

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 https://www.phytojournal.com JPP 2023; 12(2): 80-83 Received: 02-12-2022 Accepted: 09-01-2023

Kishor C Paikrao

Department of Botany, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India

Arvind S Dhabe

Department of Botany, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India

Corresponding Author: Kishor C Paikrao Department of Botany, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India

HRLC-MS analysis of *Tephrosia purpurea* (L.) Pers

Kishor C Paikrao and Arvind S Dhabe

DOI: https://doi.org/10.22271/phyto.2023.v12.i2b.14631

Abstract

The genus *Tephrosia*, is widely distributed in many tropical and subtropical countries of the world and have been used in folk medicine for the treatment of large number of diseases. Present investigation was undertaken in order to analyse bioactive constituents present in *Tephrosia purpurea* by using High Resolution-Liquid Chromatography-Mass Spectrometry (HR-LCMS).

The study revealed the presence of secondary metabolites like alkaloid (23-Acetoxysoladulcidine), Flavonoids (5,3'-Dihydroxy-2,4- dimethoxyydalbergiquinol), retinoids (16-Hydroxy-4-carboxyretinoic acid) Coumarin (1-Oxo1H2benzopyran3carboxaldehyde), cyanoguanidine (Pinacidil), stilbenoid, (Demethylbatatasin IV) Sesquiterpenoid, (13Hydroxy5'Omethylmelledonal), germacranolide (Molephantinin) and Phenolic compounds in the selected medicinal plants.

Keywords: Tephrosia, alkaloid, retinoids, coumarin, flavonoids, HR-LCMS

Introduction

The genus *Tephrosia Persoon* is currently recognized with ca. 350 species mostly inhabiting in the tropical and subtropical regions of the world with highest concentration in Africa (Mabberley, 2017)^[6]. The genus *Tephrosia* is represented by 27 species and one variety in India (Sanjappa 1992)^[5], of which 13 species are found in Maharashtra state, while 8 species in Marathwada region. *Tephrosia purpurea* (L.) Pers. is a perennial herb, characterised by compound stipulated Leaflets 13–19, oblanceolate, apex obtuse, retuse or mucronate, base cuneate. Flowers bright rosy–purple or violet. Pods linear, slightly curved, mucronate. In the Ayurveda system, is referred as *Sarwa wran vishapaha* which implies that it can heal any type of wound. It played an important role in the traditional medicine, (Akanksha *et al.*, 2014)^[1].

Material and Method

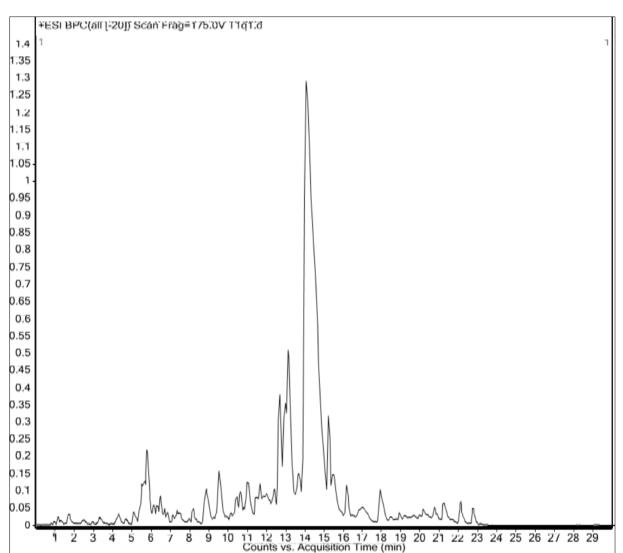
The root, stem and leaves of *Tephrosia purpurea* were collected from Dr. Babasaheb Ambedkar Marathwada University (B.A.M.U.), campus near Soneri Mahal Aurangabad, on 30/07/2021, and it was identified following Naik (1998)^[7] and Singh *et al.* (2000)^[10]. The Voucher specimen no. 010901 were deposited in BAMU Herbarium, Department of Botany Dr. Babasaheb Ambedkar Marathwada University, Aurangabad. (MS).

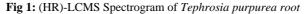
The root stem and leaves of selected medicinal plant were finely powdered. Bioactive compounds were extracted with Ethanol using a Soxhlet's extractor for 76 hrs. The extracts were concentrated to remove the solvents completely by using Rotary evaporator. Plant extract were sent for qualitative analysis of their chemical constituent at SAIF, IIT, Bombay by HRLC-MS technique. The instrument used is Agilent technology G6550A-ifunnel, Q-TOF, LC/MS. Column type is ZORBAX RRHDSBC18, with 100 mm length, 2.1 mm diameter and 1.8 pore size. It was carried out with mass spectrometry mainly for the classes of compound which are non-volatile like higher terpenoids, phenolic compounds, alkaloids, flavonoids, lipids, sugars, and amino acid etc.

