Effects of different treatments on seed germination and breaking seed dormancy of *Citrullus colocynthis* an endangered medicinal plant

Ramakrishna Dasari, Sunita Bai Dharavath, Hari Yadla and Shasthree Taduri

DOI: https://doi.org/10.22271/phyto.2024.v13.i3e.14983

Abstract

Citrullus colocynthis plants often have a longer period of dormancy because of the strong seed coat. To reduce the dormancy period and improve seed germination, in the present study we evaluated the significant effects of external conditions including temperature, light and humidity under *in vitro* conditions. The seeds are treated with acid and boiling water for different time intervals. 50% decorticated seeds were obtained by removing the lignified outer coats from the seeds. Intact embryos and decorticated seeds were selected and separated directly into half-strength MS medium, paper boats in culture tubes, Petri dishes covered with Whatman No. 1 filter paper, and solid-strength MS medium covered with nylon mesh. In all treatments, the mechanical approach is ideal for breaking seed dormancy in *C. colocynthis*. The scarring technique results in 92% of seeds germination, compared to 43% and 56% for the remaining acid and hot water treatments respectively. Present research methods help to break and overcome seed dormancy in plants with hard seed coats.

Keywords: *Citrullus colocynthis*, seed germination, acid treatment, dormancy, decorticated seeds

Introduction

Citrullus colocynthis is a medicinally important endangered cucurbit it is found across the world's arid regions. It has a broad spectrum of therapeutic applications and is widely utilized in Ayurvedic and folk medicine (Dasari et al. 2020) [6]. *C. colocynthis* mainly contains glycosides, cucurbitacins (colocyntholin and colocynthetin), Cucurbitacin A, B, C, D, E (Marzouk et al. 2022; Chaweech et al. 2015) [15, 5], Cucurbitacins I, J, K, and L (Sturm et al. 2009) [23], cucurbitacin glycosides, flavonoids and flavones glycosides (Delazar et al. 2006) [6]. The cucurbitacin, glucose combination (1:1) inhibited growth of ER (+) MCF-7 and ER (-) MDA-MB-231 Human breast cancer cell lines (Tannin-Spitz et al. 2007). Dried fruit pulp of *C. colocynthis* is used to treat indigestion, gastroenteritis and intestinal parasites. *C. colocynthis* has many pharmacological activities, including anti-diabetic, anti-malarial, anti-spermatogenic, anti-inflammatory, anethemintic, anti-microbial, anti-oxidant, Hypolipidemic, anti-diarrheal and anti-cancerous (Hussain et al. 2014; Barghamdi et al. 2016; Dhakad et al. 2017; Kamran et al. 2018) [11, 3, 12].

C. colocynthis fruit is smooth, spherical in shape and contains more than hundred seeds. It is yellow-green fruit which becomes marble with yellow stripes at maturity (Ramakrishna et al. 2015) [13]. The seeds are embedded in the pulp; each of the three carpels contains six seeds. The seeds are gray in color, 3mm wide and 5mm long. The matured seed coat is thick dark brown and lignified under Neath it a thin, transparent membrane encloses the embryo. The fruit is indehiscent and the seeds are liberated only by breakage or decay of the peri-carp (Sperber et al. 2017) [22]. Production of *C. colocynthis* plant is very difficult because of hard seed coat and dormancy period of seed leads to very poor germination. Therefore, production of these plants needs to face a lot of problems. In wild flora, seed dormancy is very common for survival purposes under unfavorable environmental conditions (Baskin and Baskin 2004; Geneve 2003) [6].

Dormancy of seeds is a distinctive feature of the arid zone plants. It is essential to perform some treatments for eradicating the obstacle of germination. Menon et al. (2014) [16] performed different pretreatment methods in *C. colocynthis*, followed by manual scarification using sandpaper and incubation at room temperature to overcome seed dormancy (Menon et al. 2014) [16].
Few researches shown that, mechanical scarification by sand paper and acid treatment are given good result in seed dormancy in plants like Acacia auriculiformis (Azad et al. 2011) [7], Parkinsonia biglobosa (Aliero 2004) [11] and Ulex europaeus (Sixtus et al. 2003). In C. colocynthis, Kshan Sahoo and Kasera performed pretreatment with Ca(NO3)2, KNO3, NH4NO3, and Co(NO3)2, to prevail over the seed dormancy (Sahoo and Kasera 2012). Similarly, pretreatment of concentrated sulfuric acid (H2SO4) broke the seed dormancy of Leptadinaea reticulate (Kasera and Shukla 2003) [13] and Hibiscus hamabo (Wang et al. 2012) [25]. In some cases like Commiphora wightii gave good results in low concentrations of KNO3, NH4NO3 and Co(NO3)2, whereas high concentrations of same treatments reported low dormancy breakage (Lal and Kasera 2014) [14].

