seed priming, a age old inexpensive technique, consisting of 

soaking seeds in priming agent prior to sowing, has been applied to different crops and conditions with 

varying degrees of success. To understand the significance of this potentially transformative agronomic 

strategy, we have reviewed here the detailed mechanism of seed priming at physiological and molecular 

level along with secondary metabolite production. Seed priming has significant positive impact on 

germination, crop health, yield, mitigation of biotic and abiotic stresses irrespective of its methods such 

as hydropriming, on-farm priming, halo-priming, osmopriming, osmo- hardening, hormonal priming, 

matrix priming, nutripriming or bio-priming. This technology could be effectively adopted as a strategy 

to increase food security in commercial agriculture. 
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Introduction 

Quick and uniform seed germination and seedling emergence are key factors of successful 

crop stand and robust growth in modern agriculture (Rajjou et al., 2012 [1]; Chen and Arora, 

2013) [2]. Germination process begins with imbibition or water soaking by the dry seeds and 

ends with the elongation of radicle followed by protrusion of the root and shoot. All seeds 

stored under air dry conditions are subjected to various biochemical damage occurring at 

cellular level, resulting natural seed aging, lowering seed quality or even loss of viability, 

subsequently limiting seed germination and crop productivity.  

Seed priming in an artificial initiation of pre-germination metabolic activities under controlled 

seed hydration with priming agents, but it interrupts actual radicle emergence (Ibrahim, 2016) 
[3]. Robust seedling health with exploitation of early vigour, efficiently mitigate multiple 

environmental stresses and enhance crop productivity. It also improves the germination of 

weak, damaged or aged seeds. The general mechanism of priming is to make the seed tolerant 

of desiccation and stimulatory to germination. In this paper, we will review recent 

developments in studies on seed priming with specific reference to mechanisms at 

physiological, biological and molecular level to understand its potential scope in commercial 

agriculture.  

 

History 

Since right from the start of agriculture, man accomplished that the majority seeds don't 

germinate simply and uniformly. Heydecker coined the word “Seed Priming” in 1973 and he 

successfully adopted seed priming to enhance seed germination and emergence underneath 

nerve-racking conditions (Heydecker et al., 1973) [4]. Theophrastus (372–287 BC) centered on 

seed physiology and steered that germination method is also briefly interrupted. He suggested 

the pre-soaking of cucumber seeds in milk or water to germinate earlier and smartly (Evenari, 

1984) [5]. A like Greek farmers, Roman farmers also applied the science of seed priming in 

order to increase the germination rate with synchronized germination. Different types of seed 

priming technologies have been developed with the course of time. Among the seed priming 

techniques, the farmers of India, Nepal, Pakistan and Zimbabwe etc commonly adopt hydro 

priming. Centre for Arid Zone Studies (CAZS) prescribed “safe limits” for the on-farm seed 

priming of maize, upland rice, wheat, chickpea and sorghum. On farm seed priming could be a 

reliable and a wide applicable technology.  
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The International Crops Research Institute for the Semi-Arid 

Tropics (ICRISAT) has been promoting the use of chickpea in 

rice fallow cultivable areas of Bangladesh using on-farm seed 

priming. Seed priming with trace elements (i.e. Selenium, 

Nano Zinc) is given importance recently for not only better 

crop yield but also for its enhanced nutrition value. 

 

Mechanism 

Seed germination involves a series of steps ultimately leading 

to radical protrusion from imbibed seeds. Water content is 

very low in dry mature seeds (5–15%) which leads to stopped 

metabolic activities of seeds. The initiation of metabolic 

activities in such seeds leading to embryo development 

depends on suitable environmental conditions like 

temperature, water, and oxygen. Water uptake in germinating 

seed is basically a triphasic process, phase I, i.e., imbibition 

with a rapid initial water uptake, phase II as an activation 

phase with slight change in water content, and phase III with a 

further increase in water uptake that occurs as the embryo axis 

elongates resulting in resumption of growth (Rajjou et al., 

2012; Lutts et al., 2016) [1, 6]. Before the end of activation 

phase, the germination process appears as a reversible process 

in which seeds can be dehydrated again in order to maintain 

viability during storage to facilitate reinitiation of germination 

under suitable conditions. The germination process of seed 

that has no problem with dormancy and coat permeability 

occurs in three phases when water enters inside dry seeds 

(Bewley et al., 2013) [7]. The germination process may be 

divided into the subsequent 3 phases: 

 

 
 

Fig 1: Schematic representation of the water uptake within the seed during standard germination and seed priming process. (Rajjou et al., 2012) 
[1] 

 

Phase I 

The cell wall resistance towards cell expansion results in 

increase in turgor potential of the cell. Dry seeds when soaked 

in water lead to rapid uptake of water because solutes inside 

the seed cells decrease the turgor potential (phase I). 

