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Abstract 

Forecasting plant disease is the process of predicting the severity of diseases affected by plants. Based on 

the environmental conditions, seasonal changes in nature, and weather conditions, the pathogen spread 

varies in plant diseases. Early forecasting gives farmers sufficient time to rearrange their crop schedules 

and protect the susceptible crop from severe infection by the pathogen. To prepare a forecasting system 

detailed observations over several years based on weather conditions may be necessary. Typically, 

pathogens tend to result in either loss of leaves or shoot area or changes in a leaf colour due to a 

reduction in photosynthetic activity. Remote sensing (RS) technologies provide a diagnostic tool that can 

serve as an early warning system, allowing the agricultural community to intervene early on to counter 

potential problems before they spread widely and negatively impact crop productivity. With the recent 

advancements in sensor technologies, data management and data analytics currently, several RS options 

are available to the agricultural community. By using RS data, the agricultural community can identify 

and quantify the health of agricultural systems, helping them to make management decisions that can 

increase farm profits while lowering agriculture-driven environmental problems. 
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Introduction 

Plants fights with many biotic stress factors like fungi, bacteria, viruses, nematodes and 

insects. These biotic stresses cause severe diseases and infections in agricultural crops and 

affect the productivity as well as yield gap. Assessment of disease symptoms and pest 

invasions is a difficult process. Biotic stress induced damage has been analyzed by personal 

inspection and quantification. It needs more number of manpower and skilled persons. It is 

time, money and energy consuming process. To overcome this issue, remote sensing is a best 

method to evaluate the damage with accurate data.  

Remote sensing is a technology useful to detect damage in agricultural crops over a large area 

in a less period of time. Due to biotic stress, plants showed various symptoms like wilting, 

curling or stunned growth, chlorosis and necrosis etc., (Prabhakar et al., 2011) [58]. Biotic and 

abiotic stress impacts in crop plants can be identified, detected and estimated through the 

hyper spectral remote sensing and their spectral signatures (Fitzgerald et al., 1999) [24]. 

Hyperspectral remote sensing is a narrow wave band, providing data about biophysical, 

biochemical characteristics of agricultural crops by characterize, mapping and quantifying the 

agricultural crops (Sahoo et al., 2015) [64]. Absorption spectrum of narrow bands are recorded 

based on the specific characteristics of crop plants such as physical structure, water content, 

biochemical parameters etc., (Haboudane, 2002, Champagne et al., 2003 and Strachan et al., 

2002) [27, 16, 71].  

Multispectral remote sensors are useful to identify the pest and disease damage. However, it 

could not distinctively recognize the damage caused by the stress (Fitagerald et al., 1999). 

Hyper spectral remote sensing provides the qualitative and quantitative details of plant 

spectrum based on the vegetative parameters. It increases the detection speed and detects the 

damage caused by the pest and diseases with accurate map (Kumar et al., 2002 and Apan et 

al., 2005) [34, 2]. In remote sensing, plants or vegetation absorbs light energy and convert to the 

reflectance spectrum. It gives the assumption data about stress induced damage correlate with 

photosynthesis and physical structure of the plant. For instance, in air borne diseases, 

information on the incidence of disease can be known in order to forecast about its severity 

and expected load of inoculum. For pathogens which are soil-borne, seed-borne and the degree 

of infection can be estimated in the laboratory. Hence there is a need for remote sensing 

techniques to forecast the plant diseases.  
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Remote sensing 

Remote sensing is the acquisition of information about an 

object or phenomenon without making physical contact with 

the object and thus in contrast to on-site observation. In a 

sensor data fusion approach, an early detection of each 

pathogen was possible by discriminant analysis. To monitor 

the plants, remote sensing techniques are grouped into two 

such as imaging and non-imaging approach based on the 

sensors. RGB cameras, multispectral imaging, hyperspectral 

imaging, thermal imaging and fluorescence imaging are the 

imaging approaches used in detecting plant diseases. 

Fluorescence spectroscopy, VIS and IR spectroscopy belong 

to non-imaging approaches (Bhupathi and Sevugan, 2021) [10]. 

Mutka et al., 2015 has summarized the plant disease 

phenotyping in accelerating the crop varieties development. 

