

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 www.phytojournal.com JPP 2024; 13(4): 107-113 Received: 19-04-2024 Accepted: 17-05-2024

Mohammed Abdullahi

Department of Forestry and Wildlife Management Federal University Gashua Yobe State Nigeria

SA Aminu

Department of Forestry and Wildlife Management Federal University Gashua Yobe State Nigeria

Ali Bulama

Department of Forestry and Wildlife Management Federal University Gashua Yobe State Nigeria

Mustapha Umar

Department of Forestry and Wildlife Management Federal University Gashua Yobe State Nigeria

Corresponding Author: Mohammed Abdullahi

Department of Forestry and Wildlife Management Federal University Gashua Yobe State Nigeria

Survey of aromatic and medicinal plants used by Gashua, Yobe State, Nigeria

Mohammed Abdullahi, SA Aminu, Ali Bulama and Mustapha Umar

DOI: https://doi.org/10.22271/phyto.2024.v13.i4b.15000

Abstract

Aromatic and medicinal plants provide humans with both food and medicine; they cure several ailments in humans and animals without any residual effects on life. Some of these plants are used in the biological control of insect pests, while others are used as aroma, Flavour, and/or additives in many food industries. A survey of aromatic and medicinal plants was conducted to identify aromatic and medicinal plants that are found and used as medicine and also as food in Bade L.G.A. with the aid of a structured questionnaire. The study area was randomly selected to avoid bias in the study. A total of nine villages (9) out of 13 villages were selected in order to cover more than thirty percent of the study area. A total of 250 participants were selected from the study area, which included all farmers, herbalists, and others. The results of the gender findings indicated that male participants were the majority, while married participants were the majority in the study area. However, sixty-nine different plant species that are used for treating various ailments and as food aromas, additives, or preservatives and their modes of application were identified during the course of the research. Meanwhile, the family *Fabaceae* is the dominant family with the highest frequencies. According to this survey, the majority of the commuters' interviewed heavily rely on ethno medicine for their health care. Therefore, there is a need for proper documentation and preservation of this knowledge for sustainable utilisation.

Keywords: Gashua, aromatic, medicinal, ethno botanical

Introduction

Medicinal plants are those plants that are mostly recognised and utilised as ethno medicine and conventional medicine, while aromatic plants are used for their flavour and aroma. These plants are rich in biological resources that are used for the manufacturing of drugs in modern medicine (Giannenas et al., 2020) [12]. While numerous in vitro investigations have identified aromatic plants as antibacterial and antioxidant substances, their incorporation into numerous food items, including conventional meat, dairy, and baked goods, adds value to these dishes. Many essential compounds for human bodies are produced by aromatic and medicinal plants. Many plant parts are used to treat a variety of illnesses; these plants are referred to as aromatic and medicinal plants. Aromatic plants, sometimes referred to as "herbs and spices," have a wide range of uses in medicine, cosmetics, agronomy, virucidal, bactericidal, anti-parasitic, fungicidal, and insecticidal applications. (Tariq et al., 2019) [11]. These plants are found to have more widespread use in the food manufacturing industry as alternatives to harmful food additives (Christaki et al., 2012) [12]. Aromatic herbs, oils, and aroma chemicals are extensively used in the perfumery, flavouring, and cosmetic industries or as starting materials for the synthesis of other compounds, However, a few of them have amazing uses in the medicine and pharmaceutical industries as therapeutic agents. Medicinal plants and their extracts have been used by man since prehistoric times to cure various diseases that resulted in discovery of some important drugs like morphine (analgesic), reserpine (antihypertensives), taxol, vinca alkaloids (anticancer), digitoxin (cardiotonic), codeine (antitussives), quinine, and artemisinin (antimalarials). The majority of the people who have knowledge of ethnobotany are old and fall between the ages of 40 and above. It is well known that any human being who reaches the age of 40 and above has reached his diminishing age. This traditional knowledge of aromatic and medicinal plants needs to be surveyed and validated in order to prevent its loss, as it is valuable to societies and the global community. Societies can preserve this priceless knowledge from being lost following the passing of elderly herbalists by conducting ethno-botanical surveys. Moreover, ethnobotany research is essential because medicinal plants represent a valuable and profitable component of biodiversity. Based on ethno-botanical assessment, numerous active natural substances have been found in medicinal plants.

