

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234

www.phytojournal.com JPP 2021; 10(2): 1378-1385 Received: 14-01-2021 Accepted: 18-02-2021

Madhuri Singh

Department of Genetics and Plant Breeding, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Prerna Chouhan

Department of Genetics and Plant Breeding, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Prabharani Chaudhari

Department of Genetics and Plant Breeding, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Corresponding Author: Madhuri Singh Department of Genetics and Plant Breeding, College of Agriculture, Indira Gandhi

Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Agro-morphological characterization of indigenous germplasm accessions of rice (*Oryza sativa* L.)

Madhuri Singh, Prerna Chouhan and Prabharani Chaudhari

Abstract

Fifty indigenous rice germplasm were evaluated to estimate the Agro-morphological characterization of indigenous germplasm accessions of rice (*Oryza sativa* L.) in yield and yield contributing characters at Research cum Instructional Farm, Genetics and Plant Breeding Department, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, during *Kharif* 2018. Varietal characterization is to establish the distinctiveness between the germplasm and also to establish their unique germplasm line detection .In the current study, morphological traits were recorded *viz.*, Coleoptile colour, basal leaf sheath colour, leaf intensity of green colour, leaf sheath intensity of anthocyanin coloration, culm attitude, lemma anthocyanin coloration of area below apex, stem thickness, lemma and palea colour and panicle length of main axis value observed highest differences between accessions. Hence characterization of germplasm accessions creates uniqueness between rice genotypes. In breeding programme, not only used for suitable base donors, although in current time it is useful for preserving the unique rice.

Keywords: Rice, indigenous germplasm, unique, agro-morphological characterization

Introduction

Rice (*Oryza sativa* L.) belonging to family Poaceae is one of the world's most important food crops. It is grown in 115 countries in different parts of the world and provides staple food to more than half of the world's population. India has largest area under rice in the world and ranks second in production next to China. The cultivated rice of Asia is supposed to have originated in the South and/ or South East Asia. India forms a major part of this region thus, it is traditionally rich in the diversity of rice including the wild progenitors of cultivated rice (Singh *et al.*, 2001)^[6].

Being signatory to the General Agreement on Trade and Tariffs (GAAT), Government of India has enacted its Sui generis system, Protection of Plant Varieties and Farmers' Right Act (PPV&FRA), 2001 for providing protection to plant varieties based on Distinctiveness, Uniformity and Stability (DUS) test, apart from novelty. Therefore, the characterization of a variety is a prerequisite and identification of plant varieties of common knowledge is essential for the protection of new plant varieties and determining varietal purity. Agro-Morphological characterization should eventually lead to a system of recording and storing useful data that can be readily retrieved and made available to others and help in planning breeding programmes.

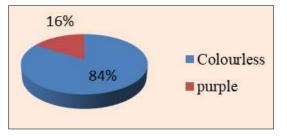
In any breeding program characterization of rice germplasm increases its utility. While the most predictable approach agro-morphological traits is applied to determine the relationships between genotypes (Bajracharya *et al.*, 2006)^[2], The studying of existing genetic diversity and its distribution in crop species is essential for conservation of germplasm and selection of parents with diverse genetic background, hence making crop improvement more effective (Teklu *et al.*, 2006)^[8]. A major purpose of varietal characterization is to establish the distinctiveness between the germplasm and also to establish their unique detection profiles on the basis of grouping individuality prescribed by Distinctness Uniformity Stability (DUS) guidelines.

Material and Methods

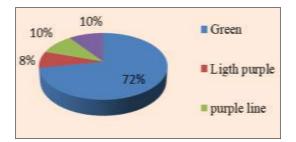
The recent research study was conducted at Research cum Instructional farm, College of Agriculture, Indira Gandhi Agricultural University, Raipur, Chhattisgarh during *Kharif*, 2018. Fifty germplasm accessions were characterized using 52 different agro-morphological traits based on DUS. Rice germplasm accessions used in this study are listed in the table.

2 replications and individual replication consisted of 50 genotypes. Each entry was transferred in two rows where row to row spacing was 20 cm and plant to plant spacing was 15 cm. Check varieties were randomized within block.