Hyperspectral dynamics presented by Wahabzada et al., 2015 
[75] to detect the diseases in barley leaves mapping with 

transport network using a linear time matrix factorization 

technique. Yu et al., 2018 [88] who pointed out that the 

hyperspectral narrowband of the red-edge in the near-infrared 

region, was identified as effective bands for disease 

discrimination in vegetation. Healthy green plants have high 

absorption in the visible having high reflectance of IR region 

except for green band by Nilsson et al., 1995 [53] and Barbedo 

et al., 2016 [5]. Radiometric calibration using a Red Edge 

camera mounted on a multirotor UAV in multispectral images 

is performed by Hossein Pourazar et al., 2019 [28] to detect 

and classify plant diseases. This calibration step converts the 

digital number into reflectance and generated uniform blocks 

in normalization. T-test and entropy distances are measured to 

discriminate against the unhealthy and healthy class of plants 

from the orthomosaic data of citrus orchard which produced 

insignificant precision. 

Mrinal Singha et al., 2019 [69] performed a phenological-based 

classification strategy and textural features were evaluated on 

the dynamics of paddy rice and presented for MODIS and HJ-

1A images. Li et al., 2020 [38] and Pantazi et al., 2016 [55] 

conducted remote sensing monitoring on wheat scab (WS) in 

the Yangtze-Huaihe river region. A remote sensing estimation 

model (Winter wheat Scab Remote sensing Estimating Model, 

WSREM) of WSI was established based on meteorological 

factors and spectral information, to conduct the remote 

sensing evaluation of WSI. Based on the region of interest, 

Paulina et al., 2019 [56] inspected the crop and barley crops 

which are greener in the earlier stage of growth. Normalized 

Difference Vegetation Index (NDVI) relates green biomass 

during spring growth, Green Difference Vegetation Index 

(GNDVI) indicating the chlorophyll content and Normalized 

Difference Red Edge (NDRE) indicates chlorophyll content; 

are the three vegetation indices applied to multispectral data. 

Xiaoxue et al., 2019 [80] constructed the knowledge graph of 

crop diseases and insect pests promoting the automation and 

intellectualization of the system. This knowledge graph is the 

semantic web that exposes the interrelationship between 

entities which is divided into a schema and data layer. 

Fernandes et al., 2011 [23] forecasted the plant diseases using a 

web-based approach. Knowledge representation, extraction, 

fusion, and reasoning are the methods introduced in its 

application. Crop conditions are assessed by Ennouri et al., 

2019 [20] using remote sensing techniques. Nucleic acid and 

protein analysis are done in plant disease detection using 

DNA based and serological methods (Martinelli et al., 2015) 
[45]. To identify the pathogen infections at the asymptomatic 

stage, biophotonic sensors and remote sensing technologies 

were used. Leaf chlorophyll or Cercospora beticola disease 

was assessed by the HyperART system were given by 

Bergsträsser et al., 2015 [7] to map the leaf transmission, 

absorption and reflectance using the properties of Spatio-

temporal dynamics. The metabolism of peach leaves affected 

by PLC is in many ways similar to that of immature sink 

leaves were described by Moscatello et al., 2017 [46]. That is 

photosynthetic function is reduced and the leaf imports rather 

than export sugars. Further, the content of both non-structural 

carbohydrates and enzymes involved in their metabolism is 

similar to that of the sink and not source leaves. The 

chlorophyll content is monitored to detect the diseased leaves 

(Yu et al., 2014) [89]. Late blight disease and early blight 

disease of the vegetation by using the in-situ spectroscopy of 

potato are detected by LGold et al., 2020 [35] and tomato 

leaves are detected by Xie et al., 2015 [81]. Using Sentinel-2 

satellite images, Leaf Area Index (LAI), leaf chlorophyll 

content (LCC) and canopy chlorophyll content (CCC) 

estimated by vegetation indices (Clevers et al., 2017) [17].  

