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Abstract 

Contemporary pharmaceutical techniques may be complemented by the use of plants, leading to a global 

increase in the analysis of traditional medicinal plants. With the advancement of computer science, in 

silico methods such as network analysis and screening have become widely utilized to provide insight 

into the pharmacological mechanisms of action of these plants. Through the implementation of network 

pharmacology, insilico screening, and pharmacokinetic screening, the number of active substances 

among the candidates can be increased, and the therapeutic plant's mode of action can be revealed. The 

present study focuses on the utilization of the Swiss ADME insilico ADME tool for the pharmacological 

and pharmacogenetic characterization of secondary metabolites present in Trigonella foenum-graecum. 

The results of these investigations may be utilized by researchers to conduct in vitro and in vivo studies, 

thereby uncovering the pharmacological mechanisms of action of traditional medicinal herbs. 

 

Keywords: Medicinal plant, Fenugreek (Trigonella foenum-graecum), secondary metabolites, 

pharmacological properties, Swiss ADME 

 

1. Introduction 
Ancient civilizations possessed extensive knowledge regarding the utilization of medicinal 
plants as herbal remedies. In less developed nations, over 80% of the population relies on 
traditional medicine, with herbs serving as essential resources for sustenance, shelter, clothing, 
flavouring, fragrance, and medicinal purposes (Divya and Mini, 2011; Manoj Kumar Mishra, 
2016; Gurib-Fakim, 2006; and Brijesh & Madhusudan, 2015) [12, 31, 20, 3]. The exploration of 
medicinal plants for drug discovery has yielded significant advancements and crucial insights 
into various pharmacological targets, including the treatment of diseases such as cancer, 
malaria, cardiovascular diseases, diabetes, and neurological disorders. Ayurveda, an ancient 
Indian medical system, recommends numerous medicinal plants for the treatment of various 
ailments. One such plant is Trigonella foenum-graecum L., commonly known as fenugreek or 
methi in Hindi, which has been utilized for its medicinal properties. Fenugreek is a 
leguminous, herbaceous, semi-arid crop belonging to the Fabaceae family known for its 
production of complex chemical compounds. Plant secondary metabolites, a diverse group of 
organic compounds with low molecular weight, are synthesized by plants to facilitate 
interactions with the biotic environment and serve as defence mechanisms. These secondary 
metabolites have demonstrated promising therapeutic value and are widely employed in 
medical practices. The specific uses of Trigonella foenum-graecum L have been documented 
in various studies. These include its antioxidant activity (Dixit P et al., 2005) [13], anti-diabetic 
activity (Shani J et al.,1974) [39], anti-cancer properties (Kaviarasan S, Anuradha CV, 2007) 
[25], cholesterol-lowering effect (Stark A, Madar Z,1993) [41], anti-bacterial activity (Dash BK 
et al., 2011) [9], improvement of digestion (Platel K, Srinivasan K, 2000), gastroprotection 
(Platel K, Srinivasan K, 2000) [37], treatment of obesity (Handa T et al., 2005) [21], anti-
inflammatory action (Sharififara F.et al.,2009) [40], and anti-hypertensive effect (Talpur N.et 
al.,2005) [42]. Through the establishment of a prompt and expedient pathway for predicting the 
chemical constituents and conducting in vivo and in vitro pharmacological experiments for 
verification, the efficacy of evaluating the chemical activities of medicinal plants can be 
significantly enhanced (Yi F et al., 2016) [48]. One valuable tool for this purpose is the Swiss 
ADME website, which facilitates the computation of physicochemical descriptors and the 
prediction of ADME parameters, pharmacokinetic properties, drug-like nature, and medicinal 
chemistry friendliness of small molecules. In this investigation, our objective was to employ 
the Swiss ADME (http://www.swissadme.ch/index.php) to assess individual ADME behaviour 
and interpret the outcomes. 
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2. Materials and Methods 

2.1 Swiss ADME: The Swiss ADME software, developed by 

the Swiss Institute of Bioinformatics, was accessed through 

the website www.swissadme.ch. The web server displayed the 

Submission page of Swiss ADME on Google, which was 

utilized to estimate the individual ADME behaviors of the 

compounds derived from Trigonella foenum-graecum. The 

input list consisted of one molecule per line, with each 

molecule defined by the simplified molecular input line entry 

system (SMILES). The results for each molecule were 

presented in tables, graphs, and an excel spreadsheet, as 

described by Egan et al. (2000) [14]. 

 

2.2 Structure and bioavailability radar: The first section 

presents the two-dimensional chemical structure with 

canonical SMILES. In order to assess the drug likeness of the 

molecules of interest, the bioavailability radar takes into 

consideration six physicochemical properties: lipophilicity 

(LIPO), size (SIZE), polarity (POLAR), insolubility 

(INSOLU), insaturation (INSATU), and flexibility (FLEX). 