Increased seed water potential during imbibition causes an 

increase in the seed water content. During seed imbibition, 

existing and new messenger ribonucleic acid (mRNA) leads 

to proteins synthesis in the embryo, DNA and mitochondria 

are repaired and synthesized (Rajjou et al., 2012; Rosental 

and Nonogaki, 2014) [1, 8]. When the water potential of the 

cells of seed increases, the water uptake slows down and the 

seed enters lag phase (phase II). 

 

Phase II 

Phase II is known as the lag phase, in which the water 

potential of seed is counter balanced by the seed environment. 

During this phase, seeds absorb very small or negligible 

amounts of water extending over a relatively longer period, 

but significant metabolic activity is carried out associated 

with activation of enzymes and increased respiration. 

Therefore, by that time seeds can complete all its 

physiological pre-germination processes and get ready for 

radicle emergence. During this phase, the major metabolic 

changes related to germination such as new mitochondria and 

protein syntheses are initiated. Therefore, it is also called as 

activation phase (Di Girolamo and Barbanti 2012a, b) [9, 10]. 

Phases I and II are most sensitive stages of the germination 

process thereby essential for successful seed priming.  

 

Phase III 

When pre-germination embryonic processes are completed in 

phase II, the seed immediately moves towards phase III 

resulting in radicle protrusion through the seed coat and water 

and oxygen absorption rapidly increase (Welbaum et al., 

1998) [11]. This section will increase root growth, and its 

emergence coincides with biological process and enlargement 

(Rajjou et al., 2012) [1]. 

 

Physiological impact 

Physiological changes within a seed are one of the key 

parameters depicting seed priming effect more distinctly. As 

for example weakening of endosperm, reserve mobilization, 

and elongation of embryo cell was observed in the primed 

seeds with the GA treatment and higher number of 

mitochondria were also observed in osmoprimed leek cells 
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(Chen et al., 2001; Sung et al., 2008) [12, 13]. Structural and 

ultrastructural changes in seed during seed priming led to 

uniform seedling emergence and better seedling stand 

establishment (Galhaut et al., 2014) [14]. Seed priming with 

bioflavonoid enhanced both root and shoot elongation and 

increased the levels of photosynthetic pigments, flavonoids, 

and phenolic compounds (Singh et al., 2016) [15]. Throughout 

the embryogenesis, accumulation of ABA inhibits vivipary 

and modulates seed maturation. Aquaporins and Tonoplast 

Intrinsic Proteins, one of the major components mediated in 

primed seeds activates during imbibition process, which 

supplies water to the embryo and have impact on the speed of 

germination yet as stress resistance. 

 

Biochemical impact 

Primed seeds contain antioxidants such as POD, APX, SOD, 

and CAT which play an important role in enhancing stress 

tolerance. They guard the cellular membranes against the 

harmful effects of ROS such as H2O2, hydroxyl radicals, 

superoxide radicals and singlet oxygen (Bolkhina et al., 2003) 
[16]. Antioxidants like CAT, APX, and GR are activated 

during priming and activate antioxidant defense system 

(Paparella et al., 2015) [17]. SOD an antioxidative enzyme is 

an important scavenger of superoxide radicals, triggered 

during imbibition and reduces lipid peroxidation rate in plants 

(Yao et al., 2012; Rakshit and Singh, 2018) [18, 19], the 

increased activities of antioxidant enzymes permit the control 

accumulation of ROS during water uptake by seed (imbibition 

process) (Hsu et al., 2003) [20]. it had been steered that the 

buildup of ROS ought to be controlled tightly so as to play the 

role of positive regulator of germination, notably throughout 

osmopriming wherever less convenience of the water will 

cause a lot of production of ROS (Bailly et al., 2008) [21],  

 