 

Hyperspectral sensing method 

Hyperspectral data is large, especially when multiple plants 

are imaged for several days. A scan of a single plant could 

easily be around a gigabyte in size. If the whole spectrum 

range is analyzed then the process will take considerably 

longer than several wavelengths to analyze. However, there is 

a lot of information contained in the data, which could be 

valuable. Although multi and hyperspectral images can 

potentially carry more information than normal photographs, 

they are usually captured by expensive and bulky sensors, 

while conventional cameras are ubiquitous and present in 

many consumer-level electronics stores. This has resulted in 

developing systems based on the visible range, which also 

leads to a more focused discussion. More information on 

multi and hyperspectral imaging applied to plant diseases can 

be found in Sankaran et al., 2010 [67]. Spatially reference time 

series of close-range hyperspectral images presented in 

Behmann et al., 2018 [6] to track the position of the symptoms 

automatically. Albetis et al., 2017 [1] identified from the 

Unmanned Aerial Vehicle (UAV) images (spectral bands, 

vegetation indices and biophysical parameters) using 

univariate and multivariate classification approaches in 

Flavescence doree, grapevine disease. MicaSense RedEdge 

sensor includes five independent high precision sensors to 

capture the vegetation response at five spectral bands (SB): 

blue, green, red, red-edge and near-infrared are acquired in 

UAV images. Pix4D software used to manage and process the 

UAV images. Univariate and multivariate approaches have 

been implemented in data acquisition, processing and analysis 

of spectral bands. Dash et al., 2017 [18] using the targeted 

application of herbicide. The physiological stress of trees is 

being monitored by manned aircraft. The crown and needle 

health representing density and discoloration respectively are 

assessed time series multi-spectral images of the forest 

captured. Red edge and near-infrared bands are helpful to 

detect the stress in plants at an earlier stage. High-resolution 

thermal and hyperspectral imagery is captured to predict the 

Verticillium wilt Calderón et al., 2015 [15] using remote 

sensing at an earlier stage. The classification methods, Linear 

discriminant analysis (LDA) and support vector machine 

(SVM) are applied to the images of hyperspectral generating 

the accuracy of 71.4% and 75% respectively finding the 

Verticillium dahliae affected in olive plants. This olive wilt is 

a disease is also assessed by using the RGB vegetation 

indexes measuring normalized green-red difference index 
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(NGRDI), Green Area (GA) and triangular greenness index 

(TGI) representing the inoculation effect.  

Multi-scale image matching method Ze et al., 2019 [19] has 

been developed for producing a complete and accurate Amery 

ice shelf velocity field from Landsat 8 images. The 

relationship between the template size and the image entropy 

is investigated and the high contrast regions are distinguished 

preliminary operation improving the matching results over the 

regions. Hyperspectral reflectance and multi-spectral imaging 

techniques based on neural networks were used by Moshou et 

al., 2011 [48] and Golhani et al., 2018 [25] to detect the yellow 

rust plant disease in winter wheat. GPS has been integrated 

with a multi-sensor platform where calibration of the data 

processing unit is performed. Successive projections 

algorithm (SPA)- multiple linear regression (MLR) was 

applied in Li et al., 2017 [36] to construct spectral sensitive 

wavelengths of winter wheat for leaf area index (LAI). PCA 

loadings BPNN model Yao et al., 2019 [86] calculated the 

chlorophyll content to detect wheat stripe rust disease at early 

stage. Krezhova et al., 2014 [33] implemented DAS ELISA 

techniques to perform serological analysis on the tobacco 

plant leaves to detect the Bulgaria Tomato spotted wilt virus 

(TSWV) on the leaf. Randive et al., 2018 [60] implemented 

Non-destructive techniques using vegetation indices to 

identify various diseases on plants. The special signature, 

light reflectance changes, water content are analyzed using 

spectroscopic techniques. Maximum reflectance bands of 

chlorophyll are found to be related to vegetation nitrogen 

concentrations while comparing spectral reflectance data and 

ground observations Boegh et al., 2002 [11]. Based on the 

green leaf area index and nitrogen concentration, the spectral 

reflectance and vegetation indices are calculated. 

Lu et al., 2018 [41] and Jones et al., 2010 [30] used a high-

resolution portable spectral sensor to detect multi-diseased 

tomato leaves in different stages, including early or 

asymptomatic stages. The principal component analysis was 

conducted to evaluate Fifty-seven spectral vegetation indices 

(SVIs) to detect late blight, target, and bacterial spots in 

tomato leaves. UAV images are taken from RGB and CIR 

Canon IXUS/ELPH cameras to map the Acacia longifolia 

flowers present in the coastal and pine forest areas. 