The specific criteria for each property are as follows: 

lipophilicity should have an XLOGP3 value between -0.7 and 

+5.0, size should have a molecular weight (MW) between 150 

and 500 g/mol, polarity should have a topological polar 

surface area (TPSA) between 20 and 130 0A2, solubility 

should have a logarithm of the solubility (log S) not 

exceeding 6, saturation should have a fraction of carbons in 

sp3 hybridization not less than 0.25, and flexibility should 

have no more than 9 rotatable bonds. These guidelines were 

established by Daina et al. in 2017 [7]. 

 

2.3 Physicochemical properties: This section encompasses 

the molecular and physicochemical characteristics of the 

compound, including the molecular formula, molecular 

weight, number of heavy atoms, number of aromatic heavy 

atoms, fraction csp3, number of rotatable bonds, number of 

H-bond acceptors, number of H-bond donors, molar 

refractivity, and TPSA. These values were calculated using 

open babel version 2.3.0 (O’Boyle, 2011 & Daina et al., 

2017) [35, 7]. 

 

2.4 Lipophilicity: Lipophilicity is a crucial parameter in drug 

discovery and design (Leeson & Springthorpe, 2007) [27] 

because it complements the most informative and successful 

physicochemical property in medicinal chemistry (Testa et 

al., 2000) [44]. It is experimentally demonstrated as partition 

coefficients (log P) or as distribution coefficients (log D). Log 

P represents the partition equilibrium of an un-ionized solute 

between water and an immiscible organic solvent. Higher log 

P values correspond to greater lipophilicity (Arnott & Planey, 

2012) [1]. To evaluate the lipophilicity of a compound, Swiss 

ADME provides five freely available models: XLOGP3, 

WLOGP, MLOGP, SILICOS-IT, and iLOGP. XLOGP3 is an 

atomistic approach that includes corrective factors and a 

knowledge-based library (Cheng, 2007) [4]. WLOGP is based 

on a purely atomistic method using a fragmental system 

(Wildman and Crippen, 1999) [46]. MLOGP is a topological 

method based on a linear relationship with 13 implemented 

molecular descriptors (Moriguchi et al., 1992 & Moriguchi et 

al., 1994) [32, 33]. SILICOS-IT is a hybrid method based on 27 

fragments and 7 topological descriptors. iLOGP is a physics-

based method that relies on the free energies of solvation in n-

octanol and water calculated by the generalized-born and 

solvent accessible surface area (GB/SA) model. Consensus 

log P o/w is the arithmetic mean of the values predicted by the 

five proposed methods (Daina et al., 2017) [7]. 

 

2.5 Solubility: The solubility of a compound is greatly 

influenced by the solvent used, ambient temperature, and 

pressure. The extent of solubility is measured as the saturation 

concentration, which is the point at which adding more solute 

does not increase its concentration in the solution (Lachman 

et al., 1986 & Savjani et al., 2012) [26, ]. A drug is considered 

highly soluble when the highest dose strength can dissolve in 

250 mL or less of aqueous media within the pH range of 1 to 

7.5. Swiss ADME employs two topological approaches to 

predict water solubility. The first approach involves the 

application of the ESOL model, which categorizes solubility 

into classes based on the logarithmic scale (Insoluble<-10, 

Poorly soluble<-6, Moderately soluble<-4, Soluble<-2, Very 

soluble<0). Both approaches differ from the fundamental 

general solubility equation (Yalkowsky & Valvani, 1980) [47] 

as they do not consider the melting point parameter. However, 

there is a strong linear correlation between the predicted and 

experimental values (R2=0.69 and 0.81 respectively). The 

third predictor in Swiss ADME was developed by SILICOS-

IT, which also categorizes solubility into classes based on the 

logarithmic scale (Insoluble<-10, Poorly soluble<-6, 

Moderately soluble<-4, Soluble<-2, Very soluble<0), with the 

linear coefficient being corrected by molecular weight 

(R2=0.75). All predicted values are presented as the decimal 

logarithm of the molar solubility in water (log S). Swiss 

ADME also provides solubility values in mol/l and mg/ml, 

along with qualitative solubility classes. 

 

2.6 Pharmacokinetics: The distinction lies within a region of 

favorable properties for gastrointestinal (GI) absorption on a 

graph depicting two computed descriptors: ALOGP versus 

PSA, respectively. The region that is most populated by 

molecules that are well absorbed is elliptical in shape and has 

been named the Egan egg. This egg is utilized to evaluate the 

predictive capability of the model for passive GI absorption 

and prediction for brain access through passive diffusion, 

ultimately resulting in the creation of the BOILED-Egg (Brain 

or Intestina L Estimate D permeation predictive model). The 

BOILED-Egg model offers a rapid, spontaneous, efficient, yet 

robust method for forecasting passive GI absorption, which is 

beneficial for drug discovery and development (Di et al., 

2012 & Brito-Sanchez et al., 2015) [10]. The white region 

represents the space occupied by molecules with a grater 

extent of absorption by the GI tract, while the yellow region 

(yolk) represents the space with the highest probability of 

permeating to the brain (Daina et al., 2017, Daina et al., 2016 

& Montanari and Ecker, 2015) [7]. Cytochrome p450 (CYP) 

