

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234

https://www.phytojournal.com JPP 2024; 13(2): 27-39 Received: 15-12-2023 Accepted: 23-01-2024

Dr. Gurinder Singh Ph.D., Department of Human Genetics, Punjabi University, Patiala, Punjab, India

Cyperus rotundus: A potential medicinal plant

Dr. Gurinder Singh

DOI: https://doi.org/10.22271/phyto.2024.v13.i2a.14867

Abstract

We all know that from ancient times, people used plants and trees for their food, shelter and medicinal purposes. Now a days everybody wants to use the herbal medicine instead of allopathic one because of their side effects. There is a potential medicinal plant named as "Cyperus rotundus" commonly known as "Nut Grass", belongs to family Cyperaceae, basically it is a kind of rhizomatous plant. It grows up to 100 cm in small clumps. It is distributed almost throughout all the regions of world because of its great adaptivity with respect to soil, temperature, ph, altitudes and moisture. It shows a wide range of pharmacological activities in in vivo and in vitro model of experiments including anti-microbial, anti-parasitic, insecticidal repellent, neuroprotective, anti-inflammatory, analgesic, antipyretic, anti-nociceptive, anti-oxidant, hypolipidemic, effect on platelet function, gastrointestinal, hepatoprotective, anti-diabetic, dermatological, anti-dysmenorrhea, effect on lymphocytes proliferation, sedative, aromatic, anti-anxiety, anti-depressive etc. This review article focus on the medicinal properties, distribution, morphology, isolated phytochemicals and their structures with molecular formulas as well.

Keywords: Cyperus rotundus, CNS, anti-inflammatory, neuroprotective, antipyretic and herbal

Introduction

Plants play an extremely important role in the life of every human being and animal as well. Plants are used throughout the world for its medicinal properties. Herbal medicine is an important component of traditional system of medicine including Ayurveda, Siddha, Naturopathy and Homeopathy. There are numerous important medicinal plants, which are using now a days for the therapeutic purposes with no or fewer side effects, but there is still a surge to commercialize these therapeutic products including pure and crude as well and one of the most important medicinal plant with a great potential of healing is *Cyperus rotundus* [1, 2]. The *rotundus* is an important herb of this genus and commonly called Mustaka or Nut-grass and belongs to family Cyperaceae. It is an erect and perennial sedge and it spreads by means of roots with fibres. It has a rhizome part which is positively geotropic, basically which has the medicinal properties. Initially the colour of rhizome is white but it will change to brown and will become woody on maturation. When it reaches to the upper level of ground then it forms a round body called basal bulb from where the shoots will arise. It also forms a tuber which store the food and it will give rise to new rhizome [1].

The genus cyperus

This genus includes 700 species which are mostly found in both tropical and temperate regions ^[3]. This genus mostly found in Africa, Western Indian Ocean, Western Asia, Middle Asia, Eastern Asia, Europe, Northern and Southern America ^[1]. The members of this genus are annual/perennial. Most of the species are aquatic but some are grown outside the water bodies. Small as well as large sized members are present in this genus. It has a triangular stem which is circular in cross section. The leaves of the members of this genus are slender-grass at the base of the plant. It has greenish colour of flowers and pollination has been done by wind most probably and the seeds of the members are small in size ^[4,5].

Search criteria

Published literature on recent developments in research up to 2021 on *Cyperus rotundus* including original articles and papers in Science Direct, Wiley Online Library, NCBI pubmed, pubmed Central Database and AYU were taken into study for the report.

Inclusion criteria

All the reports of experiments on different model types including *in vitro*, *ex vivo* and *in vivo* were taken varying from animal and human model system.

Corresponding Author: Dr. Gurinder Singh Ph.D., Department of Human Genetics, Punjabi University, Patiala, Punjab, India Taxonomic classification: Taxonomic classification of Cyperus rotundus is mentioned below in Table No.-1

Table 1: Taxonomic classification

Kingdom	Plantae	References
Sub-kingdom	Tracheobionta	
Super division	Spermatophyte	
Division	Magnoliophya	
Class	Liliopsida	
Subclass	Commelinidae	[1]
Order	Cyperales	
Family	Cyperraceae	
Genus	Cyperus	
Sepcies	Rotundus	

Common names: Cyperus rotundus is well known by different names in different area as mentioned below in Table No-2.

Table 2: Different Cyperus rotundus names in different area

Country	Name	References			
Arabic	Sa'ed				
Chinese	Suo cao, Xinag fu zi				
English	Coco grass, Ground almond, Java grass, Nut sedge, Nut grass, Purple nut, Sedge, Purple nut grass, Red nut sedge				
French	Souchet rond				
German	Knolliges zypergras				
India	Motha, Mutha, Mustaka				
Italian	Zigolo infestante				
Japenese	Hamasuge				
Korean	Hyangbuja				
Portuguese	Alho bravo, Capim alho, Capim danda, Tiririca, Tiririca vermelha				
Spanish	Castanuela, Cipero, Coquito, Juncia real				
Swedish	Notag				

Distribution: Cyperus rotundus is distributed across the world as mentioned below in Table No-3.

Table 3: Distributed across the world

Region	Countries	References
	Algeria, Egypt, Libya, Morocco, Tunisia, Western Sahara, Chad, Djibouti, Eritrea, Ethiopia, Somalia, Sudan,	
Africa	Kenya, Tanzania, Uganda, Burundi, Equatorial Guinea, Gabon, Rwanda, Zaire, Benin, Burkina Faso, Cote	
Amca	D'Ivoire, Ghana, Guinea, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone, Togo, Angola, Malawi,	
	Mozambique, Zambia, Zimbabwe, Botswana, Namibia, South Africa, Swaziland.	
Western Indian Ocean Comoros, Madagascar, Mauritius, Reunion, Seychelles.		
Western Asia	Western Asia Afghanistan, Iran, Iraq, Saudi Arabia, Yemen, Palestine, Lebanon, Syria, Turkey.	
Middle Asia Kazakhstan, Kyrgyzstan, Turkmenistan, Uzbekistan.		[1]
Eastern Asia	China, Japan, Korea, Taiwan, India, Nepal; Pakistan, Sri Lanka, Myanmar; Thailand, Vietnam, Indonesia,	[+]
Eastern Asia	Malaysia, Philippines.	
Europe	Austria, Switzerland, Albania, Bulgaria, Croatia, Greece, Romania, Serbia, Slovenia, France, Portugal, Spain.	
Pacific	Marshall Islands, Micronesia, Northern Mariana Islands.	
North America	North America USA, Mexico.	
Southern America	Brazil, Bolivia, Colombia, Ecuador, Peru, Argentina.	
Caucasus	Azerbaijan, Russian Federation, Armenia.	

