Evaluation of grain quality traits in popular rice varieties of Andhra Pradesh

Divya Prasanna Kumari S, Nirmala Devi G, Lakshmi K and Chamundeswari N

DOI: https://doi.org/10.22271/phyto.2021.v10.i1Sd.13443

Abstract
Twenty popular rice varieties, including sixteen released and four pre-released varieties obtained from Kharij 2019, were screened for quality parameters such as physical, chemical, cooking traits. Correlation coefficients were evaluated to identify rice varieties with desirable grain quality. All the 14 traits evaluated have shown significant variance. 1000 kernel weight has positive significant association with kernel length ($r = 0.843$) and kernel breadth ($r = 0.724$). Kernel length after cooking with elongation ratio ($r = 0.059$), alkali spreading value with water uptake ($r = 0.137$), percent hulling with percent milling ($r = 0.49$), and head rice recovery ($r = 0.140$) also has depicted positive correlation which specifies that these are the principle attributes to enhance grain quality of rice. Significant Correlation among quality characters might help breeders emphasize better grain quality and rice consumers to identify rice variety with desirable grain quality.

Keywords: Rice, grain quality, physicochemical, cooking traits, correlation

Introduction
Rice is the third-largest food crop in the world, only after wheat and corn. Rice localized ascertain lately appeared as an essential topic for improving human health utilizing food security, safety and standard quality assurance (Chung et al., 2017) [22]. Across the world, rice exists in many combinations of length-width ratio, grain weight, bran color, and endosperm chemical characteristics. End-use quality characteristics desired in some areas of the world can be entirely unacceptable to other regions. Many local rice varieties do not enter the export market other than being used close to where it is produced (Bergman, 2019) [6].

Inherent quality traits/characteristics rule rice grain quality. These quality traits are controlled by rice genotype, environmental components, and traditional practices (Kale et al., 2017) [25]. As consumer choices in Asia and throughout the globe are different due to varied demographics and culture, defining uniform attributes to capture regional grain quality options has become challenging. Therefore, the new proxy tests need to identify rice grain quality to match the requirements of end-user choices of released varieties in the market (Butardo et al., 2018) [8]. Consumer susceptibility and market liability towards rice are dependent on various quality characteristics of grain, such as physical, chemical, cooking, and eating quality attributes or nutritional parameters (Thilakaratna et al., 2017) [60].

Material and Methods
The experiment material was constituted with 20 popular rice varieties (16 released and 4 pre-released varieties) which were collected from Regional Agricultural Research Station (RARS), Maruteru, and West Godavari District. The salient features of varieties are mentioned here under (Table 1)

Methods
Quality analysis
After harvesting, threshing and cleaning, the seeds from individual genotypes were dried under shade until moisture content reaches to 14%. The seed was dehusked in a Satake laboratory huller (Type THU 35 A) and polished in a Satake Rice Polisher (Type TM 05). The polished seed (10%) obtained was then utilized for the analysis of 14 seed quality traits namely hullying (%), milling (%), head rice recovery (%), kernel length and breadth (mm), length/breadth ratio (L/B), 1000-grain weight (g) (physical quality traits); kernel length after cooking (KLAC)
(mm), kernel elongation ratio (ER), volume expansion ratio (VER) and water uptake (cooking quality traits); amylose content (%), gel consistency (mm), alkali spreading value (chemical quality traits) at Quality Laboratory, Regional Agricultural Research Station (RARS), Maruteru. Milling percentage was calculated by dividing the weight of milled rice by weight of paddy. The HRR percentage and broken rice were calculated using the standard formula of (weight of milled rice/weight of grain) x 100 (Cruz and Khush, 2000) [14]. Twenty grains at random from each sample from each replication were dehusked by hand and the length and breadth in milli meters was recorded using Dial micro meter. The L/B ratio was calculated by dividing the average length by the average breadth of rice kernel.