Result and Discussion

The HRLC-MS analysis of *Tephrosia purpurea root* showed presence of 18 compounds as shown in table 1. Methyl-ophiopogonin-A is homo-Isoflavonoid from the roots of *Ophiopogon japonicus* and explored by their effects on the release of the inflammatory chemokine eotaxin, stimulated by IL-4 and the combination of IL-4 and TNF- α cells. (Hung *et al.*, 2010) ^[5]. Compound 2',4'-dihydroxy-4,6'-dimethoxydihydrochalcone, as the cytotoxic active metabolites, their most potent cytotoxic activity found against the K562 (Erythroleukemia) cell line (GI50) 8.4 and 7.4 µg/mL, respectively (Aponte *et al.*, 2008) ^[2].

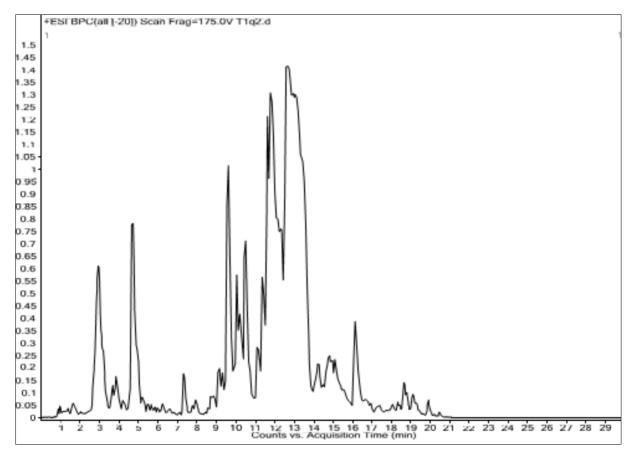

Stem showed presence of 17 compounds as shown in table 2. Pinacidil is cyanoguanidine a new antihypertensive vasodilator, probably acting directly on vascular smooth muscle


(Arrigoni-Martelli *et al.*, 1980) ^[3]. Spirapril is dipeptide angiotensin-converting enzyme (ACE) inhibitor with a long duration of action, to determine whether duration of inhibition of serum ACE activity may affect regional blood flow (RBF), compared spirapril with captopril, an ACE inhibitor with a short duration of action. (Van den *et al.*, 1995) ^[11].


Leaves showed presence of 19 compounds as shown in table 3.

Compound 23-Acetoxysoladulcidine is an alkaloid isolated from natural herbs exhibit antiproliferation, antibacterial, antiviral, insecticidal, and antimetastatic effects on various types of cancers both *in vitro* and *in vivo*, (Shi *et al.*, 2014)^[9]. Batatasin IV is stilbenoid shows inhibitory effects against α -glucosidase regarding their antidiabetic activitieties, (Hashimoto, & Tajima, (1978)^[4].

Sr. No.	Compound name	Formula	Mass	R.T.	D.B. Diff. (PPM)
1.	Epicatechin pentaacetate	C ₂₅ H ₂₄ O ₁₁	500.1313	8.323	1.08
2.	O-Demethylfonsecin	$C_{14}H_{12}O_{6}$	276.0637	8.385	-1.28
3.	Aquayamycin	C25H26O10	486.1519	8.577	1.33
4	Methylophiopogonone A	C19H16O6	340.0954	10.235	-1.98
5	2',4'-Dihydroxy-4,6'- dimethoxydihydrochalcone	C17H18O5	302.1158	11.6	-1.14
6	Isosativan	C17H18O4	286.1208	11.791	-1.08
7	Hemiariensin	C22H24O7	400.1522	11.184	0.11
8	Hydroxyisonobilin	$C_{20}H_{26}O_{6}$	362.1727	11.228	0.59
9	5,3'-Dihydroxy-2,4- dimethoxydalbergiquinol	$C_{17}H_{18}O_4$	286.1207	12.396	-0.53
10	Molephantinin	$C_{20}H_{24}O_{6}$	360.1578	12.522	-1.5
11	Montanin A	C19H20 O4	312.1362	12.904	-0.02
12	Grandiflorone	C19H22 O4	314.1517	13.061	0.39
13	16-Hydroxy-4-carboxyretinoic acid	C20H24 O5	344.1625	13.141	-0.34
14	Angoletin	$C_{18}H_{20}O_4$	300.1369	12.97	-2.58
15	Eudesmin	C22H26 O6	386.1721	13.361	2.09
16	2',4',6'-Trihydroxy-3'- prenyldihydrochalcone	$C_{20}H_{22}O4$	326.1517	13.377	0.47
17	Isoeugenol phenylacetate	C18H18 O3	282.1257	13.578	-0.49
18	4'-Hydroxy-5,7-dimethoxy-8- methylflavan	C18H20 O4	300.1331	13.648	0.18