Cyperus rotundus: A genetically diverse plant: There are many plants markers to identify the physiological and morphological characters including tuber length, tuber colour, tuber shape, floral morphology, fruit characteristics, leaves

morphology and some other characteristics of this specie, which indicates the diversity of this medicinal plant [1].

Physico-chemical properties: Physico-chemical properties of *Cyperus rotundus* is mentioned below in Table 4, 5 & 6.

Table 4: Physico-chemical properties of Cyperus rotundus

Miosture	9%	References
Total ash	8.06-12.87%	
Acidainsoluble Ash	2.23-4.56%	[1]
Water Soluble Ash	5.1-6.4%	(-)
Sulphated Ash	9.56-10.2%2	

Table 5: Extractive values of Cyperus rotundus rhizome

Water Soluble Extract	9.01-15.15%	References
Alcohol Soluble Extract	7.63-21.27%	[1]

Table 6: Successive extraction

Petroleum 6ether	1.27-1.53%	References
Chloroform	2.52%	
N-Hexane	1.79%	
Acetone	1.82%	[1]
Alcohal(90%)	1.78%	
Aqueous	1.47%	

Loss on drying - 3.57% Crude fiber content - 39.98%

Traditional uses: Traditional uses of *C. Rotundus* are mentioned below in Table No.-7

Table 7: Traditional uses of *C. Rotundus*

S. No.	Plant part	Traditional uses	References
		Treatment of gastrointestinal spasma, Treatment of stomach disorders, Treatment of nausea,	
	Used in and carb	Treatment of intestinal parasites, Useful in case of vomiting, Treatment of food poisoning,	
		Used in case of indigestion, Treatment of fever, Treatment of wounds, Treatment of bruises	
		and carbuncles, Treatment of malaria, Treatment of cough, Treatment of bronchitis infection,	[1]
1.		Treatment of renal and vesical calculi, Treatment of urinary tenesmus, Treatment of	[1]
		amenorrhoea, Treatment of dysmenorrhoea, Useful in case of deficiency of lactation,	
		Treatment of loss of memory, Useful in case of insect bite, Treatment of dysuria, Used in case	
		of infertility, Treatment of cervical cancer, Treatment of menstrual disorders.	

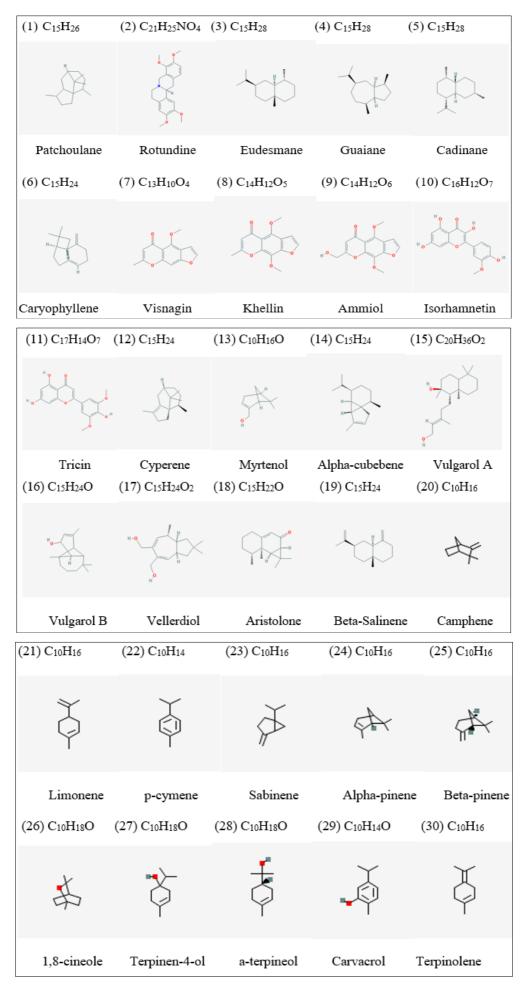
Alternative and complementary medicinal uses

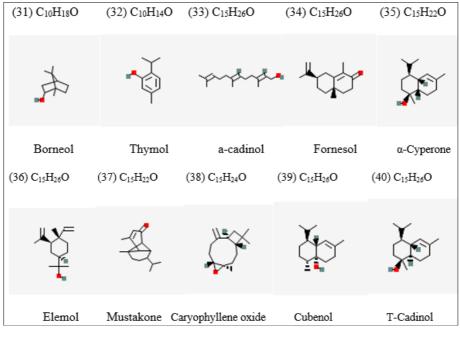
The aromatic oil of the *cyperus rotundus* rhizome is used in the perfumes and splash and in many other products of cosmetic industries. The different extracts of rhizome are used as an astringent, analgesic, carminative, antitussive, emmenagogue, lithalytic and as well as a valuable tonic ^[6].

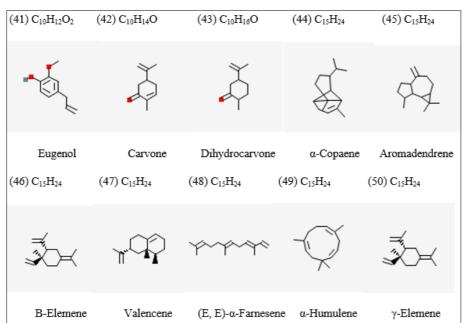
Morphology

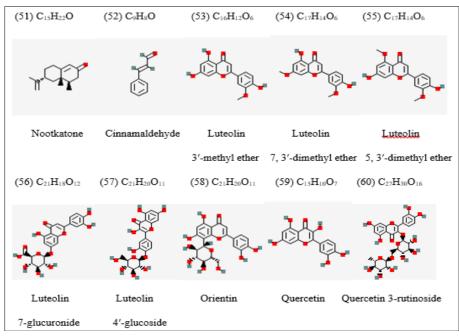
Cyperus rotundus is rhizomatous plant. The stem is smooth and it goes upto 30-40 cm in height. The leaves will arise from the base of the plant and are arranged in a specific manner around the stem. Leaves are 20-30 cm in length and 0.2-1.0 cm in width and greenish in colour. The flowers of

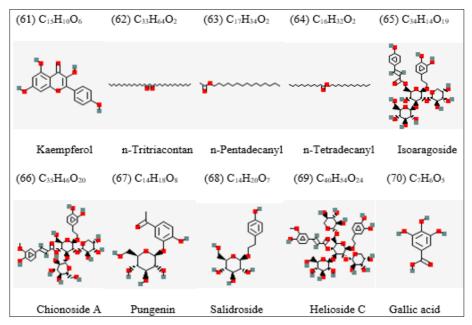
this species are on the top of stem and grows in clusters of 10-40 flowers. Flowers are reddish brown in colour and has no petals but has bracts as well. It has a dry fruit with single seed. The fruit is 2 mm in length and blackish brown in colour with grey lines [1].