Based on the L/B ratio, grains were classified into long slender (LS), short slender (SS), medium slender (MS), long bold (LB) and short bold (SB) (Ramaiah, 1985) [42]. Kernel elongation ratio (ER) was calculated by dividing the average length of cooked kernel by the average length of the raw rice (Murthy, 1965) [35]. KLAC was measured by the method of Juliano et al. (1966) [24], ASV was estimated by the method advocated by Little et al. (1958) [31]. The simplified procedure suggested by Jennings et al. (1979) [23] was used for estimating the AC and gel consistency.

Results and discussion

Table 2: Mean performances of rice varieties for quality traits

<table>
<thead>
<tr>
<th>S. No</th>
<th>Physico-chemical characteristics</th>
<th>Statistical parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Physical traits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hulling (%)</td>
<td>79.57</td>
</tr>
<tr>
<td>2</td>
<td>Milling (%)</td>
<td>69.03</td>
</tr>
<tr>
<td>3</td>
<td>HRR (%)</td>
<td>62.28</td>
</tr>
<tr>
<td>4</td>
<td>KL (mm)</td>
<td>5.65</td>
</tr>
<tr>
<td>5</td>
<td>KB (mm)</td>
<td>2.03</td>
</tr>
<tr>
<td>6</td>
<td>L/B</td>
<td>2.93</td>
</tr>
<tr>
<td>7</td>
<td>1000 g wt (g)</td>
<td>19.11</td>
</tr>
<tr>
<td>Chemical traits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ASV</td>
<td>4.61</td>
</tr>
<tr>
<td>2</td>
<td>AC (%)</td>
<td>23.24</td>
</tr>
<tr>
<td>3</td>
<td>GC (mm)</td>
<td>52.57</td>
</tr>
<tr>
<td>Cooking traits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>VER</td>
<td>4.25</td>
</tr>
<tr>
<td>2</td>
<td>WU (ml)</td>
<td>197.67</td>
</tr>
<tr>
<td>3</td>
<td>KLAC (mm)</td>
<td>7.60</td>
</tr>
<tr>
<td>4</td>
<td>ER</td>
<td>1.68</td>
</tr>
</tbody>
</table>

The data on grain quality and its components of 20 (16 released and four pre-released) rice varieties were collected during Kharif 2019. Mean values of 14 quality traits recorded are furnished in Table 2 and are described as character-wise. For most of the characters, a vast difference was observed among varieties.

Physical quality traits

Hulling (%)

The hulling percent among the 20 varieties ranged from 75.33% to 85%, with a general mean of 79.57%. Swarna recorded the highest hulling recovery at 85%, followed by Badava Mahsuri with 82.33%. The lower hulling percent of 75.33 has occurred in Pushyami following Sri Druthi with 75.67% of hulling.

High hulling percent resulted in high head rice recovery of 93.3% in parboiled rice with the higher (5.5 x 104 N/m²) process steam pressure (Igbeka et al., 2008) [22]. Rita and Sarawgi (2008) [44] has specified more than 80% of hulling is desirable, and if the hulling percent increases, the head rice recovery increased as well (Swamy and Bhattacharya 2009) [57].

Milling (%)