The present experiment was undertaken to establish efficient protocol for seed germination and to overcome seed dormancy for in vitro growth of C. colocynthis plants for further experiment.

Materials and Methods

C. colocynthis plant seeds were collected from different areas like Godavari River in Basara, Nizamabad, Koonoor river valley in Warangal, Telangana State and Tiruchurapally, Tamilnadu State. Dark brown mature seeds were collected from fully ripe and yellow pulp dried fruits in the month of August. Defective seeds were removed and then the collected seeds were stored in dark condition in polyethylene bags at room temperature. In vitro seed germination was tested in the following methods.

- Initially, 15 ml of full strength and half strength MS medium filled separately in petri dishes and glass bottles.
- Single layer and multilayer of Whatman No. 1 filter paper are placed in separate petri dishes on 5ml distilled sterile water and 5 ml half strength MS media.
- Whatman No.1 filter paper was used as paper boat in culture tubes filled separately with 15 ml of half strength MS media and distilled sterile water.
- The seeds were treated with different concentrations of acid at different time intervals.
- The seeds were Immersion in boiling water for different time intervals.
- 50% decoated seeds were obtained by removing the lignified outer layers from the seeds. Intact embryos and decoated seeds were selected and directly plated on half strength MS media, paper boat in culture tubes, Whatman No. 1 filter paper in petri dishes, solid half strength MS media covered with nylon mesh. Grown seedlings were used for further experiments.

Results and Discussion

C. colocynthis seeds germinated in 25 to 30 days in the greenhouse and some seeds took almost two months to germinate. For the in vitro plant experiment, it is necessary to get sterile explants. Therefore, it is required to in vitro seed germination. The challenging task is intact seed germination in in vitro conditions. In in vitro conditions half strength and full-strength MS media used in petri dishes and glass bottles separately; for every treatment 50 seeds were allowed to grow in culture room. It was observed that, among the all seeds, none of the seed was germinated. Intact seeds were unable to get any response. Cucurbit seed is very difficult to grow directly on MS media similarly (Menonetal. 2014) [9], it is fail to grow C. colocynthis seeds without any pretreatment. Intact seeds at rest were tried with Whatman No.1 filter paper in petri dishes with 10 ml distilled water and 10 ml full strength MS media separately and maintained with same till the end of experiment. Similarly, Whatman filter paper used as a paper boat in culture tubes which contains 15 ml half strength MS media or water separately. The results were nullified similarly like previous observation, no seed germination was observed in every trail of the experiment (Table 1). Similarly, in C. colocynthis an assortment to intact seeds like contact and daily alteration of temperature, in combination with continuous light, continuous darkness, 48 hr pretreatment of the moist seeds at 5 °C were failed to improve germination (El-keblawy et al. 2019) [9].

Various methods were tested to reduce the mechanical resistance of the seed coat such as scarification with concentrated H2SO4 and hot water treatment. In each treatment, seeds were treated at different time intervals (30, 60, 120, 180 and 240 sec.) separately. This mechanical dormancy breaking treatment gave promising results for seed germination. Among these two treatments; hot water treatment gave10% good results over the concentrated H2SO4 treatment (Fig 2). In acid treatment, best results obtained in 60 seconds time period with 44% of seed germination. Later germination gradually decreased with increased treatment time. At 240 seconds in acid treatment, absence of seed germination was observed. It’s clearly shown that seeds are tolerating concentrated H2SO4 treatment maximum at 180 seconds. Seed germination percentage increased from 30 seconds to 120 seconds in hot water treatment, behind increase in the treatment time shown less results. Optimum seed germination in hot water treatment was observed at 120 seconds treatment with 56% of seed germination (Fig 1).