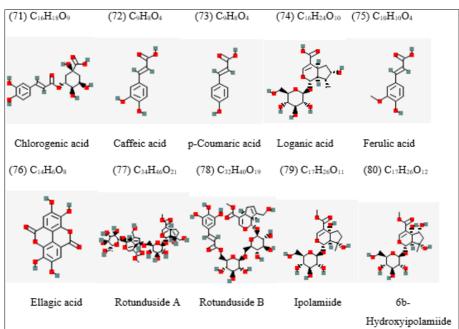

Phytchemical analysis and phytoconstituents of Cyperus rotundus

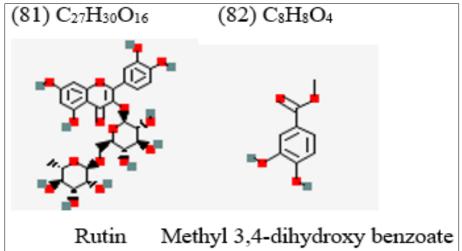

Phytochemicals analysis of herbal extracts has been investigated by various analytical techniques using sophisticated instruments such as GC-MS, HPLC, LC-MS, NMR, IR, FTIR etc. The major phytoconstituents of *C. Rotundus* are mentioned below in Table No 8.


Table 8: Phytoconstituents of C. Rotundus


_		Compound	Reference
1.	Sesquiterpene	Patchoulane; Rotundine; Eudesmane; Guaiane; Cadinane; Caryophyllene	
2.	Flavonoids	Visnagin; Khellin; Ammiol; Isorhamnetin; Tricin	
3.	Phenolic acids	Salicylic acid; Protocatechuic acid; Caffeic acid; p coumaric acid	
4.	Steroids	Steroidal glycoside; Sitosteryl-(6'-hentriacontanoy)-β-D-galactopyranoside	
5.	Essential oil (Sesquiterpenes,	Oxo-α-ylangene; α-cyperene; Trans-pinocarveol; cyperene; α-pinene; Cyclopentene-3-ethylidene-1-methyl; Sabinene; β-pinene; p-cymene; 1-limonene; 8-cineole; Trans-pinocarveol; Terpinen-4-ol; Citronellol; 4, 4-dimethyl-tricyclo-(3, 2, 1)octan-6-on; p-cyman-8-ol; 1-α-terpineol; Cis-dihydrocarvone; Myrtenol; Verbenone; 1-β-4,4-trimethyl-bicyclo(3, 2)hept-6-en-2-ol; Trans-carveol; Carvone; Carvenone; α-cubebene Dihydro-carvylacetate; α-copaene; Isolongifoline; Cyperene; Trans-caryophyllene; Dihydro-oromadendrene; Aromodendrene-epoxide; Naphthalene, 1,6-dimethyl-4-(1-methyl ethyl); α-silenene-Ciscalamenene; Trans-calamenene; Elema-1, 3, 11(13)-trien-12-ol; Caryophyllene-oxide; Cis-12-caryophyll-5-en-2-one; Caryophylla-2(12), 6(13) dien-5-one; Cyclohexane, 1, 1, 2-trimethyl-3, 5 bis-1-methyl ethyl; Cyclo-hexanone, 2, 3, 3-trimethyl (3-methyl-butadienyl); Isopropyl,4αβ, 8αβ-dimethyl; Longiver benone; 10-epi-α-cyperene; Caryophyllenol; Vulgarol A and B; Vellerdiol; Aristolone; Ledenoxide; Dimethyl-7-isopropenyl-bicyclo-dec-1-en-3-one; Longifolinaldehyde; Longipynocarvone; Cyperene; Caryophyllene oxide; α-longipinone; β-salinene	;


Structures of some major isolated compounds are mentioned below Figure (1-83)





Source: From pubchem Compound - NCBI

Some other complex derivative compounds and their structures are mentioned below in Figure No 84-85

Source: [2]

propyl ester

Pharmacological reports

The survey of literature was revealed that C. Rotundus has been investigated for the various pharmacological activities which are mentioned in the Table No.-9. The different crude extracts, fractions of plant and isolated compounds from the plant have been employed for the scientific studies. The literature of plant included pharmacological activities, plant

part used, extracts, fractions, isolates, tested doses of samples and positive controls along with their route of administration, *in vivo* and *in vitro* experimental models, animals used in *in vivo* experimental models, experimental studies, design, parameters assessed during studies, sort of mechanism and inference concerned with activity and references.

Table 9: Pharmacological activities reported for C. Rotundus

S. No.	Pharmacological Activity	Plant part/Extract /Fraction/Isolate/ Compound/Formulatio n	Doses tested/Route of administration	Positive control	Subjects	Experimental studies/ design/model/ parameters assessed during studies /Some sort of mechanism action	Inference in concern with activity	Referenc e
1.	Antimicrobial activity	Rhizome/Oils	5 µl	Ofloxacine, Rifampicine, Amphotericine B 5 µg/disc	Microbes	Disc diffusion method	Shown activity against gram positive but no activity against gram negative	[7]
2.	Antimicrobial activity	Rhizome/Petroleum ether, Chloroform, Ethanol and Water extracts	250/500/1000 μg/ml	Gentamycin and Amphotericin 20 µg/ml	Pathogen	Disc diffusion method	Ethanol extract shown activity	[8]
							Against bacteria but no activity against fungi	
3.	Antimicrobial Activity	Tuber/Extract	0.5/4.0 mg/ml	-	Microbes	-	Shown activity	[9]
4.	Antimicrobial Activity	Plant/Oils	-	-	Microbes	-	Shown activity	[10]
5.	Antimicrobial activity	Root/Petroleum ether, acetone, methanol and water extracts	-	-	Microbes	Zone inhibition assay	Methanol extract shown activity	[11]
6.	Antimicrobial activity	Aerial parts/Methanol extract/Fractions	-	Tetracyclin	Microbes	-	Ethyl acetate fraction shown activity	[12]
7.	Antimicrobial activity	Plant/Oils	2.5/5/7.5/10/15/20/2 5/30/35/40 g/dl and final concentration- 0.001% v/v		Microbes	MIC and MBC assay	Shown activity against gram positive, less against gram	[13]
							Negative and no activity against P. Aeruginosa and P. Vulgaris	
8.	Antimicrobial activity	Plant/Ethanol extract	-	Amoxicillin 20 µg/ml	Microbes	,	Shown activity against some Microbes	[14]
9.	Antimicrobial activity	Plant/Hydroalcoholic extract	10-100 μg/ml	-	Microbes	End point titration technique and Cyto- pathogenic assay	Shown activity	[15]
10.	Antimicrobial activity	Plant/Ethanol extract/Isolated Compounds	-	-	HBV	Anti HBV in vitro assay	Shown activity	[16]
11.	Antiparasitic and Insecticidal Repellent	Tuber/n-hexane extract	-	-	Mosquito vector	Repellency assay	Shown activity	[17]
12.	Antiparasitic and Insecticidal repellent	Plant/Sprays of different fractions	-	-	-	Pesticidal test	Shown activity	[18]
13.	Antiparasitic and Insecticidal Repellent	Tuber/Oils	5-150 ppm	-	Aedes albopicts	Assessed the effects on eggs And larvae	Shown activity	[19]
14.	Antiparasitic and Insecticidal repellent	Tuber/Isolated compounds	-	-	Vector	Antimalarial assay	Shown activity	[20]
15.	CNS activity	Plant/Ethanol extract	300/500 mg/kg	-	-	Open field, head dip, rearing traction and force swimming test	Shown mild activity	[21]
16.	CNS activity	Plant/Crude extract	300/500 mg/kg	-	-	-	Shown activity	[22]
17.	CNS activity	Plant roots and Rhizome/Ethanol extract	-	-	Mice	-	Shown significant activity	[23]
18.	CNS activity	Rhizome/Ethyl acetate fraction and Isolated compounds	-	-	Rat	Radio ligand binding assay	One compound shown activity	[24]
19.	CNS activity	Plant/Essential oils	500 mg/kg	-	Rat	MES produced convulsion	Shown significant	[25]