The overall mean of percentage of milling was 69.03%. The milling percent was higher in Bhavapuri Sannalu (72.67%), followed by Chandra (72%) and Tarangini (71.67%). The lowest milling percent of 62% was obtained in the pre-released variety MTU 1262, following Ksheera with 66%. A study by Binodh et al. (2006) evaluated milling percent for fifty-five promising rice cultural varieties and hybrids from Tamil Nadu that ranged from 49.20 to 89.50 percent. Cultivar differences can govern milling percent, climatic conditions during grain maturation and harvest moisture content, etc. (Thompson et al., 2006; Siebenmorgen et al., 2007; Salassi et al., 2013; Sahu et al. (2017) [62, 51, 48, 46].
Head rice recovery (HRR) (%)
Head rice recovery range varied from 59% to 67.33%. The mean value, in general, was 62.28%. Sri Druthi inscribed the highest recovery percent among the varieties (67.33%) studied, followed by pre-released variety MTU 1210 (65.67%), whereas the lowest head rice recovery was displayed in Pushyami (59%) followed by Varam (59.33%), Nellore Mahsuri, Samba Mahsuri and MTU 1239 with 59.67%. Head rice recovery percent is considered an inherent trait even though environmental components such as temperature and humidity, grain size, shape, hardness, moisture content, harvest and storage conditions, processing, and type of mills directly affect it. Dipti et al., (2002) [19] and Rani et al., (2006) [43]. Verma et al. (2012) [66] described more remarkable head rice recovery with minimum breakage within a range of 47-55 percent in bold and short grains. The values for Head rice recovery varied from 49.48 (Ezhome-2) to 57.45 (Vyttilla-8), which was noticed in newly released bold and medium grain varieties in the report given by Puri et al., 2014 [41]. During milling, low-quality milled rice recovery occurs due to elevated breakage caused by low surface hardness. Head rice recovery percent of 62.16 and 33.66 were seen in raw and parboiled rice varieties of Jyothi, respectively (Lakhsmi, 2011; Sathyan, 2012) [10]. According to Dhankar’s (2014) [17] study, more significant head rice recovery is 84 percent of complete milled rice or paddy weight of 58 percent under well-managed circumstances. On an average, Head rice recovery of 55 percent was noted in commercial rice mills, although rice grains used in villages show 30 percent of head rice recovery. The noticeable difference in head rice percent can be due to the variation in milling conditions.

Kernel length (KL) (mm)
The mean values obtained for kernel length ranged from 4.62 mm to 6.48 mm with a grand mean of 5.65 mm. The higher kernel length was registered by all long slender variety namely Tarangini (6.48 mm) followed by long bold variety Srikkakulam Sannalu (6.45 mm). The lowest kernel length was observed in Samba Mahsuri (4.62 mm), followed by pre-released variety MTU 1224 (4.92 mm).Chukwuemeka et al. (2015) [13] reported that the length of 9 rice varieties grown and processed in Ebonyil state was ranged from 6.31 to 7.63 mm, and average width ranged from 2.04 to 2.28 mm, and there is significant variance within the varieties (P< 0.05). Geetanjali et al. 2019 and Dipti et al. (2002) [19] classified grains lengths greater than 6mm as long, 5mm - 6mm medium, and less than 5mm as short.

Kernel breadth (KB) (mm)
Kernel breadth ranged from1.65 mm to 2.39 mm with a mean value of 2.03 mm. The kernel breadth of Vijetha was the highest (2.39 mm), followed by MTU1239 (pre-released variety) (2.34 mm), and the lowest kernel breadth was noticed in MTU 1224 (pre-released variety) (1.65mm), followed by Nellore Masuria (1.74 mm), Samba Mahsuri (1.74 mm).

Kernel L/B ratio
The observed mean for kernel L/B was 2.93. It ranged from 2.69 to 3.24. All long, slender, and long bold varieties recorded L/B ratio of greater than 3.00. Srikkakulam Sannalu, a long, bold type, has an L/B ratio of 3.24, which is greater than all lengthy-slender varieties followed by Indra (3.19). It was the lowest in medium-slender varieties such as Swarna (2.69).

The kernel L/B ratio (2.45) of 32 rice varieties reported by Dharai et al. (2014) [18] was found to be similar to our study.

1000 grain weight (g)
Grain weight has a significant influence on grain yield, cooking characteristics and sensory qualities of rice. According to the study of Kwarteng et al. (2003) [29], a thousand-grain weight ranging from 20 to 30 g is desirable in rice. In the present study, mean of 1000 grain weight, in general, was 19.11 g while it ranged from 14.03 g to 24.07 g. The desirable varieties with high 1000 grain weight are Cotondora Sannalu, Chandra, and Pushyami, which registered a mean weight of 24.07 g, 23.85 g, and 22.85 g, respectively. The lowest 1000 grain weight is found in MTU 1262 (pre-released variety) (14.03 g), followed by Samba Mahsuri (14.27 g).