Sr. No.	Compound name	Formula	Mass	R.T.	D.B. Diff. PPM
1	Pinacidil	C13 H19 N5	245.1622	3.624	7.48
2	N-2-[4-(3,3- Dimethyl allyloxy) phenyl]ethylcinnamide	C22H25N O2	335.196	4.202	-6.06
3	Hydrocortamate	C27H41N O6	475.2945	5.149	-2.31
4	Villinol	C24 H22 O8	438.13	8.801	3.43
5	Dihydro-deoxy streptomycin	C21H41N7O11	567.2853	8.944	1.98
6	Dihydro-obliquin	C14 H14 O4	246.0897	9.405	-2.11
7	13-Hydroxy-5'-O-methylmelledonal	C24 H30 O9	462.1883	10.06	1.5
8	Isodonal	C22 H28 O7	404.1828	10.151	1.62
10	Ethyl 4-methylphenoxyacetate	C11H14 O3	194.095	11.175	-3.76
11	1-Oxo-1H-2-benzopyran-3- carboxaldehyde	C10 H6 O3	174.0304	11.282	7.68
12	Spirapril	$C_{22}H_{30}N_2O_5 S_2$	466.1617	11.47	-4.42
13	Furano [2",3":6,7] aurone	C17 H10 O3	262.0617	11.659	4.81
14	Glyinflanin H	C19 H16 O4	308.1041	11.736	2.52
15	Nb-trans-Feruloylserotonin glucoside	C26H30N2O9	514.1962	12.123	-2.06
16	Magnosalicin	C24 H32 O7	432.2144	13.349	1.03
17	Isoeugenol phenylacetate	C18 H18 O3	282.126	13.559	-1.29

Table 2: Phytochemical compounds present in the stem of Tephrosia purpurea

Fig 2 (HR)	-LCMS Spe	ectrogram of	Tephrosia	purpurea	stem
-------------------	-----------	--------------	-----------	----------	------

Table 3: Phytochemical	compounds presen	t in the leaves	of Tephrosia purpurea
	eompoundo presen	e in the real of	or reprinced purpunced

Sr. No.	Compound name	Formula	Mass	R.T.	D.B. Diff. PPM
1.	Quercetin	C15 H10 O7	302.0404	5.668	7.49
2	Rutin	C27H30 O16	610.1496	5.671	6.28
3	1-Oxo-1H-2-benzopyran-3- carboxaldehyde	C10 H6 O3	174.0304	7.337	7.49
4	N-Isobutyl-2,4,8,10,12- tetra-decapentaenamide	C ₁₈ H ₂₇ NO	273.2098	7.724	-1.96
5	N-tetradecanoyl-L-Homoserine lactone	C ₁₈ H ₃₃ NO ₃	311.2465	8.019	-1.47
6	AMP-Deoxy nojirimycin	C ₂₂ H ₃₉ NO ₅	397.2796	8.145	8.02
7	Myxalamid C	C ₂₄ H ₃₇ NO ₃	387.2778	8.878	-1.24
8	3-methyl-octanoic acid	C9 H18 O2	158.1318	9.311	-7.06
9	23Acetoxysoladulcidine	C29H47NO4	473.3476	10.397	6.18
10	Eupatocunin	C22 H28 O7	404.1831	10.49	1.03
11	Demethylbatatasin IV	C14 H14 O3	230.094	11.066	-2.38
12	1-Oxo-1H-2-benzopyran-3- carboxaldehyde	C10 H6 O3	174.0304	11.308	7.45
13	Gmelinol	C22 H26 O7	402.1685	11.39	-1.64
14	9-Hydroxy-3',4'-dimethoxy-3,4- methylenedioxy-9,9'- epoxylignan	$C_{21} H_{24} O_6$	372.158	12.549	-1.91
15	Neobavaisoflavone	C20 H18 O4	322.1211	12.554	-1.96