Multispectral images with high resolution are captured using 

RGB cameras to determine the severity and NDVI of the rice 

sheath Zhang et al., 2018 [92, 93]. High-end multiSPEC 4C and 

S110 NIR camera were used by Nebiker et al., 2016 [51] to 

predict the grains and plant diseases with the use of 

lightweight multispectral UAV sensors. 

 

Classification Using Spectrum Data 

Classification approaches aim to divide the data into several 

distinct classes. They originate from a family of statistical or 

machine learning techniques Yang et al., 2017 [85]. One such 

approach is quadratic discriminant analysis (QDA), which 

classifies by using a covariance matrix, which compares 

classes. The QDA method was used in a study with Avocado 

plants, to examine the fungal disease Laurel wilt (Raffaelea 

lauricola), using plants located both in the field and 

glasshouse. It is possible of course to use alternative methods 

at each stage of the analysis pipeline. For example, rather than 

use QDA, a decision tree approach has been used and reached 

95% accuracy Sankaran et al., 2012 [65]. Choosing the correct 

approach for the data, as well as ensuring sufficient dataset 

size and quality are the key components. Such machine 

learning approaches represent an increasingly-common set of 

classification and prediction algorithms. Machine learning 

approaches train algorithms using a training dataset, intending 

to analyse and predict results from new unseen data. Deep 

Convolution Neural network model, VGG16 Wang et al., 

2017 [77] is used to detect the severity of plant disease from 

the apple rot images with an accuracy of 90.4%. VGG16, 

VGG19, Inception-v3, and ResNet50 are the fine-tuned four 

state of the art deep models trained to perform fine-grained 

classification where VGG16 shows high accuracy. Wallelign 

et al., 2018 [76] identified Soyabean plant disease using the 

CNN based LeNet Architecture and classified with an 

accuracy of 99.32% achieved from the plant village dataset 

images. Adaptive moment estimation (Adam) is used to train 

the model. Filtering the input image followed by applying 

max pooling, ReLu activation functions in the subsequent 

output layers, the output is given to the softmax layer to 

produce probability distribution by this model. 

Sladojevic et al., 2016 [70]; Rahman et al., 2020 [59] used the 

deep learning-based approach, Convolution neural network to 

classify the rice plant disease and pest. Adopted VGG16 and 

Inception V3 to recognize diseases and CNN architecture of 

two-stage. Luo et al., 2008 [41] predicted crop diseases to warn 

pest Crop diseases are been identified automatically by using 

CNN. Boulent et al., 2019 [12] contributing more sustainable 

and secure food production. Object detection, which provides 

identification and location as a bounding box and 

segmentation, which provides identification for each pixel is 

performed to identify the disease of a plant. Vilasini et al., 

2020 [74] discussed CNN based approaches for Indian leaf 

species identification from the white background using 

smartphones. Variations of CNN models over features like 

traditional shape, texture, colour and venation apart from the 

other miniature features of uniformity of edge patterns, leaf 

tip, margin, and other statistical features are explored for 

efficient leaf classification. Singh et al., 2019 [69] proposed an 

innovative model named as multilayer convolutional neural 

network (MCNN) for the classification of Mango leaves 

infected from the fungal disease named as Anthracnose. The 

higher performance of the proposed work is confirmed with 

an accuracy of 97.13% when compared with other state-of-

the-art approaches for its accuracy. On applying many 

classification techniques to hyperspectral images, soft 

independent modeling of class analogy (SIMCA) proved as 

the strongest in discriminating healthy and unhealthy as non-

symptomatic diseased (MS) leaves of peer and apple trees. 

Nikrooz et al., 2018 [52] before spreading fire blight disease, it 

is detected at an earlier stage by identifying modified 

triangular vegetation index and modified triangular vegetation 

index. Knowledge graph and case-based reasoning (CBR) has 

been used to detect the tobacco mosaic disease (Gu et al., 

2018) [26]. These techniques produced good results compared 

to PCA and SVM classifiers. Wavelet transformations 

analysis and SVM combined to forecast cucumber diseases by 

Wang et al., 2018 [77] with an accuracy of 86%. Zhao et al., 

2016 [94] also detected cucumber leaf spot diseases. Rule-

based and frame-based knowledge representation expert 

systems. Fajri et al., 2017 [21] developed to detect many types 

of soybean diseases and proposed Certainty factors to detect 

disease of plant preventing pest with an accuracy of 90%. 