							activity	
20.	CNS activity	Rhizome/Hydroalcoholic extract	100/200/400 mg/kg I.P.	Valproate 100 mg/kg I.P.	Brain of mice	PTZ induced seizure effect	Shown	[26]
21.	CNS activity	Roots and Rhizome / Hydroalcoholic extract	50/200 mg/kg orally	Diazepam 0.5 mg/kg I.P.	Mice	PTZ and Picrotoxin induced seizures	Shown activity	[27]
22.	CNS activity	Plant/Ethanol extract	-	-	-	Strychnine and Leptazol induced convulsion	Shown activity	[23]
23.	CNS activity	Plant/Hydroalcoholic extract/Essential oils	100/200/400 mg/kg, 10/20/40 mg/kg, 50/100/200 mg/kg I.P.	Rivastigmine 0.6 mg/kg I.P.	Mice	Scopolamine induced memory deficit	Shown no activity	[28]
24.	Neuroprotective activity	Rhizome/Water extract	50/100 μg/ml	-	-	6- Hydroxydopamine induced neuronal damage	Shown protective effect	[29]
25.	Neuroprotective activity	Plant/Ethanol extract	100 mg/kg/day orally	-	Rat	Global transient ischemia	Shown no activity	[30]
26.	Neuroprotective activity	Plant/Isolated flavonoids	100/200 mg/kg orally	-	Rat	Model of cerebral ischemia and reperfusion	Shown significant activity	[31]
27.	Neuroprotective activity	Plant/Ethanol extract	200/400 mg/kg I.P.	Galantamine 0.5 mg/kg orally and Pyritinol 100 mg/kg Orally	Rat	Sodium nitrite induced hypoxia injury	Shown protective effect	[32]
28.	Neuroprotective activity	Rhizome/extract	-	-	-	MTT and LDH assay	Shown protective effect	[33]
29.	Antiinflammatory activity	Plant/Alcoholic extract	-	-	Rat	Carrageenan induced oedema	Shown activity	[34]
30.	Antiinflammatory Activity	Plant/Crude extract	300/500 mg/kg	Aspirine	Rat	Carrageenan induced oedema	Shown activity	[22]
31.	Antiinflammatory and Analgesic activity	Plant/Essential oils	250/500 mg/kg orally	Indomethacin 10 mg/kg and diclofenac sodium	Rat	Carrageenan induced, formaldehyde induced arthritic problems and formalin induced writhing	Shown significant activity	[25]
32.	Antiinflammatory and Analgesic activity	Plant/Methanol, Ethyl acetate and Water extracts	50/150/300 μg/ml	Dexamethasone 300 mg/kg and Diclofenac sodium 100 mg/kg	Mice	Ear oedema induced by xylene and stomach contraction induced by acetic acid models	Shown significant activity	[35]
33.	Analgesic activity	Plant/Ethanol extract	300/500 mg/kg orally	-	-	Tail flick method	Shown Significant activity	[14]
34.	Analgesic activity	Plant/Ethanol extract	-	Pentobarbitone, Diazepam and Meprobamate	Mice	1.2% acetic acid induced writhes and stretches	Shown activity	[23]
35.	Analgesic and Antinociceptive activity	Whole plant/extract	50/100/200 mg/kg	Morphine sulphate 5 mg/kg I.P. and Diclofenac sodium 10 Mg/kg I.P.	Mice	Hot plate and tail immersion test	Shown significant activity	[36]
36.	Analgesic activity	Plant/Methanol extract/Ethyl acetate and n-hexane fraction	-	-	-	Transient receptor potential vanilloid channel was assessed	Shown significant activity	[37]
37.	Antipyretic activity	Plant/Alcoholic extract	-	-	Rat	Brewer's yeast induced pyrexia	Shown significant Activity	[21]
38.	Antipyretic and Analgesic activity	Plant/Alcoholic and Petroleum ether extracts	-	Acetyl salicylic acid	Rat	Brewer's yeast induced pyrexia	Shown significant activity	[38]
39.	Antiinflammatory activity	Plant/Water extract	-	-	Rat and Mice	Paw edema model of inflammation and acetic acid induced peritonitis	Shown significant activity	[39]
40.	Analgesic activity	Plant+Another herb/Crude	500 mg	-	Patients	Assessed	Shown	[40]
		Powder				Different	Significant	
						Parameters	Activity	
oxdot						Regarding with		
$\vdash \vdash$						Analgesic like		
\vdash						Duration of Morning		
\vdash					 	Sickness, grip		
\vdash						Strength and		
						Articular index		
						Etc		
41.	Antiinflammatory	Rhizome/Methanol	-	-	-	Overproduction of NO and	Shown activity	[41]
42.	activity Antiinflammatory	extract Rhizome/Ethanol extract	-	_	_	O2- induced Inflammation LPS induced Inflammation	Shown	[42]
44.	Anumianinatory	Killzome/Eulanol extract	_	<u>-</u>		Li 3 muuceu mnammation	SHOWIL	. ,