The results are in consent with the studies of Ozguen and Kubilay (2004) [38] and Varmankhasti et al. (2008) [65]. The 1000 kernel weights in the above-given studies have ranged between 18.81 to 22.92 g in brown rice. They also have stated that, while processing from rough to brown rice, the 1000kernel weight decreased. Another study by Meena et al. (2010) [13] specified that the 1000 grain weight ranged between 11.36 and 20.18 g in brown rice. Saini et al. (2013) [47] described 1000 grain weights of 22.52g, 22.77 g, 23.19 g, 22.60 g, 22.78 g, 22.76 g, 22.61 g, 22.55 g, 23.09 g, 21.37 g, and 22.76 g in the rice varieties of Jayathi, Onam, Tulasi, Parambuvattan, Thekkancheria, Mancumpu 519, Annapoorna, Thottacheera, Karuthadukkan, Chomala, and Mo-7 respectively.

Many of the intermediate amylose containing rice varieties had a higher thousand-grain weight. Following this, Thomas et al. (2013) [61] determined highest thousand kernel weight (19.43 g) was obtained in glutinous rice accompanied by Bario rice (19.23 g) and brown rice (18.66 g), respectively. The lowest grain weight was seen in the white rice variety (16.97 g).

Chemical quality characters
Amylose (%)
Amylose determines the starch content of rice, and this influences the physical appearance after cooking. The amylose content observed over the varieties ranged from 21.70 to 24.73 percent. In our study, all the varieties (released and pre-released) have intermediate content of amylose. A significant difference in the percentage of grain amylose content was among the varieties studied by Abeysekera et al. (2016) [1]. Shahidullah et al. (2009) [51] stated that amylose content in all rice grades ranged between 20.7 - 21.4%. Low amylose content generates cooked rice to become moist and sticky. Amylose and amylopectin content of grains determines cooked rice texture, and consumers prefer intermediate amylose content rice varieties.

Gel consistency (GC) (mm)
The affinity of cooked rice to harden on cooling was calculated by gel consistency. The gel consistency is related to the eating quality of rice. The harder the rice higher the gel consistency (Kanlayakrit and Maewang, 2013) [26]. The gel consistency (GC) was categorized into soft, medium, and challenging. The range of GC was 37.67 – 75 mm. This trait ranged from 37.67 (hard gel) to 75 (soft gel) with a mean value of 52.57. Bhavapuri Sannalu (75mm) depicted the greater gel consistency, which, when cooked the rice, tend to be soft on cooling. Ksheera (37.67 mm) has shown the lowest
gel consistency, followed by Varam (38.33) and Vijetha (40 mm).

All the pre-released rice varieties were classified as a medium gel containing (41-60 mm) varieties, and eight released varieties, Cottonadora Sannalu (48.33 mm), Indra (58.33 mm), Nellore Mahsuri (55.67 mm), Samba Mahsuri (48 mm), Sri Druthi (43 mm), Sriakulum Sannalu (56 mm), Swarna, Vijetha were classified as medium gel consistency varieties

Alkali spreading value (ASV)
The range of alkali spreading value was low, intermediate, and high amid all rice varieties. The mean, in general, was 4.61 with a range of 2.6 to 7. Highest ASV was observed in Bhavapuri Sannalu (7), followed by Vijetha (6.13), and the least value is manifested in Nellore Mahsuri (2.6). The intermediate alkali spreading value specifies the medium disintegration and categorized as intermediate GT, which is most desirable for quality grain (Madhubaba et al. 2017 and Bansal et al., 2006) [32,4].

Cooking quality characters
Kernel length after cooking (KLAC) (mm)
The mean value was 7.60 mm, with a range of 5.62 mm to 10.89 mm. The highest mean was recorded in Sriakulum Sannalu (10.89 mm), followed by Samba Mahsuri (9.33 mm). The shortest kernel length after cooking was observed in Varam (6.83 mm).