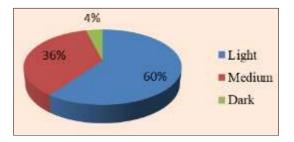
Table 1: List of 43 germplasm accessions of rice along with 7 checks used in the present study

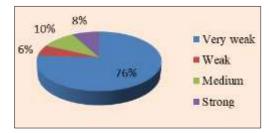

S. No.	Accession No.	Accession Name	S. No. Accession No. Acces		Accession Name
1	CGR:176	Karanga	aranga 26 DT-30		Paveetra
2	CGR:1987	Lalbanko	Lalbanko 27 DT-31		Krishnanjana
3	CGR:1991	Rajbanko	28	CGR:1064	Kujjii
4	CGR:2748	Nagpuri gurmatiya	29	-	Karangi
5	CGR:355	Ramshri	30	CGR:1464	Sendur singha
6	CGR:1021	Karela	31	-	Gathuwan
7	CGR:1134	Lal dhan	32	CGR:618	Bhejari
8	CGR:1319	Parra	33	CGR:14591	Laycha
9	CGR:2493	Davar	34	CGR:1225	Maharaji
10	CGR:3345	Khutbuti	35	-	Saraiphool
11	CGR:7364	Kalimuch	36	CGR:725	Danwar
12	CGR:9455	Sathaka	37	-	Baisoor
13	CGR:8682	Nagkeshar	38	CGR:4514	Resari
14	CGR:9457	Sathi	39	-	Suldhan
15	CGR:10039	Aalcha	40	CGR:17202	Soth
16	CGR:11244	Bora	41	CGR:1041	Karhani
17	CGR:13487	Hundar	42	CGR:3891	Mehardhan
18	CGR:17011	Sathaka	43	CGR:13060	Chepti gurmatiya
19	CGR:1440	Korma	44	-	IR 64
20	CGR: 22	Barhasal	45	-	C.G. Zinc rice-1
21	-	R-RKM-1	46	-	Swarna
22	CGR:2842	Kalajeera	47	-	MTU 1010
23	CGR:18864	Jauphool	48	-	C.G. Zinc rice-2
24	CGR:9789	Tilkasturi	49	-	Chaptimathyala
25	CGR:15998	Parwatkala	50	-	Madhuraj dhan-55

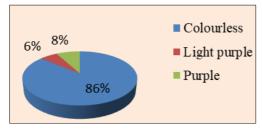
Results and Discussion

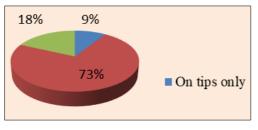

Several varieties can be recognized through its observed morphological characters. These characters can be monogenic and polygenic. The constant morphological characters can be utilized as dependable morphological characters for recognition of a variety from others. Such analytic traits should equally present in the population and transferred in another generation then only the traits is supposed to be constant and to differentiate that varieties this traits can be utilized as morphological marker. Therefore, the great importance for current and future agronomic and genetic improvement of rice crop is systematic study and characterization of germplasm.

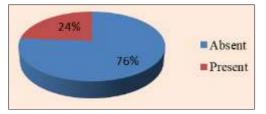
These observations were recorded on fifty rice genotypes all descriptors exhibited markable variation in their division and total variations inside them. The records of agromorphological characterization in accessions are listed. Distribution of frequency distribution and percentage value of agro-morphological traits of fifty germplasm accessions are listed in Table. In the current study, between the morphological characters was recorded Coleoptile colour, basal leaf sheath colour, leaf intensity of green colour, leaf sheath intensity of anthocyanin coloration, culm attitude, lemma anthocyanin coloration of area below apex, stem thickness, lemma and palea colour and panicle length of main axis value observed highest differences between accessions.

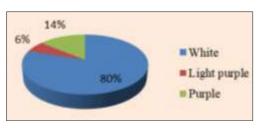

Thus, from primitive types to evolved ones the majority of the genotypes have undergone changes but some possess still primitive traits. Hence, for development of varieties these genotypes should be effectively preserved to be used with distinct traits, novel genes and transfer of some resistance, at higher yield production viable identification at different levels.