Molecular impact 

Molecular level modulations are the key to any changes in the 

seed. The physiological and bio-chemical modulations are the 

result of molecular signalling. polymer repair mechanisms 

(NER, BER, HR, etc.) square measure currently considered 

pregerminated metabolism, vital for irruption of cell cycle 

activity (Wojtyla et al., 2016) [22]. Proper repair of damaged 

DNA allows the embryo cells to recommence cell cycle 

development and DNA replication; nevertheless, oxidative 

injury because of defective DNA repair mechanisms leads to 

cell death (Waterworth et al., 2011 [23]; Ventura et al., 2012) 
[24]. The major DNA repair processes such as nucleotide- 

(NER) and base excision repair (BER) are stimulated during 

the early seed imbibition phase (Cordoba-Canero et al., 2014) 
[25]. DNA replication; synthesis of RNA, DNA, and proteins; 

and accumulation of beta-tubulin are triggered with seed 

priming (Paparella et al., 2015) [17]. Prior to replication in 

ready seeds, repair of polymer harm happens primarily 

through polymer synthesis. In chickpea seeds, the role of 

polymer repair throughout seed priming was steered 

supported the expression analysis of genes concerned in 

polymer repair directly or indirectly (Sharma and 

Maheshwari, 2015; Wojtyla et al., 2016) [26, 22]. Upregulation 

of α- and β-tubulin subunits proteins are important for cell 

division mentioned by Varier et al., (2010) [27]. 

Aminoalkanoic acid regulates the cellular reaction potential, 

stabilizes the macromolecules and subcellular structures, and 

triggers the stress-responsive genes/proteins (Szabados and 

Savouré, 2010) [28]. Stress-responsive proteins (LEAs and 

HSPs), cell division and elongation, H+-ATPase activity, 

plasma membrane fluidity, and changes in proteome and 

transcriptome are the key elements to induce abiotic stress 

tolerance in plants (Gallardo et al., 2001; Zhuo et al., 2009) 
[29, 30]. Sunflower priming showed enhanced expression of 

gene encoding CAT and demonstrated that CAT is important 

enzyme that play role in recovery of vigor in the aged seeds 

Kibinza et al., (2011) [31]. 

 

Impact on secondary metabolites 

Priming has a clear impact on the production and storage of 

many antioxidants such as ascorbic acid, glutathione, α-

tocopherol, etc. During priming partial digestion of starch 

occurs which significantly alters protein glycation and causes 

reaction between reducing sugar and amino group of several 

proteins (Ventura et al., 2012) [24]. It also alters the proline 

content in the seed (Kubala et al., 2015) [32]. Metabolites such 

as leucine, glutamate, fumarate, aspartate, threonate, or pinitol 

content of seeds of several species is hugely impacted by seed 

priming (Di Girolamo and Barbanti, 2012a) [9]. Methionine, 

an important precursor of polyamine and ethylene, is 

activated during the priming of seeds. Kinetics of ethylene 

production from its precursor ACC is altered by the priming 

technique (Wu et al., 2014) [33]. Even the small aliphatic 

molecule, polyamines influencing plant growth and 

development is greatly influenced by Seed priming. 

 

Reserve mobilization 

Secondary metabolites are the outcome of the certain 

metabolism and benefit the organism or system as a whole. 

This metabolites are actually the result of the rehydration 

process. This mechanism can be termed as Reverse 

Mobilization. During priming, respiration process is 

stimulated and rapid ATP synthesis occur to provide energy 

required for seed germination. To produce energy needed for 

seed germination. The improved adenosine triphosphate level 

when priming was detected in coniferous tree, cabbage, 

eggplant, oat, spinach, and tomato (Corbineau et al., 2000) 
[34]. Primed seeds require a high level of fuel as stored in 

endosperm to fulfil energy requirement for higher 

mobilization of reserve. This enriched energy level and 

metabolic rate of primed seeds and caused improved 

germination and stress-bearing potential. 

 

Alteration in oxidative metabolism 

During seed germination the stored food in embryo is utilized 

by the seeds for the radicle emergence. As the seeds respire 

oxidative reactions occur within the seeds. This oxidative 

reaction produces reactive oxygen species (ROS) which have 

a detrimental effect of seed protein and lipid. Accumulation of 

such ROS can cause structural aberration and hamper the 

emergence. There are certain anti-oxidants present in seed to 

neutralize the hazardous effect of ROS. The enhanced 

respiratory activities of mitochondria and increased activities 

of many enzymes such as NADPH oxidases, oxalate oxidases, 

peroxidases, and β-oxidation pathways were observed in the 

primed seeds. Among ROS molecules, H2O2 plays vital role 

as signalling molecule. The priming solution should be 

incorporated with strong ROS detoxifying system which 

promptly reduces the concentration of damaging molecules. 