If rice elongates lengthwise, it gives a more acceptable appearance, and if it expands girth-wise, it gives a coarse look. Rice that has high cooked grain length with a more satisfactory appearance is mostly the preferred one (Pathak et al. 2016) [39].

Volume expansion ratio (VER)
Volume expansion was contemplated to be a principal character while determining the quality of cooked rice grains. After cooking higher volume expansion ratio was considered a desirable feature preferred by consumers. Highest VER was seen in Bhavapuri Sannalu (4.79), followed by Samba Mahsuri (4.65) and Swarna (4.54). The lowest ratio has acquired in Tarangini (3.45), followed by Ksheera (3.72). The overall mean for volume expansion ratio was 4.25. VER has ranged from 3.45-4.79.

Results of volume expansion ratio are in support with the study of Nirmala Devi et al. (2015) [37] however, on the contrary to this, it was described that the consumers will accept lower VER than higher VER and higher elongation ratio (ER) of the cooked rice is preferred than lower ER (Shahidullah et al., 2009) [51].

Kernel elongation ratio (ER)
The values of kernel elongation ratio range were from 1.5 to 1.84, with the general mean of 1.68. Samba Mahsuri (1.84) showed the highest elongation ratio, followed by Bhavapuri Sannalu (1.78).

Pre-released variety MTU 1262 displayed the lowest elongation ratio (1.5). Mean values of elongation ratio in our study are similar to the study of Sahu et al. (2017) [46], where the elongation ratio is 1.45 among Chhattisgarh's indigenous rice varieties.

Water uptake (WU) (ml)
Hydration characteristics of rice are measured by water uptake, which may be governed by gelatinization temperature and kernel porosity. The highest value of 258 ml was observed in Vijetha, while the smallest amount of 92 ml was found in Varam. The mean of the trait was 197.67 ml, with a range of 92 ml to 258 ml. The appearance of cooked rice is linked with the quantity of water uptake during the cooking process. (Tan et al., 2000). The findings of our study resembled the reports given by Devi et al. (2016) [10]. The majority of the physical and chemical characters such as amylose, GC, and GT were significantly associated with the cooking quality traits such as elongation during cooking, optimum cooking time, suggesting that attempts directed to select rice varieties with enhanced cooking quality attributes can assure the thought of considering the physicochemical quality traits of the rice varieties Pramila et al. (2011) [40].

Table 3: Analysis of variance for quality traits

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MSS</th>
<th>F</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety</td>
<td>35933.79</td>
<td>19</td>
<td>1891.25</td>
<td>2255.28</td>
<td><0.05</td>
</tr>
<tr>
<td>Physical traits</td>
<td>33618.03</td>
<td>6</td>
<td>59269.67</td>
<td>70677.93</td>
<td><0.05</td>
</tr>
<tr>
<td>Variety * Physical traits</td>
<td>37154.84</td>
<td>114</td>
<td>325.92</td>
<td>388.65</td>
<td><0.05</td>
</tr>
<tr>
<td>Error</td>
<td>234.80</td>
<td>286</td>
<td>0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>428941.46</td>
<td>419</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety</td>
<td>2603.28</td>
<td>19</td>
<td>137.01</td>
<td>32.56</td>
<td><0.05</td>
</tr>
<tr>
<td>Chemical traits</td>
<td>70142.46</td>
<td>2</td>
<td>35071.23</td>
<td>8334.97</td>
<td><0.05</td>
</tr>
<tr>
<td>Variety * Chemical traits</td>
<td>5156.68</td>
<td>38</td>
<td>135.70</td>
<td>32.25</td>
<td><0.05</td>
</tr>
<tr>
<td>Error</td>
<td>504.93</td>
<td>129</td>
<td>4.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>78407.34</td>
<td>197</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooking traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety</td>
<td>25444.97</td>
<td>19</td>
<td>1339.209</td>
<td>52.349</td>
<td><0.05</td>
</tr>
<tr>
<td>Cooking traits</td>
<td>1680028.79</td>
<td>3</td>
<td>560809.596</td>
<td>21890.66</td>
<td><0.05</td>
</tr>
<tr>
<td>Variety * Cooking traits</td>
<td>76164.67</td>
<td>57</td>
<td>1336.222</td>
<td>52.233</td>
<td><0.05</td>
</tr>
<tr>
<td>Error</td>
<td>4093.139</td>
<td>160</td>
<td>25.582</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>178573.57</td>
<td>239</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis of Variance
Analysis of variance was carried out for 14-grain quality traits, namely physical quality traits: hullying (%), milling (%), head rice recovery (%), kernel length and breadth (mm), length/breadth ratio (L/B), 1000 grain weight (g); cooking quality characters: kernel length after cooking (KLAC) (mm), kernel elongation ratio (ER), volume expansion ratio (VER) and water uptake (WU); chemical quality attributes: amylose content (%), gel consistency (mm), alkali spreading value (Table 3) Mean sum of squares are furnished in Table 2. The mean sum of the varieties' squares has statistically displayed significant differences (p = <0.005) for all 14 quality traits. This suggests that variability exists largely due to various sources of materials of the genetically diverse varieties. This indicates that the selection of desirable lines from the existing gene pool for quality attributes have enough scope. The occurrence of wide variance can be attributed to various treatments taken and environmental influence affecting the phenotypes.
Table 4: Correlation coefficients for 14 Quality characters among rice