Lopez et al., 2016 [39] detected Red blotch diseases of almond 

trees by assessing chlorophyll, carotenoid pigment indices, 

and fluorescence at canopy and leaf level. Healthy and 

infectious trees are classified using a non-linear SVM 

technique. The canopy characteristics of maize crops are 

studied by Xie et al., 2016 [82]. The carotenoids and the 

vegetation indices can be estimated using Partial Least Square 
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Regression PLSR Yi et al., 2014 [87] which are expressed as 

mass per unit surface area or leaf area. 

 

Applications of remote sensing in disease identification 

Rumpf et al., 2010 [62] used the same dataset as Mahlein but 

with different analysis approaches; decision trees (DT), 

artificial neural networks (ANN) and support vector machine 

(SVM). All approaches require prior knowledge, however 

once trained have proven to be efficient. For example, with 

Cerospora leaf spot the accuracy for SVM is 97% (compared 

to DT 95% and ANN 96%); for Sugar beet rust the accuracy 

is 93% (DT 92%, ANN 95%); and for Powdery mildew the 

accuracy is 93% (DT 86%, ANN 91%). Measuring the 

severity with leaf area coverage after the disease has covered 

1-2% of the leaf the accuracy is 62-68% and for more than 

10% leaf coverage the accuracy is almost 100%. This 

demonstrates that it is possible to use a variety of analysis 

methods on the same set of hyperspectral data to elucidate 

different insights and achieve different levels of accuracy 

choice of technique is important. Mahlein et al., 2012 [43] 

analyzed sugar beet diseases specifically Cerospora leaf spot, 

powdery mildew, and leaf rust. The range is 400-1000 nm 

with 2.8 nm spectral resolution and 0.19 mm spatial 

resolution. The plants were analyzed over a while (> 20 days) 

to monitor the different stages of each disease and the leaves 

were classified as healthy or diseased. Cerospora leaf spot 

classification accuracy varied depending on the severity of the 

disease (89.01-98.90%), powdery mildew accuracy varied 

between 90.18 and 97.23%, and sugar beet rust reached 

61.70%, with no classification before day 20 using SAM. 

Nandris et al., 1985 [50] discussed root rotting fungi of rubber 

tree detection using remote sensing methods in the Ivory 

Coast. Cessna 172 airplane with Hasselblad 500 EL/M was 

used to collect visual pictures, processed and the trichromatic 

selection was performed. Beyyala and Beyyala, 2012 [8] 

detected bud rot and basal stem rot disease in Coconut (Cocos 

nucifera L), mosaic, and greening in citrus using image 

processing technology. Sabrol et al., (2015) [63] by analysing 

the size, shape and colour of the affected region. The 

immature green fruit of citrus is detected using the Grey Level 

co-occurrence Matrix (GLCM). Ding et al., 2018 [19] to 

extract features from hyperspectral images and three 

supervised classifiers resulting accuracies SVM-86%, logistic 

regression-79%, and random forest 75%. Kejian et al., 2019 
[31] used polymerase chain reaction (PCR) to detect the HLB 

bacterium (Huanglongbing) Bove et al., 2007 [13] in each leaf 

of the citrus plant. This disease has also been detected using 

near IR spectral reflectance by Sankaran et al., (2013) [66] 

NDVI, Modified RedEdge Simple ratio (MSR) and 

Vogelmann red-edge index (VOG) indications. Yellow rust 

disease, caused by the fungus Puccinia striiformis, is a serious 

threat to wheat production and impacts the yield and quality 

of wheat Zheng et al., (2019) [95]. The timely detection of crop 

diseases at different growth stages Bajwa et al., (2017) [4] are 

critical to the effective management of the economy and 

agriculture. Moshou et al., (2004) [49], Bravo et al., (2003) [14] 

discriminated wheat infected by yellow rust from healthy 

wheat. It was concluded that red-edge wavelengths should be 

useful in reflectance studies of crop disease throughout the 

season. Used a quadratic discriminating model combined with 

the sensitive wavebands (at 543±10 nm, 630±10 nm, 750±10 

nm, and 861±10 nm) for yellow rust discrimination with the 

coefficient of determination of 0.96. Self-Organizing Map 

(SOM) neural network was used by Moshou et al., (2005) [47], 

Zhang et al., (2018) [92, 93] to perform data fusion on the 

spectral wavelengths discriminated against with 94.5% of 

classification accuracy. RGB vegetation indexes widely used 

in plant phenotyping. Shakoor et al., (2017) [68] and in 

assessing abiotic stress, showed considerable resolution in 

detecting changes in plant color that could be attributed to the 

inoculation factor, especially notable in a context of a lack of 

wilting symptoms. 