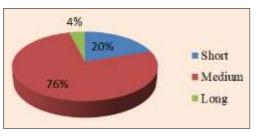

Coleoptile colour

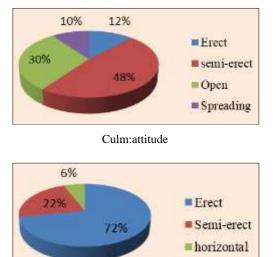

Basal leaf: sheath colour

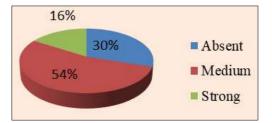

Leaf:intensity of green colour

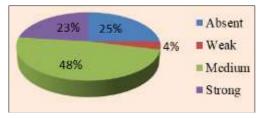

Leaf sheath:intensity of anthocyanin colouration

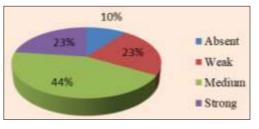

Leaf:anthocyanin colouration of auricles

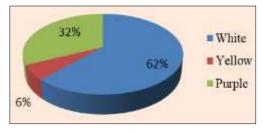

Leaf distribution of anthocyanin colouration

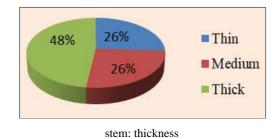

Leaf sheath: anthocyanin colouration

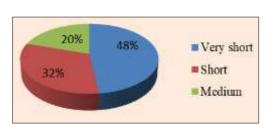



Leaf:length of blade

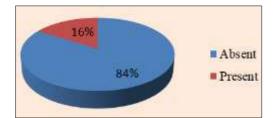

Flag leaf of blade(early observation)


Lemma:anthocyanin colouration of keel

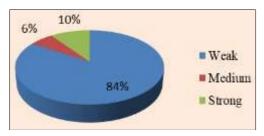

Lemma:anthocyanin colouration of area below apex

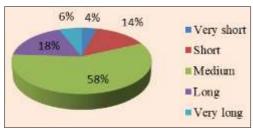


Lemma:anthocyanin colouration of apex



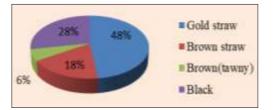
Spikelet:colour of stigma



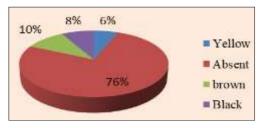

Stem:length(excluding panicle excluding floating rice)


stem:anthocyanin colouration of nodes

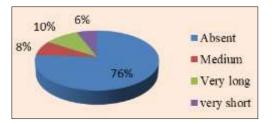
Stem:intensity of anthocyanin colouration of nodes



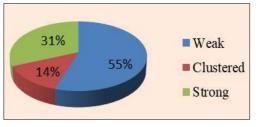
Panicle:length of main axis

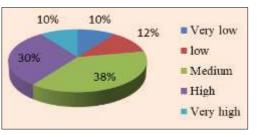


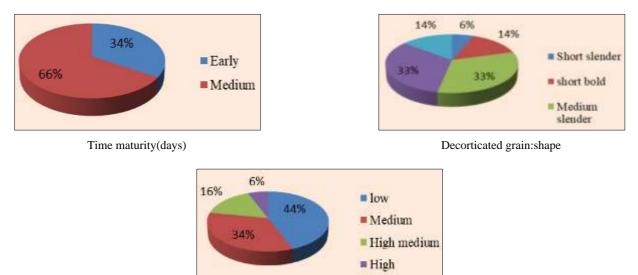
Spikelet:colour of tip of lemma

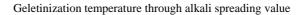



Lemma and palea:colour


Panicle:colour of awns(late observation)