<table>
<thead>
<tr>
<th>Hulling (%)</th>
<th>Milling (%)</th>
<th>HRR (%)</th>
<th>1000g. wt (g)</th>
<th>KL (mm)</th>
<th>KB (mm)</th>
<th>L/B</th>
<th>AC (%)</th>
<th>GC (mm)</th>
<th>ASV</th>
<th>KLAC (mm)</th>
<th>ER</th>
<th>VER</th>
<th>WU (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.902</td>
<td>0.1401</td>
<td>-0.0042</td>
<td>-0.1730</td>
<td>0.0412</td>
<td>-0.2572</td>
<td>0.1097</td>
<td>0.1773</td>
<td>-0.0423</td>
<td>0.2462</td>
<td>0.3190</td>
<td>0.0674</td>
<td>0.0823</td>
</tr>
<tr>
<td>0.2564</td>
<td>0.1032</td>
<td>0.21232</td>
<td>0.0624</td>
<td>0.1825</td>
<td>0.1435</td>
<td>0.3002</td>
<td>0.1394</td>
<td>0.2772</td>
<td>0.1590</td>
<td>0.3342</td>
<td>0.2111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.0487</td>
<td>-0.1138</td>
<td>-0.0091</td>
<td>-0.1439</td>
<td>0.0551</td>
<td>0.0154</td>
<td>0.1991</td>
<td>0.2374</td>
<td>0.2512</td>
<td>0.1541</td>
<td>0.1790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0432</td>
<td>0.7242</td>
<td>-0.2824</td>
<td>-0.1233</td>
<td>0.0214</td>
<td>-0.0413</td>
<td>-0.3011</td>
<td>-0.2262</td>
<td>-0.2560</td>
<td>0.0724</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.653</td>
<td>0.5521</td>
<td>0.0282</td>
<td>0.0562</td>
<td>0.0288</td>
<td>0.0684</td>
<td>-0.3073</td>
<td>-0.2992</td>
<td>0.0442</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.2792</td>
<td>0.0232</td>
<td>-0.0922</td>
<td>-0.1366</td>
<td>0.2871</td>
<td>0.1320</td>
<td>0.3454</td>
<td>0.2623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0011</td>
<td>0.1484</td>
<td>-0.2014</td>
<td>0.3940</td>
<td>-0.2412</td>
<td>-0.0011</td>
<td>0.1991</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.3926</td>
<td>-0.2290</td>
<td>0.4902</td>
<td>0.4242</td>
<td>0.0932</td>
<td>0.0642</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.3384</td>
<td>0.0751</td>
<td>-0.0941</td>
<td>0.2364</td>
<td>0.0682</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.1512</td>
<td>-0.1252</td>
<td>0.0785</td>
<td>0.1376</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.0593</td>
<td>0.3871</td>
<td>0.1388</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.3790</td>
<td>-0.2542</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.2993</td>
<td></td>
</tr>
</tbody>
</table>