	Activity	And n-hexane fraction				Τ	Activity	
	Activity	And n-nexane fraction				LPS activated RAW2647	Activity	
43.	Antiinflammatory activity	Rhizome/extract	-	-	Mice	cells and cecal ligation and puncture induced sepsis	Shown activity	[43]
44.	Anticancer activity	Aerial parts/Methanol, Ethyl acetate and Water extracts/Flavonoid Fractions	-	-	-	Mutagenic and DPPH assay	Shown free radical scavenging activity	[44]
45.	Anticancer Activity	Rhizome/Ethanol extract And n-hexane fraction	-	-	-	Cell growth Inhibition assay	Shown Activity	[45]
46.	Anticancer activity	Plant/Ethanol, Methanol and Water extracts	100 mg/ml	-	-	Anti-proliferation assay	Shown activity	[46]
47.	Antioxidant activity	Rhizome/Extract	1000 μg/0.1 ml	-	-	Feso4 induced mitochondria lipid Peroxidation	Shown activity	[47]
48.	Antioxidant Activity	Plant/Methanol extract	2.5-10.0 mg/ml	-	-	DPPH assay	Shown Activity	[48]
49.	Hypolipidemic activity and Weight control effect	Rhizome/Alcoholic extract	70/140/280 mg/kg orally	Simvastatin 5 mg/kg/day orally and Fenofibrate 20 mg/kg/day Orally	Rat	Hyperlipidaemia induced by high fat diet	Shown significant activity	[49]
50.	Hypolipidemic activity and Weight control effect	Rhizome/Ethanol extract		-	Rat	Age associated changes in glucose and lipids in young and aged rats	Shown protective effect	[50]
51.	Hypolipidemic activity and Weight control effect	Tuber/n-hexane extract	45/220 mg/kg for <i>in</i> vivo and 250 μg/ml for <i>in</i> vitro	-	Rat	Weight gaining in vivo and binding in vitro assay	Shown activity	[51]
52.	Effect on platelet function	Plant/Ethanol extract	-	-	Rat	In vitro platelet Aggregation study	Shown activity	[52]
53.	Effect on platelet Function	Plant	-	-	Rat	Hemorrheologic Al changes in rat	Shown activity	[53]
54.	Gastrointestinal Activity	Plant/Crude extract	300/500 mg/kg orally	-	Rat	Aspirin induced Ulcers	Shown activity	[22]
55.	Gastrointestinal Activity	Plant/Extract	100/200 mg/kg	-	Rat	Ischemia/Reperf Usion method	Shown activity	[54]
56.	Gastrointestinal Activity	Rhizome/Decoction	1.25/2.5/4.0 g crude Drug/kg orally	-	Rat	Gastric ulcers	Shown activity	[55]
57.	Gastrointestinal activity	Rhizome/Methanol extract	250/500 mg/kg orally	Ranitidine	Rat	Aspirine Induced gastric ulcers	Shown Significant activity	[56]
58.	Gastrointestinal activity	Tuber/Water extract	125/250/500 mg/kg orally	Loperamide 2 mg/kg orally and Atropine sulphate 2 Mg/kg orally	Mice	Castor oil induced diarrhea and charcoal meal test	Shown activity	[57]
59.	Gastrointestinal activity	Rhizome/Methanol extract/Petroleum ether and Ethyl acetate fractions	250/500 mg/kg	-	Mice	Castor oil induced diarrhoea	Methanol and petroleum ether shown activity	[58]
60.	Gastrointestinal activity	Tuber/Decoction	-	-	-	Representative assay of diarrheal pathogenesis	Shown activity	[59]
61.	Gastrointestinal activity	Root bulbs/Decotion	1 g/16 ml	Ofloxacin 1 µg/ml, Metronidazole 10 µg/ml, 2 mercaptoethanol And Gallic acid	-	Biological assays	Shown inhibition activity	[60]
62.	Hepatoprotective activity	Plant/n-hexane fraction	-	-	Mice	Gene targeting assays and assessed the product of genes	Shown activity	[61]
63.	Anti-diabetic activity	Plant/Hydroalcoholic extract	500 mg/kg orally	-	Rat	Alloxan induced hyperglycemia	Shown significant Activity	[62]
64.	Anti-diabetic activity	Tuber/Decoction	2.5 ml/kg orally	-	Rabbit	Alloxan induced diabetes	Shown significant activity	[1]
65.	Dermatological activity	Tuber/Alcoholic extract converted to ointment	0.5/1/2% w/w	Nitrofurazone 0.2% w/w	Rat	Excision, Incision and dead space wound model	Shown activity	[63]
66.	Analgesic activity	Plant/Ethanol extract		-	-	1.2% acetic acid induced writhes and stretches	Shown activity	[23]
67.	Anti-dysmenorrhea activity	Rhizome/Essential oil and Isolated compounds	0.01/0.02/0.1 g/kg	-	-	Oxytocin 0.1 ml induced dysmenorrhea model	Fraction shown significant activity	[64]
68.	Effect on Lymphocytes proliferation	Plant/Extract	1-1000 µg/ml	-	-	Lymphocyte proliferation assay	Shown activity	[39]
69.	Anticancer activity	Plant/Ethanol extract	10/100/1000 µg/ml	-	-	Brine shrimp Bioassay	Shown activity	[14]

70.	Anticancer	Plant/oil	25/50/100 µg/ml	-	-	Cytotoxic assay	Shown	[7]
	Activity					Against cell lines	Positive	
							Activity	
							Against	
							Carcinoma	
							Cell lines and	
							Negative	
							Against	
							Human tumor	
							Cell lines	

I.P.: Intraperitonel; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; HBV: Hepatitis B virus; CNS: Central nervous system; PTZ: Pentylenetetrazole; MTT: 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide; LDH: Lactate dehydrogenase; NO: Nitric oxide; LPS: Lipopolysaccharide; DPPH: 2, 2-Diphenyl-1-picrylhydrazyl

Effect on other diseases

Alzheimer disease is an irreversible disease that leads to cognitive impairment, neurofibrillary tangles, amyloid plaques, microtubule fibers, neurodegeneration are observed in AD patients. The hydroalcohalic extract of *C. Rotundus* improved the learning impairment and memory impairment in rats. There is an important compound already isolated from *C. Rotundus* known as alpha cyperone which binds and interact with tubulin and reduces the inflammation associated with AD [2].

There is an neurological disease in which degeneration of dopaminergic neurons which plays an important role for the progression of neurodegeneration. The aqueous extract of C. Rotundus at the doses of 50 and 100 μ g/ml effectively reduced the condition in *in vitro* model of experiment ^[2].