Panicle:length of longest awn


Panicle:distributions of awns



Panicle:secondary branching

Grain:weight of 1000 fully developed grains

S. No.	Characters	Category	Number	Frequency %
1	Coloontile colour	Colourless	42	84
1	Coleoptile colour	Purple	8	16
		Green	36	72
2		Light purple	4	8
	Basal leaf: sheath colour	Purple line	5	10
		Uniform purple	5	10
3		Light	30	60
	Leaf: intensity of green colour	Medium	18	36
		Dark	2	4
		Present	10	20
4	Leaf: anthocyanin colouration	Absent	40	80
_	Leaf sheath: anthocyanin	Absent	38	76
5	Colouration	Present	12	24
		Very weak	38	76
6	Leaf sheath: intensity of	Weak	3	6
	anthocyanin colouration	Medium	5	10
		Strong	4	8
7		Weak	8	16
	Leaf: Pubescence of blade	Medium	28	56
7	Surface	Strong	8	16
		Very strong	6	12
8	Leaf: auricles	Present	50	100
Ű		Colourless	43	86
9	Leaf: anthocyanin colouration	Light purple	3	6
	of auricles	Purple	4	8
10	Leaf: collar	Present	50	100
	Leaf: anthocyanin colouration	Present	7	14
11	of collar	Absent	43	86
12	Leaf: ligule	Present	50	100
13	Leaf: shape of ligule	Split	50	100
15	Lear. shape of figure	White	40	80
14	Leaf: colour of ligule	Light purple	3	6
14	Lean. colour of ligute	Purple	7	14
		Erect	6	12
15		Semi-erect	24	48
	Culm: attitude	Open	15	30
		Spreading	5	10
		Erect	36	72
16	Flag leaf: of blade (early	Semi-erect	11	22
	observation	Horizontal	3	6
		Weak	8	16
17	Spikelet: density of pubescence	Medium	8	10
1/	of lemma		35	70
19	Male sterility	Strong Absent	50	100
18				
19	Lemma: anthocyanin colouration	Absent	15	30
	of keel	Medium	27	54

		<u>a</u> .	0	17
		Strong	8 13	16 26
	Lemma: anthocyanin colouration	Absent Weak	2	26
20	of area below apex	Medium	25	50
	of area below apex	Strong	12	24
		Absent	5	10
	Lemma: anthocyanin colouration	Weak	11	22
21	of apex	Medium	21	42
	or upon	Strong	11	22
		White	31	62
22	Spikelet: colour of stigma	Yellow	3	6
	Spinorou or ought	Purple	16	32
	Stem: anthocyanin colouration	Absent	42	84
23	of nodes	Present	8	16
		Weak	42	84
24	Stem: intensity of anthocyanin	Medium	3	6
	colouration of nodes	Strong	5	10
25	Stem: anthocyanin colouration	Absent	38	76
25	of internodes	Present	12	24
		Erect	15	30
26	Flag leaf: attitude of blade (late	Semi-erect	28	56
	observation)	Horizontal	5	10
07		Straight	17	34
27	Panicle: curvature of main axis	Semi-straight	33	66
		Yellowish	23	46
28	Spikelet: colour of tip of lemma	Brown	13	26
	r r r r r r r r r r r r r r r r r r r	Black	14	28
		Gold straw	24	48
29		Brown straw	9	18
	Lemma and palea: colour	Brown(tawny)	3	6
		Black	14	28
		Absent	38	76
30	Panicle: awns	Present	12	24
		Yellow	3	6
	Panicle: colour of awns (late	Absent	38	76
31	observation)	Brown	5	10
		Black	4	8
		Tip only	3	6
		Upper half only	1	2
32	Panicle: distribution of awns	whole length	8	16
		Absent	38	76
				100
33	Panicle: presence of secondary Branching	Present	50	
		Weak	28	56
34	Panicle: secondary branching	Clustered	7	14
34		Strong	16	32
		Erect	5	10
25		Erect to semi-erect	13	26
35	Panicle: attitude of branches	Semi-erect	28	56
		Semi-erect to spreading	4	8
		Partially exerted	9	18
36	Panicle: exertion	Mostly exerted	13	26
		well exerted	28	56
		Early	16	32
37	Leaf: Senescence	Medium	30	60
		Late	4	8
20				100
39	Sterile lemma: colour	Straw	50	
		Short slender	4	6
		Short bold	7	14
39	Decorticated grain: shape	Medium slender	16	32
	(in lateral view)	Long bold	16	32
		Long slender	7	14
		White	30	60
10		Light brown	4	8
40	Decorticated grain: colour	Dark brown	1	2
		Light red	15	30
		Absent	41	82
41	Decorticated grain: aroma	Present	9	18
	l	1 Itsent	,	10