*Correlation is significant at the 0.05 level (2-tailed), **Correlation is significant at the 0.01 level (2-tailed)

HRR- head rice recovery, KL- kernel length, KB- kernel breadth, L/B- kernel l/b ratio, AC- amylose, GC- gel consistency, ASV- alkali spreading value, KLAC- kernel length after cooking, ER- elongation ratio, VER- volume expansion ratio, WU- water uptake

Correlation coefficients for 14 Quality characters among rice

The character hulling percent has significant, positive correlation with per cent milling (r = 0.490) and head rice recovery (r = 0.140). 1000 kernel weight has a positive significant association with quality features such as kernel length (r = 0.843) and kernel breadth KB (0.724). Head rice recovery revealed negative but non-significant correlations with kernel dimensions like kernel length(r = -0.013) and L/B ratio (-0.143). Head rice recovery was positively correlated with ASV (r = 0.199) and Amylose content (r = 0.055) but was non-significant. Negative significance of kernel breadth was observed with L/B ratio, (r = -0.279). Water Uptake (r = -0.061) and alkali spreading value (r = -0.136). Kernel length after cooking has positive significant association with elongation ratio (r = 0.059). ASV displayed positive significant relation with water uptake (r = 0.137) and kernel length (r = 0.028) and negative non-significant correlation with gel consistency (r = -0.338) while volume expansion ratio have no significant association with any of the quality traits. Gel consistency has a positive, non-significant correlation with amylose (r=0.392) as shown in Table 4.

A positive and significant relationship of percent hulling with percent milling and head rice recovery revealed that the varieties having higher percentage of hulling also have the highest values for milled rice and head rice. Results related to the current study were familiar with the reports of Singh et al. (2020) [54], Nirmala Devi et al. (2015) [37], Nayak et al. (2003) [56], Tejpal (1987) [59], Chauhan et al. (1995) [9], and Sarkar et al., (1994) [49]. The study on four local varieties in India by Basri et al. (2015) [5] also shows a positive association between grain weight and length. A study on aromatic fine grain rice by Mia et al. (2012) [54] indicated that the increase in grain weight occurs with increased kernel length, supporting the present study. Similarly, kernel length KL has a positive relation with kernel breadth (r = 0.653) and L/B ratio (r = 0.552), which means 1000 kernel weight of rice varieties has a strong positive association with kernel length and breadth, which means that the more refined the grain weight, slender and more elongate the grain as reported by Girma et al., 2016 [20]. HRR showed a non-significant, negative association with grain L/B ratio. These findings happened to be in concurrence with the reports given by Gopalakrishnan et al. (1982) [51], Tejpal (1987) [59], and Shivani (2007) [52]. There is a constant abrasion among the kernels during polishing, and thus lengthy slender grain varieties are susceptible to more breakage than that of short, bold grain. Kernel length has a significant negative association with kernel breadth, which reveals that grain length and slenderness are inherited separately, prompting long slender grain types. Positive significant association of alkali spreading value with water uptake suggests that varieties with greater water uptake have low gelatinization temperature (GT), which is in accord with the reports earlier given by Shivani et al. (2007) [52], Tomar and Nanda (1982, 1987) [63, 64], Chauhan et al., (1995) [9], Choi et al. (1999) [10]. The kernel breadth revealed a significant negative association with the L/B ratio. A similar association was reported by Khatun et al. (2003) [27], Sood and Siddiqu (1980) [55], Desosarkar and Nerkar (1994) [15], and Christopher et al. (1999) [11]. Positive and non-significant correlation between gel consistency and amylose specifies that higher amylose content may guide the selection of varieties with soft gel consistency. This is also reported by Shivani et al. 2007 [52].