isoenzymes biotransform more than 50-90% of therapeutic 

molecules through its five major isoforms (CYP1A2, 

CYP3A4, CYP2C9, CYP2C19, CYP2D6). P-gp is widely 

distributed in the intestinal epithelium and functions to pump 

xenobiotics back into the intestinal lumen and from the 

capillary endothelial cells of the brain back into the capillaries 

(Ogu & Maxa, 2000 and Ndombera et al., 2019) [36, 34]. Swiss 

ADME employs the support vector machine algorithm (SVM) 

for datasets consisting of known substrates/non-substrates or 

inhibitors/non-inhibitors for binary classification. The 

resulting molecule will be classified as either "Yes" or "No" 

depending on whether it is expected to be a substrate for both 

P-gp and CYP, respectively. The SVM model for P-gp 

substrate was constructed using 1033 molecules in the 

training set and tested on 415 molecules in the test set, with a 
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10-fold cross-validation accuracy of 0.72 and an area under 

the curve (AUC) of 0.77. The external accuracy and 

AUCAUC=0.94 respectively. The Support Vector Machine 

(SVM) models for the inhibition of Cytochrome P-450 1A2, 

2C19, 2C9, 2D6, and 3A4 molecules were constructed using 

different training and test sets. For the Cytochrome P-450 

1A2 inhibitor molecule, the SVM model was built on a 

training set of 9145 molecules and tested on 3000 molecules. 

The 10-fold cross-validation yielded an accuracy (ACC) of 

0.83 and an area under the curve (AUC) of 0.90. The external 

validation resulted in an ACC of 0.84 and an AUC of 0.91. 

Similarly, for the Cytochrome P-450 2C19 inhibitor molecule, 

the SVM model was constructed using a training set of 9272 

molecules and tested on 3000 molecules. The 10-fold cross-

validation showed an ACC of 0.80 and an AUC of 0.86. The 

external validation exhibited an ACC of 0.80 and an AUC of 

0.87. For the Cytochrome P-450 2C9 inhibitor molecule, the 

SVM model was developed using a training set of 5940 

molecules and tested on 2075 molecules. The 10-fold cross-

validation yielded an ACC of 0.78 and an AUC of 0.85. The 

external validation resulted in an ACC of 0.71 and an AUC of 

0.81. The SVM model for the Cytochrome P-450 2D6 

inhibitor molecule was constructed using a training set of 

3664 molecules and tested on 1068 molecules. The 10-fold 

cross-validation showed an ACC of 0.79 and an AUC of 0.85. 

The external validation exhibited an ACC of 0.81 and an 

AUC of 0.87. Lastly, for the Cytochrome P-450 3A4 inhibitor 

molecule, the SVM model was built on a training set of 7518 

molecules and tested on 2579 molecules. The 10-fold cross-

validation yielded an ACC of 0.77 and an AUC of 0.85. The 

external validation resulted in an ACC of 0.78 and an AUC of 

0.86. 

 

2.8 Medicinal chemistry: The objective of this section is to 

support medicinal chemists in their daily efforts to discover 

new drugs. PAINS (Pan Assay Interference Compounds or 

frequent hitters or promiscuous compounds) are molecules 

that exhibit strong responses in assays regardless of the 

protein targets. These compounds have been found to be 

active in various assays, making them potential starting points 

for further investigation. SwissADME issues warnings if such 

moieties are present in the molecule being evaluated (Baell & 

Holloway, 2010) [2]. In another approach, Brenk focuses on 

compounds that are smaller and less hydrophobic, rather than 

those defined by "Lipinski's rule of 5," in order to expand 

opportunities for lead optimization. This involves excluding 

compounds with potentially mutagenic, reactive, and 

unfavorable groups such as nitro groups, sulfates, phosphates, 

2-halopyridines, and thiols. The Brenk model restricts the 

ClogP/ClogD values to between 0 and 4, the number of 

hydrogen-bond donors to fewer than 4, the number of 

hydrogen-bond acceptors to fewer than 7, and the number of 

heavy atoms to between 10 and 27. Additionally, only 

compounds with limited complexity, defined as having fewer 

than 8 rotatable bonds, fewer than 5 ring systems, and no ring 

systems with more than 2 fused rings, are considered 

medicinal (Brenk et al., 2008). The concept of lead likeness is 

designed to provide leads with high affinity in high 

throughput screening (HTS), allowing for the exploration of 

additional interactions in the lead optimization phase. Leads 

undergo chemical modifications that are likely to reduce their 

size and increase their lipophilicity, making them less 

hydrophobic than drug-like molecules. Lead optimization is 

typically carried out using a rule-based method, with 

molecules having a molecular weight between 100 and 350 

Da and a ClogP between 1 and 3.0 being considered superior 

to drug-like compounds and therefore lead-like (Hann & 

Keseru, 2012 and Teague et al., 1999) [22, 43]. 

 

 
 

Fig 1: Boiled Egg Model of the Phytoconstituents of Trigonella foenum-graecum L 
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3. Results 

 
Table 1: General Characteristics of Phytoconstituents of Trigonella foenum-graecum L. (Fenugreek). 