This detoxification is distributed by associate economical 

system involving protein (i.e., SOD, glutathione enzyme, 

monodehydroascorbate enzyme, catalase) and protein 

inhibitor molecules (i.e., reduced glutathione, ascorbic acid). 

As a conclusion we can say that the production of ROS (i.e. 

H2O2, hydrogen sulfide, and nitric oxide) at lower 

concentrations are important as they acts as signalling 
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molecules responsible for changing dormant to germination 

phase of seeds (Wojtyla et al., 2016) [22]. 

Pre-germinative metabolism 

DNA and polymer each partially broken because of ROS 

reactions. However, DNA injury will be repaired by the 

precise restoration processes, whereas it's a lot of troublesome 

for polymer because of its severe sensitivity to injury caused 

by the ROS because of the shortage of injury recovery 

mechanism. Injury caused by ROS to proteins is each 

irreversible and reversible 

(El-Maarouf-Bouteau et al., 2013) [35]. So priming acts as a 

healing procedure prior to germination for the reversible 

injuries occurred in DNA and RNA. 

 

Alteration in transcriptomics  

Transcriptomics is the procedure of examination of the 

transcriptome, the total set of transcripts of polymer shaped 

via order underneath specific conditions by means that of 

high-throughput approaches. Buitink et al., (2006) [36] have 

explicit that higher than 1300 genes is also controlled within 

the priming. Those genes whose expressions square measure 

controlled in priming procedure square measure usually 

classified supported the role of the parallel proteins 

(metabolism, regulation of cell cycle, process of DNA, 

regulation of transcription, stress reactions, cellular 

communications, and transport). But, an everyday portion of 

the recognized genes is however not explained. 

 

Alteration in proteomics  

Proteome depicts the whole set of the supermolecule gift at a 

selected time specifically biological sample and proteomic is 

that the comprehensive study that permits to spot and quantify 

these proteins. Quantitative protein analysis shows the 

alteration in supermolecule level among the various biological 

samples (Wong and James Cagney, 2010) [37]. Another 

different tool is gel-free firearm proteomic that is accustomed 

establish and quantify supermolecule at giant scale. Authors 

recorded the vital alteration in seventy-two completely 

different proteins iatrogenic by osmopriming. Most of those 

supermolecules vie their role in protein synthesis, chemical 

change and defence or unwellness hindrance and metabolism 

regulation. 

There square measure 2 pathways for the alteration within the 

concentration of proteins within the seeds: first involves the 

synthesis of anew proteins, whereas the opposite needs 

digestion of accumulated proteins through proteolytic enzyme 

induction. Priming influence the activities of proteolytic 

enzymes and stimulate the expression of protease encryption 

cistron (de Lespinay, 2009) [38]. A collection of eighteen 

accumulating proteins because of osmopriming has been 

known in sugar beet seeds by Catusse et al., (2011) [39]. 

Hydropriming was additionally ascertained to activate 

drought tolerance in genus Medicago truncatula (Boudet et 

al., 2006) [40]. it's been confirmed by the proteomic analysis 

that drought tolerance character is related to the assembly of 

proteins from variant teams associated with late 

embryogenesis. 

 

Alteration in metabolomics 

Metabolome will be spoken because the entire set of the 

metabolites having smaller molecular mass occurring among 

a plant structure at a selected time. Thus, metabolome will be 

recognized as quantitative measuring of the whole set of 

compounds that square measure directly taking part within the 

metabolism of such sample. Plant metabolomics analysis has 

gained a special importance in genomics. Gibberellins square 

measure associate example that play a vital half within the 

smoothing of germination method however square measure 

reported to react with phenols or sugars, thus this property 

makes it a hindrance in isolation and/or identification of the 

many different metabolites (Wu et al., 2014) [33]. Complete 

understanding of any metabolome is hard, that the result of 

priming on any metabolome is additionally illusory and 

laborious to crack. 