Purple auricle

White auricle

Purple leaf sheath

Green leaf sheath

Lemma anthocyanin of keel

Purple colour of stigma

Awn absent

Awn present

White rice

Red rice

Black rice

Fig: Decorticated grain: colour

Fig: Phenol reaction of lemma

Table 3: Unique identification of germplasm accessions	Table 3:	Unique	identification	of germplasm	accessions
--	----------	--------	----------------	--------------	------------

Characters	No. of accessions	Unique germplasm accessions
Basal leaf sheath colour	8	Khut buti, Nagkeshar, Hundar, Barhasal, R-RKM-1, Kujjii, Chepti gurmatiya, Madhuraj dhan-55
Leaf anthocyanin colour of auricles	4	R-RKM-1, Parwatkala, Kujjii, Saraiphool
Lemma anthocyanin colouration of keel	8	Karanga, Karela, Parra, Nagkeshar, Barhasal, R-RKM-1, Kala jeera, Parwatkala
Spikelet colour of stigma	15	Ramshri, Khut buti, Sathaka, Barhasal, Parwatkala, Kujjii, Sendur singha, Gathuwan, Saraiphool, Danwar, Suldhan, Chepti gurmatiya, Zinc rice-1, Zinc rice-2, Madhuraj dhan-55
Decorticated grain colour	1	R-RKM-1
Grain phenol reaction of lemma	9	Kali much, Aalcha, Korma, Barhasal, Kalajeera, Tilkasturi, Laycha, Maharaji, Baisoor

Conclusion

In the current study, among the agro-morphological traits viz., colour of coleoptile, colour of leaf intensity of green colour, basal leaf sheath, attitude of culm, lemma anthocyanin coloration below apex; stem thickness; lemma and palea colour and panicle length of main axis value showed highest differences among accessions. The unquie germplasm accessions are showed on basal leaf sheath colour, leaf anthocyanin colour of auricles, lemma anthocyanin colouration of keel, spikelet colour of stigma, decorticated grain colour, grain phenol reaction of lemma were found on basis of agronomical the characteristics. Hence characterization of germplasm accessions creates uniqueness between rice genotypes. In breeding programme, not only used for suitable base donors, although in current time it is useful for preserving the unique rice.

References

- Ahmed MS, Khalequzzaman M, Bashar MK, Shamsuddin AKM. Agro-morphological, physicochemical and molecular characterization of rice germplasm with similar names of Bangladesh. Rice Sci 2016;23(4):211-218.
- 2. Bajracharya Jwala, Steele Katherine, Jarvis Devra, Sthapit Bhuwon, Witcombe J. Rice landrace diversity in Nepal: Variability of agro-morphological traits and SSR markers in landraces from a high-altitude site. Field

Crops Research 2006;95:327-335. 10.1016/j.fcr.2005.04.014.

- 3. Das S, Ghosh A. Characterization of rice germplasm of West Bengal. *Oryza* 2010;47(3):201-205.
- 4. Errabelli, Umarani. Agro-Morphological Characterization of Rice (*Oryza sativa* L.) Landraces Based on DUS Descriptors. International Journal of Pure & Applied Bioscience 2017;5:466-475. 10.18782/2320-7051.2624.
- 5. Gupta R, Tetwar S, Nair SK. Agro-morphological characterization of rice germplasm of Chhattisgarh. Int. J Plant Sci 2013;9(1):257-262.
- Singh BN, Dhua SR, Sahu RK, Patra BC, Marndi BC. Status of rice germplasm-Its collection and conservation in India. Indian J Plant. Genet. Resour 2001;14:105-106.
- 7. Subba Rao LV, Shiva Prasad G, Chiranjivi M, Chaitanya U, Surender R. DUS characterization for farmer varieties of rice. IOSR J of Agri. and Vete. Sci 2013;4(5):35-43.
- Teklu Yifru, Hammer K, Huang Xiuqiang, Röder Marion. Analysis of Microsatellite Diversity in Ethiopian Tetraploid Wheat Landraces. Genetic Resources and Crop Evolution 2006;53:1115-1126. 10.1007/s10722-005-1146-7.