 

Sr. 

No 

Small 

molecule 
Pub chem ID 

Molecular 

formula 
Canonical SMILES 

Molecular weight (in 

g/mol) 

1 
Trimethylamin

e 
1146 C3H9N CN(C)C 59.11 

2 Neurine 10042 C5H13NO C[N+](C)(C)C=C.[OH-] 103.16 

3 Choline 305 C5H14NO C[N+](C)(C)CCO 104.17 

4 Betaine 247 C5H11NO2 C[N+] (C)(C) CC(=O) [O-] 117.15 

5 Trigonelline 5570 C7H7NO2 C[N+]1=CC=CC(=C1)C(=O)[O-] 137.14 

6 Carpaine 442630 C28H50N2O4 CC1C2CCC(N1) CCCCCCCC(=O) OC3CCC(CCCCCCCC(=O)O2)NC3C 478.7 

7 Vitexin 5280441 C21H20O10 C1=CC(=CC=C1C2=CC(=O) C3=C(O2) C(=C(C=C3O) O)C4C(C(C(C(O4)CO)O)O)O)O 432.4 

8 Tricin 5281702 C17H14O7 COC1=CC(=CC(=C1O)OC)C2=CC(=O)C3=C(C=C(C=C3O2)O)O 330.29 

9 Naringenin 439246 C15H12O5 C1C(OC2=CC(=CC(=C2C1=O)O)O)C3=CC=C(C=C3)O 272.25 

10 Quercetin 5280343 C15H10O7 C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O 302.23 

11 Luteolin 5280445 C15H10O6 C1=CC(=C(C=C1C2=CC(=O)C3=C(C=C(C=C3O2)O)O)O)O 286.24 

12 Gentianine 354616 C10H9NO2 C=CC1=CN=CC2=C1CCOC2=O 175.18 

13 Graecunins 156783 C51H82O22 
CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CC=C6C5(CCC(C6)OC7C(C(C(C(O7)COC8C(C(C(C(O8)C)O)O)OC9C(C(C(C(O9)CO)O

C2C(C(C(C(O2)CO)O)O)O)O)O)O)O)O)C)C)C)OC1 
1047.2 

14 Fenugreekine 444170 C21H27N7O14P2 C1=CC(=NC(=C1)C(=O)N)C2C(C(C(O2)COP(=O)(O)OP(=O)(O)OCC3C(C(C(O3)N4C=NC5=C(N=CN=C54)N)O)O)O)O 663.4 

16 
Trigofoenoside

s 
10440782 C45H74O18 

CC1C2C(CC3C2(CCC4C3CC=C5C4(CCC(C5)OC6C(C(C(C(O6)CO)O)O)OC7C(C(C(C(O7)C)O)O)O)C)C)OC1(CCC(C)COC8C(

C(C(C(O8)CO)O)O)O)O 
903.1 

17 Yamogenin 441900 C27H42O3 CC1CCC2(C(C3C(O2) CC4C3(CCC5C4CC=C6C5(CCC(C6) O)C)C)C)OC1 414.6 

18 Diosgenin 
99474 

 
C27H42O3 CC1CCC2(C(C3C(O2) CC4C3(CCC5C4CC=C6C5(CCC(C6)O)C)C)C)OC1 414.6 

19 Smilagenin 91439 C27H44O3 CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CCC6C5(CCC(C6)O)C)C)C)OC1 416.6 

20 Sarasapogenin 92095 C27H44O3 CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CCC6C5(CCC(C6)O)C)C)C)OC1 416.6 

21 Trigogenin 99516 C27H44O3 CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CCC6C5(CCC(C6)O)C)C)C)OC1 416.6 

22 Neotigogenine 12304433 C27H44O3 CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CCC6C5(CCC(C6)O)C)C)C)OC1 416.6 

23 Gitogenin 441887 C27H44O4 CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CCC6C5(CC(C(C6)O)O)C)C)C)OC1 432.6 

24 Saponarin 441381 C27H30O15 C1=CC(=CC=C1C2=CC(=O)C3=C(C(=C(C=C3O2)OC4C(C(C(C(O4)CO)O)O)O)C5C(C(C(C(O5)CO)O)O)O)O)O 594.5 

25 Yuccagenin 3083608 C27H42O4 CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CC=C6C5(CC(C(C6)O)O)C)C)C)OC1 430.6 

 
Table 2: Lipophilicity of the Phytoconstituents of Trigonella foenum-graecum L. (Fenugreek). 