The hydroalcohalic extract of C. Rotundus exhibits antianxiety acitivity. The Chinese polyherbal formulation which possess C. Rotundus exhibits and ethanolic extract of C. Rotundus at the dose of 240 mg/kg exhibits anti-depressive action in $in\ vivo$ model of experiment. The essential oil and crude extracts of this plant exhibits sedative and analgesic effect in $in\ vivo$ experimental model [2].

C. Rotundus rhizome powder is also used to improve the quality, storability and safety of minced beef meat $^{[65]}$. The essential oil of C. Rotundus exhibits anti-oxidant activity due to the presence of phytochemicals in essential oil including α -cyperone, α -selinene and cyperene $^{[66]}$. Methanolic extract of C. Rotundus rhizome exhibits significant anti-cancer property against all the tested cancer cell lines $^{[67]}$. C. Rotundus showed significant result in the treatment of gastrointestinal, bronchial and vascular disorder in in vivo and in vitro experimental models $^{[68]}$.

Discussion

C. Rotundus commonly known as "Nut Grass" possess a great therapeutic potential. The tuber of this medicinal plant now a days, used in herbal medicines for different kind of ailments because of the presence of a large group of phytochemicals. The essential of this plant tuber plays an important role in cosmetic industry as well. The tuber of this plant also used in case of chronic disorder with no adverse reaction as per my best of knowledge till today.

Conclusion

The available literature on *C. Rotundus* depicted the fact that it is a popular medicinal plant which is used by Ayurvedic and traditional practitioners for the treatment of chronic diseases by using a different kind of formulation, polyherbal formulation, decoction, crude extracts, isolated phytochemicals and infusions as well. The scientists still looking for the new phytochemicals by using different kind of

extraction and purification procedures and their therapeutic potential which is still not known to the people.

References

- 1. Al-Snafi AE, Al-Trikrity AH, Ahmad RH. Hypoglycemic effect of *Teucrium polium* and *Cyperus rotundus* in normal and diabetic rabbits. Med. J. Tikrit Univ. 2013;9(2):1-10.
- Kandikattu HK, Amruta N, Khanum F, Narayana VV, Srinivasulu D. A Review on *Cyperus rotundus*: Ancient Weed to Modern Elixir of Life Phytochemistry and Therapeutic Uses of *Cyperus rotundus* (Mustaka). Pharmaceutical and Biomedical Research. 2021;7(4):221-250
- 3. Huygh W, Larriden L, Reynders M, Muasya AM, Rafael GHA, Simpson DA, *et al.* Nomenclature and typification of names of genera and sub-division of genera is Cyperaceae: Names of genera in cyperus clade. Taxon. 2018;59(6):1883-1890.
- 4. Tucker GC, Marcks BG, Carter JR. Cyperus Linnaeus, in flora of North Americaial Committee. 2003;1:44(1753).
- 5. Schatz GE, Andriambololowera A, Arivelo A, Callmander MW, Faranirina, Lowery PP, *et al.* Catalogue of the vascular plants of Madagascer, monographs in systematic Botany. Missouri Botanical Gardens; c2011.
- 6. Sivapalan SR. Medicinal use and pharmacological activities of *Cyperus rotundus* Linn A review. International Journal of Scientific and Research Publications. 2013;3(5):1-8.
- 7. El-Gohary HMA. Study of essential oils of the tubers of *Cuperus rotundus* L and *Cyperus alopecuroides* RPTTB. Bull Fac. Pharm. Cairo. Univ. 2004;42(1):157-164.
- 8. Sharma SK, Singh AP. Antimicrobial investigation on rhizomes of *Cyperus rotundus* Linn. Der Pharmacia Lettre. 2011;3(3):427-431.
- 9. Yu HH, Lee DH, Seo SJ, You YO. Anticarciogenic properties of the extract of *Cyperus rotundus*. Am. J. Chin. Med. 2007;35:497-505.
- 10. Bisht A, Bisht GRS, Singh M, Gupta R, Singh V. Chemical composition and antimicrobial activity of essential oil of tubers of *Cyperus rotundus* Linn. Collected from Dehradun (Uttarakhand). International Journal of Research in Pharmaceutical and Biomedical Sciences. 2011;2(2):661-665.
- 11. Kumar S, Kumar K, Gautam SS. Antibacterial evaluation of *Cyperus rotundus* Linn. Root extracts against respiratory tract pathogens. African Journal of Pharmacology and Therapeutics. 2014;3(3):95-98.
- 12. Muthu K, Hema M, Nagaraj S, Rengasamy R. *In vitro* antibacterial potential, phytochemical characterization of *Cyperus rotundus* flower extract. International Journal of Natural Products Research. 2014;4(1):6-8.