 

Impact of holistic “omic” seed priming methods 

Biomarkers identification for sequenced primed seed is an 

important goal for plant physiologists. Every step of priming 

has its own configuration of activation/deactivation. There is 

no link between transcription and translation, inflicting in few 

circumstances a restricted correlation between template RNA 

and macromolecule levels. A bound protein made in 

incubation is also destroyed in dehydration, whereas the 

degree of degeneration is also tormented by the amount of 

drying. Macromolecule production may crop up as a 

consequence of the interpretation of prolonged template RNA 

erst made throughout seed development (Jisha et al., 2013; 

Boudet et al., 2006) [41, 40]. 

 

Manifestation 

Primed seeds are healthier and able to mitigate multiple stress 

in the field condition. The major manifestation of seed 

priming was on germination (Table 1), growth and yield 

(Table 2) and stress management (Table 3). 
 

Table 1: Effects of seed priming on germination 
 

Method Effect References 

Hydropriming 

1. Improved germination and seedling vigour by hydropriming for 48 h and 36 h. Farooq et al., (2006) [42] 

2. Emergence time shortened with seed priming at 3%-11% soil moisture contents when seed soaked 

were tap water at 30˚C for 12 h 

Sakagami and 

Matsushima, (2013) [43] 

On-farm 

priming 
1. Prime with NaCl, KCl found heighest germination and overall growth of plant Islam et al., (2012) [44] 

Halo-priming 1. Improved germination and vigor index with KNO3, KH2PO4, MgCl2 and MgSO4 priming solution. Batool et al., (2015) [45] 

Osmopriming 
1.Highest germination percentage were found prime with CaCl2, ZnSO4 and KCl 

2. Improve field crop establishment in 1% KNO3 salt solution 

Hasan et al., (2016) [46] 

Singh et al., (2012) [47] 

Osmo- 

hardening 

1. Osmo-hardeningr with Vitamin C increase germination , vigor index, shoot and root lengths Mamun et al., (2018) [48] 

2. Priming seeds with KCl 20 mg L-1 for 24 hours to enhance germination and seedling vigor 

characters 

Mohammed et al., (2020) 
[49] 

Hormonal 

priming 

1. Seeds primed with ascorbic acid as indicated by lesser time to start germination, MGT and T50 and 

higher GI, GE, FGP, FEP, radicle and plumule length and seedling fresh and dry weights 
Basra et al., (2006) [50] 

2. Salicylic acid (SA) improved germination and reducing the time to start emergence, time to 50% 

emergence, mean emergence percentage, and improving the final emergence, emergence energy, 

emergence index 

Rehman et al., (2011) [51] 
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Matrix priming 1. Solid matrix priming in combination with Trichoderma viride improve seedling emergence Lingyun et al., (2017) [52] 

Nutripriming 

1. B solutions improved the time to 50% germination, germination energy, final germination 

percentage, mean germination time, and germination index. 
Farooq et al., (2011) [53] 

2. Speed of germination and germination index was 1.4 times higher in seeds primed with ZnSO4 Raj et al., (2019) [54] 

Bio-priming 

 

1. Seed biopriming with Pseudomonas fluorescens improved the speed of germination, germination 

percentage, seedling length, dry matter production, vigour index. 

Kokila and Bhaskaran, 

(2014) [55] 

 

Table 2: Effects of seed priming on growth and yield 
 

Method Eggect References 

Hydropriming 

1. Hydropriming for 48 h improved crop stand establishment, growth, yield and quality of crop. 
Farooq et al., 

(2006) [43] 

2. Highest vigor index, plant population m-2,maximum length of shoot and root were found seed primed 

for 30 hours as hydropriming. 

Dey et al., (2013) 
[56] 

On-farm 

priming 

1. Priming improved emergence and early growth and improve root at soil matric potentials. 
Murungu et al., 

(2003) [57] 

2. Seeds were primed (soaked in water overnight and then surface dried) increased grain yield, seedling 

emergence, plant height, number of pods/m², test weight. 

Musa et al., 

(1999) [58] 

Halo-priming 

1. Improve the germination, seedling growth, and seed yield using gibberellic acid (GA), polyethylene glycol 

(PEG), and NaCl. 

Tian et al., (2014) 
[59] 

2. Increased total yield by soaking of seeds in 3% KNO3 solution for 30 and 40 hours at normal room 

temperature. 

Maiti et al., 

(2013) [60] 

Osmopriming 

1. Maximum fertile tillers, grains per spike, 1000-grain weight, grain yield and harvest index were observed 

in plants raised from seeds osmoprimed with CaCl2. 