 

Sr. No. Small molecule Ilogp XLOGP3 WLOGP MLOGP SILICOS-IT Consensus Log 𝑷𝟎/𝒘 

1 Trimethylamine 1.56 0.26 0.18 0.29 -0.58 0.34 

2 Neurine -8.01 0.30 0.66 -3.60 -0.10 -2.15 

3 Choline -2.14 -0.40 -0.32 -3.46 -0.57 -1.38 

4 Betain -2.19 -0.13 -1.56 -3.67 -0.91 -01.69 

5 Trigonelline -3.11 0.51 -1.13 0.33 0.36 -0.61 

6 Carpain 4.77 6.29 4.80 3.75 3.63 4.65 

7 Vitexin 1.38 0.21 -0.23 -2.02 0.33 -0.07 

8 Tricin 2.58 3.07 2.59 -0.07 2.59 2.15 
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9 Naringenin 1.75 2.52 2.19 0.71 2.05 1.84 

10 Quercetin 1.63 1.54 1.99 -0.56 1.54 1.23 

11 Luteolin 1.86 2.53 2.28 -0.03 2.03 1.73 

12 Gentianine 1.65 1.51 1.33 1.20 2.67 1.67 

13 Graecunins 3.78 -1.31 -1.96 -3.68 -3.58 -1.35 

14 Fenugreekine 0.24 -5.92 -3.01 -5.33 -5.62 -3.93 

15 Trigofoenosides 4.66 0.39 -0.83 -2.18 -1.55 0.10 

16 Yamogenin 4.41 5.67 5.71 4.94 4.29 5.00 

17 Diosgenin 4.41 5.67 5.71 4.94 4.29 5.00 

18 Smilagenin 4.40 6.49 5.79 5.08 4.30 5.21 

19 Sarasapogenin 4.40 6.49 5.79 5.08 4.30 5.21 

20 Tigogenin 4.40 6.49 5.79 5.08 4.40 5.21 

21 Neotigogenine 4.40 6.49 5.79 5.08 4.30 5.21 

22 Gitogenin 4.19 5.52 4.76 4.23 3.40 4.42 

23 Saponarin 1.99 -1.60 -2.76 -4.10 -1.79 -1.65 

24 Yuccagenin 3.91 4.70 4.68 4.09 3.39 4.15 

 
Table 3: Water solubility of the phytoconstituents of Trigonella foenum-graecum L. (Fenugreek). 

 

Small molecule 

ESOL Ali SILICOS-IT 

LogS (ESOL) 
Solubility 

Class Log S (ESOL) 
Solubility 

Class Log S (ESO) 
Solubility 

Class 
mg/mL mol/L mg/mL mol/L mg/mL mol/L 

Trimethylamine -0.37 2.52e+01 4.46e-01 Very soluble 0.11 7.63e+01 1.29e+00 Highly soluble -0.20 3.73e+01 6.31e-01 Soluble 

Neurine -0.60 2.58e+01 2.50e-01 Very soluble -0.35 4.64e+01 4.50e-01 Very soluble -1.44 3.77e+00 3.66e-02 Soluble 

Choline -0.10 8.24e+01 7.91e-01 Very soluble 0.44 2.86e+02 2.75e+00 Highly soluble -1.26 5.74e+00 5.51e-02 Soluble 

Betain -0.35 5.20e+01 4.44e-01 Very soluble -0.26 6.45e+01 5.51e-01 Very soluble -0.82 1.76e+01 1.50e-01 Soluble 

Trigonelline -1.39 5.59e+00 4.08e-02 Very soluble -1.00 1.36e+01 9.89e-02 Very soluble -0.94 1.59e+01 1.16e-01 Soluble 

Carpain -6.77 8.12e-05 1.70e-07 Poorly soluble -7.69 9.81e-06 2.50e-08 Poorly soluble -5.71 9.29e-04 1.94e-06 Moderately soluble 

Vitexin -2.84 6.29e-01 1.46e-03 Soluble -3.57 1.16e-01 2.68e-04 Soluble -2.38 1.81e+00 4.20e_03 Soluble 

Tricin -4.12 2.52e-02 7.63e-05 Moderately soluble -5.03 3.06e-03 9.26e-06 Moderately soluble -4.63 7.71e-03 2.33e-05 Moderately soluble 

Naringenin -3.49 8.74e-02 3.21e-04 Soluble -3.99 2.77e-02 1.02e-04 Soluble -3.42 1.04e-01 3.82e-04 Soluble 

Quercetin -3.16 2.11e-02 6.98e-04 Soluble -3.91 3.74e-02 1.24e-04 Soluble -3.24 1.73e-01 5.73e-04 Soluble 

Luteolin -3.71 5.63e-02 1.97e-04 Soluble -4.51 8.84e-03 3.09e-05 Moderately soluble -3.82 4.29e-02 1.50e-04 Soluble 

Gentianine -2.15 1.23e+00 7.03e-03 Soluble -1.94 2.01e+00 1.15e-02 Very soluble -2.93 2.07e-01 1.18e-03 Soluble 

Graecunins -4.78 1.73e-02 1.65e-05 Moderately soluble -5.23 6.19e-03 5.91e-06 Moderately soluble 2.30 2.10e+05 2.01e+02 Soluble 

Fenugreekine 0.25 1.18e+03 1.78e+00 Highly soluble -0.69 1.35e+02 2.03e-01 Very soluble 1.20 1.05e+04 1.59e+01 Soluble 