16	4Z,15E-Bilirubin IXa	C33H36N4O6	584.2627	17.05	1.39
17	Pheophorbide a	C35H36N4O5	592.2668	17.559	3.07
18	(3Z)- Phycoerythrobilin	C33H38N4O6	586.2785	17.695	1.05
19	Euphornin	C33 H44 O9	584.2991	17.984	-1.03

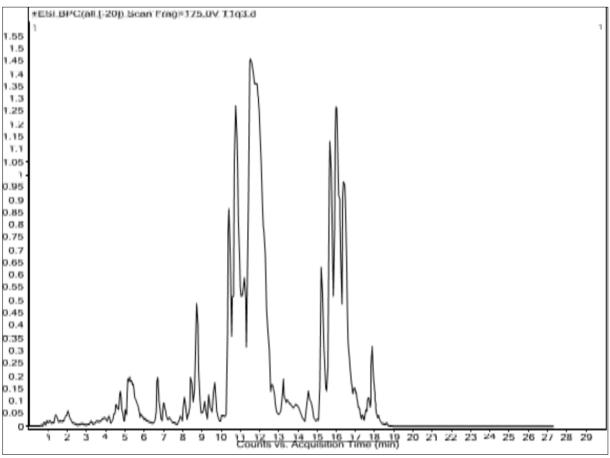


Fig. 3 (HR)-LCMS Spectrogram of Tephrosia purpurea leaves

Conclusion

The ethanolic extract of *Tephrosia purpurea* root, stem and leaves revealed the presence of important bioactive compounds like alkaloids, flavonoids, Phycoerythrobilin, flavones, stilbenoid, pheophorbide, glycoside, terpenoids, sesquiterpenoids, retinoids, Cyanoguanidine, germacranolide, coumarins, Chalcones and Steroid, using high-resolution liquid chromatography-mass spectrometry (HRLC-MS) analysis. These compounds are species specific and can be used to standardize the species.

Acknowledgement

The Authors are thankful to Sophisticated analytical instrument facility (SAIF) IIT Powai, Mumbai for HRLC-MS analysis of the sample.

The first author is thankful to CSIR and UGC for sanctioning fellowship.

References

- 1. Baranwal A, Mazumder A, Chakraborthy GS, Gupta S. Phytopharmacological uses of *Tephrosia purpurea* a review. Pharmacophore. 2014;5(4):658-65.
- 2. Aponte JC, Vaisberg AJ, Rojas R, Caviedes L, Lewis WH, Lamas G, *et al.* Isolation of cytotoxic metabolites from targeted peruvian amazonian medicinal plants. Journal of Natural Products. 2008;71(1):102-5.
- 3. Arrigoni-Martelli E, Kaergaard Nielsen C, Bang Olsen U, Petersen HJ. N-cyano-N-4-pyridyl-N'-1, 2, 2-

trimethylpropylguanidine, monohydrate (P 1134): A new, potent vasodilator. Experientia. 1980;36:445-7.

- Hashimoto T, Tajima M. Structures, and synthesis of the growth inhibitors batatasins IV and V, and their physiological activities. Phytochemistry. 1978;17(7):1179-1184.
- Hung TM, Van Thu C, Dat NT, Ryoo SW, Lee JH, Kim JC, *et al.* Homo-Isoflavonoid derivatives from the roots and their *in vitro* anti-inflammation activity. Bioorganic & Medicinal Chemistry Letters. 2010;20(8):2412-2416.
- 6. Mabberley DJ. Mabberley's Plant-book: a portable dictionary of plants, their classifications and uses (No. Ed. 4). Cambridge university press, 2017.
- 7. Naik VN. Flora of Marathwada. Amrut Prakashan, Aurangabad. 1998;1:237-319.
- Sanjappa M. Legumes of India. Bishen Singh Mahendra Pal Singh, 1992.
- 9. Shi, *et al.* Natural alkaloids: basic aspects, biological roles, and future perspectives. Chinese Journal of Natural Medicines. 2014;12(6):401-406.
- 10. Singh NP, Karthikeyan S, Lakshminarasimhan P, Prasanna PV. Flora of Maharashtra State-Dicotyledons. Botanical Survey of India, Calcatta. 2000;2:898.
- 11. van den Broek SA, de Graeff PA, Smit AJ, Girbes AR, Journée L, van Gilst WH, *et al.* Effects of spirapril and captopril on regional blood flow in chronic congestive heart failure: a comparison between a short-and a longacting angiotensin-converting enzyme inhibitor. Journal of cardiovascular pharmacology. 1995;25(1):105-12.