Islam et al., 

(2012) [61] 

2. Highest germination percentage, germination energy, germination speed vigour index was found when it 

was treated with KC1 and largest root when seeds were treated with NaCl. 

Jafar et al., (2011) 
[62] 

Osmo- 

hardening 

1. Primed seeds with CaCl2, ascorbate and KCl proved better seedling growth and increase number of roots 

and fresh and dry mass. 

Farooq et al., 

(2010) [63] 

2. Seeds hardened with prosopis leaf extract @1% recorded higher seed yield, yield attributing characters and 

many seed quality characters. 

Narayanan et al., 

(2016) [64] 

Hormonal 

priming 

1. Highest tiller number per hill was recorded from 40% (v/w) in hormonal priming it was 150 ppm Salycilic 

acid. 

Kareem et al., 

(2013) [65] 

2. 50 Mm magnesium chloride improve crop yield. 
Kareem et al., 

(2019) [66] 

Matrix priming 

1. Solid matrix priming increase emergence and fruit yield (per plot 16.12 kg and per hectare 250.35 q). 
Hu et al., (2005) 

[67] 

2. Solid matrix priming (SMP) with T. harzianum increased seed germination vigor, germination index and 

seedling emergence, decreased mean emergence time, enhanced seedlings quality and photosynthetic 

characteristics. 

Lingyun et al., 

(2017) [ 52] 

Nutripriming 

1. Seed prime with different level of K (0,10,20 and 40 kg K2O/ha) improve the grain yield. 
Kalita et al., 

(2002) [ 68] 

2. Seed priming with GA3 (100 ppm) and ammonium molybdate increase plant height, number of leaves, 

total dry matter, test weight and grain yield. 

Arun et al., (2020) 
[ 69] 

Bio-priming 

 

1. Bio-agents (PSB and Psf-173) and microbial inoculants improved the plant growth, seed yield and quality 

of crop. 

Sharma et al., 

(2018) [ 70] 

 

Table 3: Effects of seed priming on stress conditions 
 

Method Effect References 

Hydropriming 1. Improved emergence, stand establishment, allometry and grain yield during chilling stress. 
Farooq et al., 

(2008) [71] 

Halo-priming 

1. Priming with CaCl2 (2Mm) increase the proline accumulation. 
Anand et al., 

(2012) [72] 

2. Increased total soluble sugars, proline, and glycine betaine. accumulation as well as decreased MDA and 

phenolic levels primed with CaCl2. 

Srivastava et al., 

(2010) [73] 

Hormonal 

priming 

1. Reduced Na+ accumulation, increased content of K+ and Ca+, enhanced enzyme activities that involved in 

assimilation of secondary metabolism and decreased ROS and MDA contents with Salicylic acid (2 mM). 

Sheteiwy et al., 

(2018) [74] 

2. Enhanced CAT, POX, GR, and APX activities with Salicylic acid (0.2 mM) 
Azooz., (2009) 

[75] 

Bio-priming 

 

1. Increased proline, total soluble sugar, K, and P, while reduced leakage of electrolytes and MDA content was 

found primed with Aqueous extracts of Padina pavonica/60 g L−1 or Jania rubens/80 g L−1 

Rinez et al., 

(2018)[76] 

2. Seed primed with Leaf extracts of Typha angustifolia/40 g L−1 /48 h increased germination %, osmotic 

(proline, soluble sugars, K+, P), chlorophyll, carotenoid, secondary metabolites (total phenolic, total flavonoid), 

while reduced electrolyte leakage and MDA 

Ghezal et al., 

(2016) [77] 

 

Conclusion 

Yield reductions due to environmental constraints, e.g. 

climatic aberrations, deteriorating resource base and 

increasing cost of agriculture inputs, requires inexpensive and 

sustainable intensification strategies to ensure food security. 

In this direction, seed priming may be one of the approaches 

to narrow down this yield gap by facilitating rapid and 

enhanced crop establishment that may also result in improved 

individual plant performance. The literature considered in our 

study encompassed the mechanisms involved in seed priming 

and its possible manifestation in germination, growth, stresses 

management and crop yield. Exploitation of early seed vigour 
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through priming hardly require extra cost or labour but its 

crop specific en masse adoption at global scale may play a 

vital role in world food production mitigating multiple 

stresses at field level and enhancing agricultural productivity. 

Governmental institutions and policymakers may take 

appropriate steps to promote the adoption of seed priming for 

long term sustainability and food security. 
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