Trigofoenosides -4.89 1.16e-02 1.28e-05 Moderately soluble -5.99 9.33e-04 1.03e-06 Moderately soluble 0.95 8.01e+03 8.87e+06 Soluble 

Yamogenin -5.98 4.31e-04 1.04e-06 Moderately soluble -6.25 2.35e-04 5.66e-07 Poorly soluble -4.49 1.34e-02 3.22e-05 Moderately soluble 

Diosgenin -5.98 4.31e-04 1.04e-06 Moderately soluble -6.25 2.35e-04 5.66e-07 Poorly soluble -4.49 1.34e-02 3.22e-05 Moderately soluble 

Smilagenin -6.51 1.28e-04 3.08e-07 Poorly soluble -7.10 3.32e-05 7.97e-08 Poorly soluble -4.51 1.29e-02 3.10e-05 Moderately soluble 

Sarasapogenin -6.51 1.28e-04 3.08e-07 Poorly soluble -7.10 3.32e-05 7.97e-08 Poorly soluble -4.51 1.29e-02 3.10e-05 Moderately soluble 

Tigogenin -6.51 1.28e-04 3.08e-07 Poorly soluble -7.10 3.32e-05 7.97e-08 Poorly soluble -4.51 1.29e-02 3.10e-05 Moderately soluble 

Neotigogenine -6.51 1.28e-04 3.08e-07 Poorly soluble -7.10 3.32e-05 7.97e-08 Poorly soluble -4.51 1.29e-02 3.10e-05 Moderately soluble 

Gitogenin -6.00 4.33e-04 1.00e-07 Moderately soluble -6.52 1.32e-04 3.04e-07 Poorly soluble -3.69 8.87e-02 2.05e-04 soluble 

Saponarin -2.40 2.35 e+00 3.95 e-03 Soluble -3.36 2.62 e-01 4.41 e-04 Soluble -0.59 1.54 e+02 2.59 e-01 Soluble 

Yuccagenin -5.47 1.46 e-03 3.38 e-02 Moderately soluble -5.67 9.30 e-04 2.16 e-06 Moderately soluble -0.67 9.19 e-02 2.13 e-02 Soluble 
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Table 4: Pharmacokinetic Parameters of the Phytoconstituents of Trigonella foenum-graecum L. 

 

Molecules GI absorption BBB permeant P-Gp substrate CYP1A2 inhibitor CYP2C19 inhibitor CYP2C9 inhibitor CYP2D6 inhibitor CYP3A4 inhibitor Log Kp (cm/s) 

Trimethylamine Low No No No No No No No -6.48cm/s 

Neurine High Yes Yes No No No No No -6.72cm/s 

Choline Low No No No No No No No -7.22cm/s 

Betain Low No No No No No No No -7.11cm/s 

Trigonelline High No No No No No No No -6.77cm/s 

Carpain High No No No No No No No -4.75cm/s 

Vitexin Low No No No No No No No -8.79cm/s 

Tricin High No No Yes No Yes Yes Yes -6.14cm/s 

Naringenin High No Yes Yes No No No Yes -6.17cm/s 

Quercet in High No No Yes No No Yes Yes -7.05cm/s 

Luteolin High No No Yes No No Yes Yes -6.25cm/s 

Gentianin High Yes No Yes No No No No -6.30cm/s 

Greacuni ne Low No Yes No No No No No -13.62cm/s 

Fenugreekine Low No No No No No No No -14.55cm/s 

Trigpfeonoside Low No Yes No No No No No -11.53cm/s 

Yamogenin High Yes No No No No No No -4.80cm/s 

Diosgenin High Yes No No No No No No -4.80cm/s 

Smilagenin High Yes No No No No No No -4.23cm/s 

Sarasapogenin High Yes No No No No No No -4.23cm/s 

Tigogenin High Yes No No No No No No -4.23cm/s 

NeoTigogenin High Yes No No No No No No -4.23cm/s 

Gitogenin High Yes Yes No No No No No -5.02cm/s 

Saponarin Low No Yes No No No No No -11.06cm/s 

Yaccagenin High Yes Yes No No No No No -5.59cm/s 

 
Table 5: Drug likeness of the Phytoconstituents of Trigonella foenum-graecum L 

 

Molecules Lipinski Ghose Veber Egan Muegge 
Bioavailability 

score 

Trimethylamine Yes, 0 violation 
No; 3violation, MW<160, MR<40, 

#atoms<20 
Yes Yes 

No,3 violation, MW<200, #C<5, 

heteroatoms<2 
0.55 

Neurine Yes, 0 violation No: 2 violation, MW<160 Yes Yes No, 1 violation, MW<200 0.55 

Choline Yes, 0 violation No:. 2 violation, MW<160, MR<40 Yes Yes No, 1 violation, MW<200 0.55 

Betain Yes, 0 violation No. 4 violation, MW<160, WLOGP<0.4 Yes Yes No, 1 violation, MW<200 0.55 

Trigonelline Yes, 0 violation No. 4 violation, MW<160, WLOGP<0.4 Yes Yes No, 1 violation, MW<200 0.55 