Similar way in C. colocynthis, when seeds treated in hot water at 90 °C for 10 minutes originated noteworthy increasing with the amount of 40% germinated seeds than the control treatment in germination (Saberi et al. 2011; Aliero 2004) [19, 1].

As shown in the Fig 2 (a, b) seeds were decoated manually by removing approximately 50% of seed coat. These decoated seeds were used for different treatments by using nylon mesh and Whatman No.1 filter paper along with distilled water and MS media separately. Half strength MS media covered with nylon mesh in petri dishes were used for seed germination (Fig 2c, 2d). Paper boat method performed in culture tubes (Fig 2f). Interesting results were obtained in these treatments and in all experiments, maximum seeds were germinated within 10 to 14 days of time period. Nylon mesh gave 86, 78 and 92 percentage of seed germination respectively. These germinated seeds were transferred to MS media for further growth (Fig 2e). Finally, in vitro raised plant acclimatized to vermi composed pot and maintained in the green house (2g, 2h, 2i).

In C. colocynthis, researchers achieved good results with mechanical scarification over the other treatments (Menon et al. 2014; Saberi et al. 2011; Sahoo and Kasera 2012) [16, 19, 20].
Fig 1: Effect of hot water and acid treatments on seed germination of *C. colocynthis*

Fig 2: *In vitro* seed germination of *C. colocynthis* (a) Full seed coated seeds (b) 50% decoated seeds (c) Seed germination on half strength MS media covered with nylon mesh (d) Initiation of shoots and roots on half strength MS media (e) Germinated seed transformed on to full strength MS media (f) Seed germination on Whatman filter paper boat (g) *In vitro* raised plant acclimatized into sterile vermi composed pot (h) *In vitro* raised plant growing in greenhouse (i) *In vitro* raised plant with fruits.
Table 1: Effect of different treatments on seed germination of *Citrullus colocynthis*

<table>
<thead>
<tr>
<th>S. No</th>
<th>Treatment</th>
<th>Time</th>
<th>No. of Seed Used each experiment</th>
<th>Avg. No. of Seed germination</th>
<th>% of seed germination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Full strength MS Media</td>
<td>30 days</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Half strength MS Media</td>
<td>30 days</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Whatchen filter paper</td>
<td>30 days</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>With H<sub>2</sub>O</td>
<td>30 days</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Paper boat with H<sub>2</sub>O</td>
<td>30 days</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Full seed</td>
<td>30 days</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>media full seed</td>
<td>30 days</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>50% Seed coat removed</td>
<td>10 to 14 days</td>
<td>50</td>
<td>43±0.33b</td>
<td>82</td>
</tr>
<tr>
<td>9</td>
<td>with nylon mesh</td>
<td>10 to 14 days</td>
<td>50</td>
<td>39±0.51c</td>
<td>78</td>
</tr>
<tr>
<td>10</td>
<td>50% Seed coat removed</td>
<td>10 to 14 days</td>
<td>50</td>
<td>46±0.00a</td>
<td>92</td>
</tr>
</tbody>
</table>

Conclusion

The present study evaluated the effects of different treatments on seed germination and seed dormancy of *Citrullus colocynthis*. Here we used different methods like acid, hot water treatments with various concentration and time intervals and scarification (mechanical method) to remove seed dormancy. Above all the treatments mechanical method is very suitable to remove seed dormancy in *C. colocynthis*. Scarification method was resulted 92% of seed germination, remaining acid and hot water treatments were observed less results i.e., 43 and 56% respectively, the present study shows that scarification method is less harmful to the embryo. In this aspect this process is cost effective and low risk. Hence, this technique is most advisable to compare with other treatments in *C. colocynthis*.

Acknowledgements

The Principal Investigator Dr. T. Shasthree is thankful to UGC New Delhi for financial assistance in the form of Major Research Project Vide F. No.: 41-530/2012 (SR) during July 2012–July 2015 for this work. Also thanks to Department of Biotechnology, Kakatiya University Warangal for providing facilities.

Conflict of interest

The authors declare that there are no conflicts of interest.

References