- 13. Nima ZA, Jabier MS, Wagi RI, Hussain HA. Extraction, identification and antibacterial activity of Cyperus oil from Iraqi *Cyperus rotundus*. Eng & Technology. 2010;2(1):1156-1163.
- 14. Ahmad M, Mahayrookh, Mehjabeen, Bin Rehman A, Jahan N. Analgesic, antimicrobial and cytotoxic effect of *Cyperus routunds* ethanolic extract. Pakistan Journal of Pharmacology. 2012;29(2):7-13.
- 15. Soltan MM, Zaki AK. Antiviral screening of forty-two Egyptian medicinal plants. J Ethnopharmacol. 2009;126(1):102-107.
- 16. Xu HB, Ma YB, Huang XY, Geng CA, Wang H, Zhao Y, et al. Bioactivity-guided isolation of anti-hepatitis B virus active sesquiterpenoids from the traditional Chinese medicine: Rhizomes of *Cyperus rotundus*. J. Ethnopharmacol. 2015;171:131-140.
- 17. Singh SP, Raghavendra K, Dash AP. Evaluation of hexane extract of tuber of root of *Cyperus rotundus* Linn (Cyperaceae) for repellency against mosquito vectors. J Parasitol Res. 2009;1:1-5.
- 18. Solita ES, Castor L. Phytochemical and pesticidal properties of barsanga (*Cyperus rotundus* Linn.). JPAIR Multidiscip. J. 2011;6:197-214.
- 19. Vivek K, Bhat SK. Ovicidal and larvicidal activities of *Cyperus giganteus* Vahl and *Cyperus rotundus* Linn essential oils against *Aedes albopictus* (Skuse). Natural Product Radiance. 2008;7(5):416-419.
- 20. Thebtaranonth C, Thebtaranonth Y, Wanauppathamkul S, Yuthavong Y. Antimalarial sesquiterpenes from tubers of *Cyperus rotundus*: Structure of 10,12-peroxycalamenene, a sesquiterpene endoperoxide. Phytochemistry. 1995;40:125-128.
- 21. Singh N, Kulshrestha VK, Gupta MB, Bhargava KP. A pharmacological study of *Cyperus rotundus*. Indian J. Med. Res. 1970;58:103-109.
- 22. Ahmad M, Rookh M, Rehman AB, Muhammad N, Amber, Younus M, *et al.* Assessment of anti-inflammatory, anti-ulcer and neuro-pharmacological activities of *Cyperus rotundus* Linn. Pak. J. Pharm. Sci. 2014; 27(6-Special):2241-2246.
- 23. Pal D, Dutta S, Sarkar A. Evaluation of CNS activities of ethanol extract of roots and rhizomes of *Cyperus rotundus* in mice. Acta. Pol. Pharm. 2009;66(5):535-541.
- 24. Ha JH, Lee KY, Choi HC, Cho J, Kang BS, Lim JC, *et al.* Modulation of radioligand binding to the GABAA-benzodiazepine receptor complex by a new component from *Cyperus rotundus*. Biol. Pharm. Bull. 2002; 25(1):128-130.
- 25. Biradar S, Kangralkar VA, Mandavkar YM, Thakur M, Chougule. Anti-inflammatory, antiarthritic, analgesic and anticonvulsant activity of *Cyperus* essential oils. Int. J. Pharm. Sci. 2010;294(4):112-115.
- 26. Khalili M, Kiasalari Z, Roghani M, Azizi Y. Anticonvulsant and antioxidant effect of hydroalcoholic extract of *Cyperus rotundus* rhizome on pentylentetrazole-induced kindling model in male mice. Journal of Medicinal Plants Research. 2011;5(7):1140-1146.
- 27. Mayur P, Pawan P, Ashwin S, Pravesh S. Evaluation of anticovulsant activity of roots and rhizomes of *Cyperus rotundus* Linn in mice. International Research Journal of Pharmacy. 2011;2(10):37-41.
- 28. Rabbani M, Ghannadi A, Malekian N. Evaluation of the effect of *Cyperus rotundus* L. In scopolamine-induced learning deficit in mice. Adv. Biomed. Res. 2014;3:217.

- 29. Lee CH, Hwang DS, Kim HG, Oh H, Park H, Cho JH, *et al.* Protective effect of Cyperi rhizoma against 6-hydroxydopamine-induced neuronal damage. J. Med. Food. 2010; 13(3):564-571.
- 30. Dabaghian FH, Hashemi M, Entezari M, Movassaghi S, Goushegir SA, Kalantari S, *et al.* Effect of *Cyperus rotundus* on ischemia-induced brain damage and memory dysfunction in rats. Iran J Basic Med. Sci. 2015;18(2):199-204.
- 31. Sunil AG, Kesavanarayanan KS, Kalaivani P, Sathiya S, Ranju V, Priya RJ, *et al.* Total oligomeric flavonoids of *Cyperus rotundus* ameliorates neurological deficits, excitotoxicity and behavioural alterations induced by cerebral ischemic-reperfusion injury in rats. Brain Res. Bull. 2011; 84(6):394-405.
- 32. Jebasingh D, Devavaram Jackson D, Venkataraman S, Adeghate E, Starling Emerald B. The protective effects of *Cyperus rotundus* on behavior and cognitive function in a rat model of hypoxia injury. Pharm. Biol. 2014;52(12):1558-1569.
- 33. Hemanth Kumar K, Tamatam A, Pal A, Khanum F. Neuroprotective effects of *Cyperus rotundus* on SIN-1 induced nitric oxide generation and protein nitration: ameliorative effect against apoptosis mediated neuronal cell damage. Neurotoxicology. 2013;34:150-159.
- 34. Sundaram MS, Sivakumar T, Balamurugan G. Antiinflammatory effect of *Cyperus rotundus* Linn. Leaves on acute and subacute inflammation in experimental rat models. Biomedicine. 2008;28:302-304.
- 35. Soumaya KJ, Dhekra M, Fadwa C, Zied G, Ilef L, Kamel G, *et al.* Pharmacological, antioxidant, genotoxic studies and modulation of rat splenocyte functions by *Cyperus rotundus* extracts. BMC Complement Altern. Med. 2013;13:28.
- 36. Imam MZ, Sumi CD. Evaluation of antinociceptive activity of hydromethanol extract of *Cyperus rotundus* in mice. BMC Complement Altern. Med. 2014;14:83.
- 37. Nam JH, Lee DU. Inhibitory effect of oleanolic acid from the rhizomes of *Cyperus rotundus* on transient receptor potential vanilloid 1 channel. Planta Med. 2015;81(1):20-25
- 38. Gupta MB, Palit TK, Singh N, Bhargava KP. Pharmacological studies to isolate the active constituents from *Cyperus rotundus* possessing anti-inflammatory, anti-pyretic and analgesic activities. Indian Journal of Medical Research. 1971;59:76-82.
- 39. Saxena RC, Punhami, Palit TK, Garg KC, Singh N, Kohli RP. Preliminary report on the anti-inflammatory activity of *Cyperus rotundus* in cojunctivities (in human subjects). Indian J. Pharm, 1971, 3.
- 40. Singh N, Singh SP, Dixit KS, Saxena RC, Kohli RP. A placebo controlled clinical trial of *Cyperus rotundus*, *Withania somnifera* and their combination in cases of rheumatoid arthritis. Proc International Seminar on Clinical Pharmacology in Developing Countries, Lucknow, India. 1986;2:18-21.
- 41. Seo WG, Pae HO, Oh GS, Chai KY, Kwon TO, Yun YG, et al. Inhibitory effects of methanol extract of *Cyperus rotundus* rhizomes on nitric oxide and superoxide productions by murine macrophage cell line, RAW 264.7 cells. J. Ethnopharmacol. 2001;76(1):59-64.
- 42. Jung SH, Kim SJ, Jun BG, Lee KT, Hong SP, Oh MS, *et al.* A-Cyperone, isolated from the rhizomes of *Cyperus rotundus*, inhibits LPS-induced COX-2 expression and PGE2 production through the negative regulation of nfkb