 

Cotton Diseases 

Verticillium  

Verticillium wilt disease is a major disease caused in cotton 

plant and it cause reduction in cotton yield (Pegg and Brady, 

2002) [57]. V. dahlia Kleb, Verticillium albo-atrum are the 

causative agent for Verticillium wilt disease (Bhandari et al., 

2020) [9]. Early prediction and prevention can prevent the 

cotton loss. Traditional method of disease severity analysis is 

time and effort consuming method. Jin et al., (2013) [29] 

studied the hyperspectral analysis of verticillium disease in 

cotton. Based on the symptoms and severity in leaf, spectral 

reflectance bands spread in several spectrums. It showed that 

disease affected leaves reflected in spectrum.  

 

Root Rot disease 

Root rot disease is caused by Phymatotrichopsis omnivora. In 

U.S it was called as Texas root rot disease (Wang et al., 2020) 
[78]. It averts uptake of nutrients and water from the soil and 

kills the plant by starvation. And it spreads within the field 

through root contact. Diseased field areas are usually circular 

in shape with symptomatic death plants (Yang et al., 2014) 

[84]. Later growth stage of the cotton plant highly affected with 

this root rot disease especially during August to September. 

For long ago, remote sensing has been used as beneficial 

mapping system for identifying cotton root rot in cotton fields 

(Taubenhaus et al., 1929; Nixon et al., 1975) [72, 54]. Due to 

large numbers of infected areas and their irregular shapes, 

remote sensing is a best and effective method for 

identification. Cotton root rot infection mapped by airborne 

image at the end of the season (Yang et al., 2005) [83] and the 

various stages of infection during growing season also 

monitored (Yang et al., 2014) [84]. Both the studies, 

ISODATA (Iterative Self-Organizing Data Analysis) with 

unsupervised multispectral imagery were used to identify 

Cotton root rot disease. Root rot infected and non-infected 

zones were classified based on the spectral classes.  

Multispectral and hyper spectral remote sensing is effectively 

differentiating the diseased infested fields. As unmanned 

aerial vehicles (UAVs) was introduced into agricultural 

remote sensing. At single plant level, cotton root rot disease 

was identified by UAV remote sensing. With the help of 

UAV, high resolution of infected plant image was possible 

(Wang et al., 2020) [78].  

Duggar (Phymatotrihopsis omnivore) is fungal pathogen 

causing tremendous economic loss in cotton plant (Kenerley 

and Jeger, 1990) [32]. It was monitored by remote sensing by 

sudden death of the plant. Toler et al., (1981) [73] also detected 

and determined the loss due to root rot in cotton fields caused 

by Phymatotrichum. Falkenberg et al., (2007) [22] detected 

biotic stress root rot disease with the IR camera. In this study, 

he compared the early season IR image with late season 

digital aerial images. So that the IR camera was able to detect 

root rot disease affected areas.  

 

Ramularia blight 

The potential of three-band multispectral imagery from a
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multi-rotor UAV platform for the detection of Ramularia 

blight from different flight heights was evaluated. Increasing 

infection levels lead to the progressive degradation of the 

spectral vegetation signal, however, were not sufficient to 

differentiate finer-scaled disease severity levels. Findings 

such as that the separability and classification accuracies did 

not decrease up to a monitoring height of 500 m and that 

empirical, relative radiometric adjustment maintains 

multispectral DC signatures similar to flight heights with 

almost no atmospheric interference (100 m) have practical 

relevance. This means that the use of higher flight heights in 

property scale disease monitoring and precision farming can 

equilibrate the major limitation of multi-rotor mini UAV with 

respect to their restricted autonomy and coverage if compared 

to fixed-wing systems without bias foliar disease detection. 