A comparative study of correlations between physical, chemical, and cooking quality traits was carried out. The significant correlations acquired in the current research were discussed below.

Percent Hulling, Milling, and HRR are principle quality attributes for rice that emphasize the variety's commercial attainment. Positive significant correlation coefficients were found between physical quality traits such as hulling percent with percent milling and head rice recovery. One trait can simultaneously improve three quality traits: percent hulling, milling, and head rice recovery, i.e., either hulling percent or milling percent or head rice recovery.

As far as cooking quality traits are concerned, kernel length after cooking is regarded as the principal trait. Lengthwise enlargement after cooking was considered a desirable characteristic in high-quality rice such as India's basmati rice. It fetches the maximum premium because linear elongation gives an excellent shape to the rice. Grain shape and visual appearance of rice before and after cooking are crucial to determining acceptability of a rice variety. Prime rice-eating nations incline varieties that elongate considerably after cooking. In the present study, kernel length after cooking and kernel elongation ratio are interdependent, as indicated by the significant positive association. The selection of either characteristic will ultimately raise the mean value of the interdependent trait.
Physical quality trait, namely L/B ratio, has a positive and significant association with cooking quality, namely kernel length after cooking. L/B ratio is a good indicator of kernel length after cooking. Thus higher the L/B ratio, the more will be the kernel length after cooking. Selecting any of these traits will elevate the overall quality trait.

The amylose content is a chemical quality attribute that has an effect on the texture of cooked rice. Intermediate amylose content, a soft gel containing rice variety were preferred by most of the customers. Amylose content of the genotypes has a significant positive correlation with cooking property KLAC which is supported by the study of Rithesh et al. (2018) [45]. Amylose content is widely accepted and is a significant determinant of the cooking and eating quality of rice. Positive and non-significant Correlation between the two chemical quality traits, namely gel consistency and amylose content, was considered standard. Thus it showed that selecting desirable intermediate values of gel consistency leads to automatic selection of a desirable level of amylose content. The association of the two physical quality traits, namely head rice recovery and l/b ratio, displayed a non-significant negative Correlation as expected. Selection of the above-referred traits will improve quality in rice breeding programs. This is also reported by Shivani et al. (2007) [52] and Khatun et al. (2003) [27].

According to Ahmed et al. (2020) [23], the variance specifies the occurrence of a substantial amount of difference, possibly due to the diverse source of materials that the genotypes were genetically divergent. This presents enough scope for opting varieties from the current gene pool for good quality and composition aspects. Significant enhancement of primary quality attributes like percent hulling, milling, and head rice recovery, amylose content, gel consistency, and kernel elongation ratio can be made by exploring rice varieties by presenting the materials to the rice breeders for utilization of rice varieties in future breeding programs (Sahu et al. 2017) [46].

Conclusion

Rice varieties such as Chandra, Bhavapuri Sannalu, Indra, Swarna, and Samba Mahsuri among the released varieties and MTU 1210, MTU 1224 among the pre-released varieties recorded high percent hulling, milling, and head rice recovery with intermediate amylose, alkali spreading value, soft gel and higher volume expansion ratio and minimum elongation ratio which can be preferable traits for rice consumers counting for rice with the best quality.

References

20. Girma BT, Mohammed H, Abegaz K. Physical characteristics and nutritional quality of salt tolerant rice

35. Murthy PSN. Genetic studies in rice (Oryza sativa L.) with special reference to contain quality features- M.Sc. (Botany) thesis, Orissa University of Agriculture & Technology, Bhubaneswar 1965, p 68.

42. Ramaiah K. Grain Classification Page No. 629 - Rice Research in India, ICAR Publication 1985.

57. Swamy BPM. Genome wide mapping of quantitative trait loci (QTLs) for yield and grain quality traits in O. sativa cv Swarna x O. nivara backcross population. Ph. D Thesis, Osmania University, Hyderabad, India 2009.