- signaling in RAW 264.7 cells. J Ethnopharmacol. 2013;147(1):208-214.
- 43. Tsoyi K1, Jang HJ, Lee YS, Kim YM, Kim HJ, Seo HG, et al. (+)-Nootkatone and (+)-valencene from rhizomes of *Cyperus rotundus* increase survival rates in septic mice due to heme oxygenase-1 induction. J Ethnopharmacol. 2011;137(3):1311-1317.
- 44. Kilani S, Ben Ammara R, Bouhle I, Abdelwahed A, Hayder N, Mahmoud A, *et al.* Investigation of extracts from (Tunisian) *Cyperus rotundus* as antimutagens and radical scavengers. Environmental Toxicology and Pharmacology. 2005;20:478484.
- 45. Ahn JH, Lee TW, Kim KH, Byun H, Ryu B, Lee KT, *et al.* 6-acetoxy cyperene, a patchoulane-type sesquiterpene isolated from *Cyperus rotundus* rhizomes induces caspase-dependent apoptosis in human ovarian cancer cells. Phytother Res. 2015, 10.
- 46. Park SE, Shin WT, Park C, Hong SH, Kim GY, Kim SO, *et al.* Induction of apoptosis in MDA-MB-231 human breast carcinoma cells with an ethanol extract of *Cyperus rotundus* L. By activating caspases. Oncol. Rep. 2014;32(6):2461-2470.
- 47. Nagulendran KR, Velavan S, Mahesh R. *In vitro* antioxidant activity and total polyphenolic content of *Cyperus rotundus* rhizomes. E- Journal of Chemistry. 2007;4(3):440-449.
- 48. Bashir A, Sultana B, Akhtar FH, Munir A, Amjad M, Ul Hassan Q. Ivestigation on the antioxidant activity of Dheela grass (*Cyperus rotundus*). African Journal of Basic & Applied Sciences. 2012;4(1):1.
- 49. Chandratre RS, Chandarana S, Mengi SA. Lipid lowering activity of alcoholic extract of *Cyperus rotundus*. IJRPC. 2011;1(4):1042-1045.
- 50. Nagulendran KR, Mahesh R, Begum VH, Preventive role of *Cyperus rotundus* rhizomes extract on age associated changes in glucose and lipids, Pharmacology online. 2007; 2:318-325.
- 51. Lemaure B, Touché A, Zbinden I, Moulin J, Courtois D, Macé K, *et al.* Administration of *Cyperus rotundus* tubers extract prevents weight gain in obese Zucker rats. Phytother Res. 2007;21:724-730.
- 52. Seo EJ, Lee DU, Kwak JH, Lee SM, Kim YS, Jung YS. Antiplatelet effects of *Cyperus rotundus* and its component (+)-nootkatone. Journal of Ethnopharmacology. 2011;135:48-54.
- 53. Xue JX, Jiang Y, Yan YQ. Effects of the combination of Astragalus membranaceus (Fisch.) Bge. (AM), tail of Angelica sinensis (Oliv) Diels. (TAS), Cyperus rotundus L. (CR), Ligusticum chuanxiong Hort. (LC) and Paeonia veitchii Lynch (PV) on the hemorrheological changes in normal rats. Zhongguo Zhong Yao Za Zhi. 1993;18(10):621-623.
- 54. Guldur ME, Ozgonul A, Kilic IH, Sogut O, Ozaslan M, Bitiren M, *et al.* Gastro protective effect of *Cyperus rotundus* extract against gastric mucosal injury induced by ischemic and reperfusion in rats. Int. J Pharmacology. 2010;6(2):104-110.
- 55. Zhu M, Luk HH, Fung HS, Luk CT. Cytoprotective effects of *Cyperus rotundus* against ethanol induced gastric ulceration in rats. Phytother Res. 1997;11(5):392-394.
- Thomas D, Govindhan S, Baiju EC, Padmavathi G, Kunnumakkara AB, Padikkala J. Cyperus rotundus L. Prevents non-steroidal anti-inflammatory drug-induced

- gastric mucosal damage by inhibiting oxidative stress. J. Basic Clin. Physiol. Pharmacol. 2015;26(5):485-490.
- 57. Shamkuwar PB, Hoshamani AH, Indrajeet D. Antispasmodic effect of *Cyperus rotundus* L (Cyperaceae) in diarrhoea. Der. Pharm. Lettre. 2012;4:522-224.
- 58. Uddin SJ, Mondal K, Shilpi JA, Rahman MT. Antidiarrheal activity of *Cyperus rotundus*. Fitoterapia. 2006;77(2):134-136.
- Daswani PG, Brijesh S, Tetali P, Birdi TJ. Studies on the activity of *Cyperus rotundus* Linn. Tubers against infectious diarrhoea. Indian J. Pharmacol. 2011;43:340-344
- 60. Daswani PG, Birdi TJ, Antia NH. Study of action of *Cyperus rotundus* root decoction on the adherence and enterotoxin production of diarrhoeagenic *Escherichia coli*. Indian Journal of Pharmacology. 2001;33:116-117.
- 61. Oh GS, Yoon J, Lee GG, Kwak JH, Kim SW. The Hexane fraction of *Cyperus rotundus* prevents non-alcoholic fatty liver disease through the inhibition of liver X receptor α-mediated activation of sterol regulatory element binding protein-1c. Am. J Chin. Med. 2015;43(3):477-494.
- 62. Raut NA, Gaikwad NJ. Antidiabetic activity of hydroethanolic extract of *Cyperus rotundus* in alloxan induced diabetes in rats. Fitoterapia. 2006;77:585-588.
- 63. Puratchikody A, Devi NC, Nagalakshmi G. Wound healing activity of *Cyperus rotundus* Linn. Indian Journal of Pharmaceutical Sciences. 2006;68:97-101.
- 64. Chen Y, Wang J, Liu L, Huang L. Anti-dysmenorrhea components from the rhizomes of *Cyperus rotundus* Linn. (Cyperaceae). 8th OAPS Working Paper Series Paper No. 2011-027.
- 65. Eltilib HH, Elgasim EA, Mohamed Ahmed IA. Effect of incorporation of *Cyperus rotundus* L. Rhizome powder on quality attributes of minced beef meat. J. Food Sci. Technol. 2016;53(9):3446-54.
- 66. Hu QP, Cao XM, Hao DL, Zhang LL. Chemical composition, antioxidant, DNA damage protective, cytotoxic and antibacterial activities of *Cyperus rotundus* rhizomes essential oil against foodborne pathogens. Sci. Rep. 2017;7:45231.
- 67. Mannarreddy P, Denis M, Munireddy D, Pandurangan R, Thangavelu KP, Venkatesan K. Cytotoxic effect of *Cyperus rotundus* rhizome extract on human cancer cell lines. Biomed. Pharmacother. 2017;95:1375-87.
- 68. Hussain M, Waqas HM, Hussain I, Majeed A, Raza SM, Janbaz KH. Pharmacological validation of the folkloric uses of *Cyperus rotundus* L. Indifferent ailments: An *in vivo* and *in vitro* research. Pak. J Pharm. Sci. 2018;31(1):95-102.