Limited classification performances have motivated our 

ongoing efforts to apply a camera system with a higher 

spectral resolution (Micasense RedEdge M) and its combined 

use with a thermal imaging system FLIR 420T (FLIR 

Commercial Systems). Recent field campaigns include very 

low altitude imaging (<100 m) for the acquisition of improved 

spatial resolution imagery and multi temporal approaches for 

mapping Ramularia blight and other diseases in cotton 

(Xavier et al., 2019) [79].  

 

Challenges and trends in monitoring plant disease  

Despite the encouraging progress that has been achieved in 

the monitoring of plant diseases during the last few decades, 

some challenges still remain that hamper the implementation 

of the techniques in practice. Studies on seeking solutions to 

these challenges will shape future trends. The first issue lies 

in the detection of plant diseases at an early stage. Given the 

reliable RS monitoring of plant diseases are usually achieved 

when symptoms are fully exhibited, which may be too late for 

guiding the prevention. To improve the detectability of the 

diseases at an early stage, it is important to further exploit the 

feasibility of fluorescence, SAR, thermal and Lidar RS 

observations and fuse them with the well-developed VIS-NIR 

RS observations. Besides, it is worth attempting to use multi-

angular remote sensing to increase the detecting capability to 

the lower canopy levels (Li et al., 2015) [37]. The second issue 

is to accurately detect a specific disease under realistic field 

conditions where several crop stress may occur 

simultaneously. Currently, most monitoring studies or 

applications are conducted in experimental fields or areas 

with prior information, such as the type of diseases or other 

stresses occurred in the field (Mahlein et al., 2013; Yuan et 

al., 2014) [42, 90]. For an area that lacks corresponding 

information, it is challenging to achieve a reliable and 

accurate monitoring result. In the future, it is important to 

further explore the uniqueness of the features and 

transferability of the models. Some state-of-the-art 

algorithms, such as deep learning algorithms, may play an 

important role in this process. Besides, it is necessary to 

promote the establishment of a knowledge base about the 

background information about diseases or pests (i.e., 

geographical distribution, favorable habitats, soil types, 

climate conditions), along with a network of relevant ancillary 

data (e.g., meteorological data, soil data, and data from some 

wireless sensors networks). The prior information may help 

exclude many possibilities and thus lower uncertainty in the 

monitoring of plant diseases and pests under complicated 

scenarios. The third issue is to continuously track the 

dynamics of the diseases at a fine resolution. To achieve this, 

the RS systems should have sufficiently high resolution at all 

the spatial, spectral and temporal dimensions. Currently, not a 

single RS system is able to satisfy these requirements. 

Besides, bad weather is also a major obstacle to the 

continuous acquisition of optical images. To tackle this issue, 

it is important to explore the possibility of synergizing high 

resolution satellite images with unmanned aerial vehicle 

(UAV) images to construct a successive time-series RS data. 

Besides, the fusion between optical RS data and radar data is 

also worthy of attention. The fourth issue is data and 

information sharing. Considering distributions and epidemics 

of plant diseases and pests is a transnational process, 

multinational collaboration is important for both research and 

application. Presently, the lack of sufficient survey data is a 

bottleneck in the modeling for monitoring plant diseases and 

pests. Therefore, it is suggested to mobilize data collection 

during the cultivation processes. For example, farmers or 

extension officers should be mobilized to record the 

occurrence and severity of diseases and pests in their 

managed fields through a smart phone app. Then, it is critical 

that the pooled data be easily accessible to support efficient 

data mining and model training with sophisticated algorithms. 

Here we expect the setup of corresponding international 

projects and observation networks that allow experiments, 

data collection, modeling and ideas shared at a continental or 

global scale. 

 

Concluding remarks 

Monitoring diseases reliably, timely and efficiently over vast 

areas is very important for plant protection assessment and 

management. During the last a few decades, various RS 

techniques have been introduced for monitoring plant diseases 

and exhibited great potential for complementing conventional 

laborious inspection. In this review, we summarized the latest 

developments in corresponding RS systems, RS features, 

feature selection techniques, monitoring algorithms and 

models for conducting a comprehensive, effective monitoring 

of plant diseases. We expect that this review of state of art 

research achievements in remotely sensed monitoring of 

diseases can provoke new thoughts and promote the 

development of corresponding theories, techniques and 

methods both in academia and production practice. 
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