Carpain Yes, 0 violation No, 2 violation MR>130 Yes Yes No, 1 violation XLOGP3>5 0.55 

Vitexin Yes, 1 violation Yes No, 1 violation: TPSA>140 No, 1 violation: TPSA>131.6 No, 2 violation: TPSA>150 0.55 

Tricin Yes, 0 violation Yes Yes Yes Yes 0.55 

Naringenin Yes, 0 violation Yes Yes Yes Yes 0.55 

Quercetin Yes, 0 violation Yes Yes Yes Yes 0.55 

Luteolin Yes, 0 violation Yes Yes Yes Yes 0.55 

Gentianin Yes, 0 violation Yes Yes Yes No, 1 violation MW <200 0.55 

Greacunine No, 3 violation: MW>500 No, 4 violations: MW>480 No, 2 violation, TPSA>140 No, 1 violation, TPSA>131.6 No,5 violation, MW>600, TPSA>150 0.17 

Fenugreekine No, 3 violations: MW>500 
No, 4 violations: MW>480, WLOGP<0.4, 

MR>130 
No, 2 violation, TPSA>140 No, 1 violation, TPSA>131.6 

No,5 violation, MW>600, XLOGP 3<2, 

TPSA>150 
0.11 
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Trigpfeonoside No, 3 violations: MW>500 
No, 4 violations: MW>480, WLOGP<0.4, 

MR>130 
No, 2 violation, TPSA>140 No, 1 violation, TPSA>131.6 No,5 violation, MW>600, TPSA>150 0.17 

Yamogenin Yes, 1 violation: MLOGP>4.15 No, 2 violation: WLOGP>5.6 Yes Yes No, 1 violation: XLOGP3>5 0.55 

Diosgenin Yes: 1 violation: MLOGP>4.15 No: 2 violations: WLOGP >5.6 Yes Yes No: 1 violation XLOGP 3 > 5 0.55 

Smilagenin Yes, 1 violation: MLOGP >4.15 No: 2 violations: WLOGP>5.6 Yes Yes No; 1 violation: XLOGP 3>5 0.55 

Sarasapogenin Yes, 1 violation: MLOGP >4.15 No, 2 violation: WLOGP>5.6 Yes Yes No, 1 violation, XLOGP3>5 0.55 

Tigogenin Yes:1 violation: MLOGP>4.15 No:2 violation: WLOGP>5.6, #atoms>70 Yes Yes No:1 violation: XLOGP3>5 0.55 

Neotigogenin Yes:1 violation: MLOGP>4.15 No:2 violation: WLOGP>5.6, #atoms>70 Yes Yes No:1 violation: XLOGP3>5 0.55 

Gitogenin Yes:1 violation: MLOGP>4.15 No: 1 violation: #atoms> 70 Yes Yes No:1 violation: XLOGP3>5 0.55 

Saponarin 
No:3 violation: MW>500, 

NorO>10, NHorOH>5 

No:4 violation: MW>480, WLOGP<-0.4, 

MR>130, #atoms>70 
No,1 violation: TPSA > 140 No:1 violation: TPSA>131.6 

No:3 violation: TPSA>150, H-acc>10, H-

don>5 
0.17 

Yaccagenin Yes:0 violation No: 1 violation: #atoms> 70 Yes Yes Yes 0.55 

 

Table 6: Medicinal Chemistry Properties of Phytoconstituents of Trigonella foenum-graecum L. 
 

Molecules Pains Brenk Leadlikeness Synthetic accessibility 

Trimethylamine 0 alert 0 alert No, 1 violation, MW<250 1.00 

Neurine 0 alert 1 alert, quaternary _nitrogen No, 1 violation, MW<250 1.99 

Choline 0 alert 1 alert, quaternary _nitrogen No, 1 violation, MW<250 1.00 

Betain 0 alert 1 alert, quaternary _nitrogen No, 1 violation, MW<250 1.00 

Trigonelline 0 alert 1 alert, quaternary _nitrogen No, 1 violation, MW<250 1.04 

Carpain 0 alert 1 alert: more than 2 esters No, 2 violation: MW>350, XLOGP3>3.5 6.82 

Vitexin 0 alert 0 alert No, 1 violation; MW>350 5.12 

Tricin 0 alert 0 alert Yes 3.21 

Naringenin 0 alert 0 alert Yes 3.01 

Quercetin 1 alert 1 alert Yes 3.23 

Luteolin 1 alert, 1 alert Yes 3.02 

Gentianin 0 alert 0alert No, 1 violation MW <200 2.24 

Greacunine 0 alert 1 alert, isolated_ alkene No, 2 violations, MW>350 10.00 

Fenugreekine 0 alert 1 alert No, 2 violations, MW >350, 6.00 

Trigpfeonoside 0 alert 1 alert, isolated_alkene No, 2 violations, MW>350 10.00 

Yamogenin 0 alert 1 alert, isolated_alkene No, 2 violation: MW>350, XLOGP3>3.5 6.94 

Diosgenin 0 alert 1 alert, isolated _alkene No, 2 violations: MW>350, XLOGP 3>3.5 6.94 

Smilagenin 0alert 0 alert No, 2 violations, MW >350, XLOGP3>3.5 6.88 

Sarasapogenin 0 alert 0 alert No, 2 violation, MW>350, XLOGP3>3.5 6.88 

Tigogenin 0 alert 0 alert No, 2 violation, MW>350, XLOGP3>3.5 6.88 

Neotigogenin 0 alert 0 alert No, 2 violation, MW>350, XLOGP3>3.5 6.88 

Gitogenin 0 alert 0 alert No, 2 violation, MW>350, XLOGP3>3.5 6.88 

Saponarin 0 alert 0 alert No; 1 violation: MW>350 6.38 

Yuccagenin 0 alert 1 alert: isolated alkene No:2 violation: MW>350, XLOGP3>3.5 7.06 
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4. Discussion 

Ayurveda is one of the earliest system of medicine providing 

extensive leads to discover the effective and therapeutically 

useful compounds for drug development from herbs, currently 

the use of herbal medicine is widespread in both developing 

and developed countries due to its checked adverse effects 

and from its natural source (Ekor, 2013) [15]. World Health 

Organization reports over 30% of all plant species have at one 

time or another used for medicinal purposes (Schippmann et 

al., 2002) [38]. Currently, due to continuous advancement in 

computer science, lot of successful findings drugs from 

natural products using computer aided drug design methods 

for example the development of Dazamide, Imatinib, 

Dasatinib and Ponatinib etc. (Ghosh AK, Gemma, 2015) [16]. 

Computer based drug designing has been employed in the 

prediction of ADMET properties of the drugs which leads to 

budding stage drug discovery (Lipinski et al. 1997; Lombardo 

et al., 2003; Gleeson et al., 2011) [29, 30, 17]. The rationale 

behind these insilico approaches are due to relatively lower 

cost time factor involved compared to standard ADMET 

profiling (DiMasi et al. 2003; Darvas et al., 2002) [11, 8]. As an 

example, it takes a minute in an in-silico model to screen 

20,000 molecules, but takes 20 weeks in the “wet” laboratory 

to do the same exercise (Hodgson 2001) [24]. Due to the 

accumulated ADMET data in the late 1990s, many 

pharmaceutical companies are now using computational 

models that, in some cases, are replacing the “wet” screens 

(Hodgson 2001) [24]. This paradigm shift has therefore spurred 

up the development of several theoretical methods for the 

prediction of ADMET parameters. A host of these theoretical 

models have been implemented in a number of software 

programs currently available for drug discovery protocols 

(OCHEM platform 2009; Lhasa 2010; Schrodinger 2011a; 

Cruciani et al., 2000) [28, 6], even though some of the 

predictions are often disappointing (Tetko et al., 2006) [45]. 

The software tools currently used to predict the ADMET 

properties of potential drug candidates often make use of 

quantitative structure-activity relationships, QSAR (Tetko et 

al., 2006; Hansch et al., 2004) [45, 23] or knowledge-base 

methods (Greene et al. 1999; Button et al. 2003; Cronin 2003) 
[18, 5]. In the present study we used SwissADME online 

software tool which is available free for the users to evaluate 

the ADME properties of Trigonella foenum-graecum Lam 

respectively. The phytoconstituents of the plants were enlisted 

through the software includes, Alkaloids such as 

trimethylamine, choline, neurine,carpain trigonelline, and 

betain, flavonoids such asvitexin, tricin, naringenin, quercetin, 

and luteolin are some of the phytoconstituents of fenugreek 

that have been identified. Steroid saponins like gentianine, 

graecunins, fenugreekine, trigofoenosides and steroidal 

sapogenins such as yamogenin, diosgenin, smilagenin, 

sarasapogenin, tigogenin, neotigogenine, gitogenin, 

saponarin, and yuccagenin. Accordingly the phytoconstituents 

were analyzed for ADME properties and depicted in respected 

tables and figures. Further, the values can be used as 

monographs by researchers and scientists for development of 

potential semisynthetic and synthetic drugs for multifarious 

usage. 

 

5. Conclusion 

With the exponential growth of biological and chemical data, 

computer-aided drug design (CADD) has significantly 

transformed the research and development pathways for 

identifying drug candidates. The utilization of computational 

techniques in the drug discovery and development process is 

widely recognized for its efficiency in terms of 

implementation, time, and cost. This study presents a web-

based tool, SwissADME, which is freely available for 

evaluating the ADME properties of phytoconstituents found 

in Trigonella foenum-graecum Lam plant. These findings can 

serve as a primary tool for further assessing the biological and 

pharmacological properties of the plant. Preliminary in-silico 

investigations suggest that certain compounds, including 

gentianine, gitogenin, smilagenin, quercetin, luteolin, and 

tricin, possess properties that could be further explored and 

tested as potential drug candidates for various diseases. 

However, these bioactive substances must be confirmed and 

subjected to further testing before being considered for 

clinical trials. 
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