Therefore, the study was designed to survey and document the medicinal and aromatic plants used by Bade LGA commuters.

Methodology Study area

Gashua is a village in Yobe State, northeastern Nigeria, situated on the Yobe River a short distance downstream from the Hadejia and Jama'are rivers' confluence. The elevation on average is 299 metres. In 2006, the population was approximately 125,000. March through April is the hottest months, with average highs of 38 to 40 degrees Celsius. Temperatures drop to 23–28 °C during the rainy season, which runs from June to September. Rainfall totals range from 500 to 1000 mm. https://en.wikipedia.org/wiki/Gashua. Employees of Federal University Gashua's Faculty of Agriculture, Department of Forestry and Wildlife Management, will carry out this investigation.

Sampling Techniques

Random sampling of nine (9) villages out of thirteen villages was adopted. The actual population of the aromatic and medicinal users/herbalist is not readily available. So we only estimated 30% of respondents in the study area during the reconnaissance survey. However, the study adopted the estimated 30% of participants in each of the selected village of the study area. This is based on the facts that 30% of population can give a satisfactory estimate of true population.

Data analysis

Descriptive statistics was used for the research. The results was displayed in tables, chart and frequency tables. Information aromatic and medicinal plants were arranged in order scientific name, family, local name, parts of plants used, disease cures and applications mode. The results of the survey was arrange in the order of the above in formations.

Results and Discussions

Aromatic and medicinal plants are essential to the Bade community's socioeconomic growth. The study was designed to assess the knowledge of bade commuters on ethno medicinal. The study considered both the herbalist and nonherbalist in the study since this is a traditional knowledge that can be transfer from one house to another without any barrier. However, the study indicated that 67% of the participants who

constitute one hundred and sixty-nine (196) participants were males in the study area. This confirmed the study conducted by (Mudansiru et al., 2016) Mudansiru in Gumel Local Govt of Jigawa state. This however, confirmed the assumption that male genders in northern parts of Nigeria are the one that does the farming activities to provide their family with all their needs. This is because in the northern part of Nigeria, it is well-known tradition that the male are the one to provide their family with both food and health care. However the study further indicated that majority of the participants fall within the middle age which fall between the age bracket 30-40 years (33.3%) which was followed by (41-50) years (28.8)%. This contradicts the study conducted by (Mudansiru et al., 2016) [3] which stated that older people are the custodian of ethno botanical knowledge however this could be that in some location of the northern part of Nigeria middle age are more concern about traditional medicine which might be due to the facts that the world is changing toward ethno medicine as a result continues awareness on the effectiveness of this ethno medicine. This result is agreeing with the findings reported by (Fakey et al. 2009) [2]. Who found that 66.5% of the respondents who reported the use of herbal medicines among pregnant women in Nigeria are 21 to 30 years of age. Majority of the participants were married which constitute 80% (201) of the participants in the study area. This could be attributed to the facts that married people especially the male take more responsibilities than any other. The Married male has wives and children to take care of unlike the unmarried male who only has them to care. The study revealed that 55% (137) of the participants have no formal education while 25% (63) attended one or two tertiary educations. This is consistent with the research done on the ethnobotanical survey of medicinal plants by (El-Mehdi et al., 2021). He stated that utilization of medicinal plants is more abundant among illiterate people. This also agrees with the local assumption in Northern part of Nigeria that only illiterate people use ethno medicine for their health care. The major occupation among the participants is farming 51% (127). This could be because farmers are more conversant with these plants than any other occupants. This was followed by the house wives here is a clear indication that women contribute a lot in identifying aromatic plants because they use the plants more than any other gender table 1 below.

Table 1: Demographics distribution of participants in the study area

Factor	Frequency	Percentage					
Gender							
Male	169	67.6					
Female	81	32.4					
	Age						
20-30	64	25.6					
31-40	83	33.2					
41-50	72	28.8					
51-60	19	7.6					
61-70	11	4.4					
71-80	01	0.4					
N	Marital Status						
Single	48	18.8					
Married	202	80.4					
Lev	vel of education						
Secondary	34	13.6					
Primary	16	6.4					
Tertiary	63	25.2					
No formal Education	137	54.8					
Occupation of the participants							

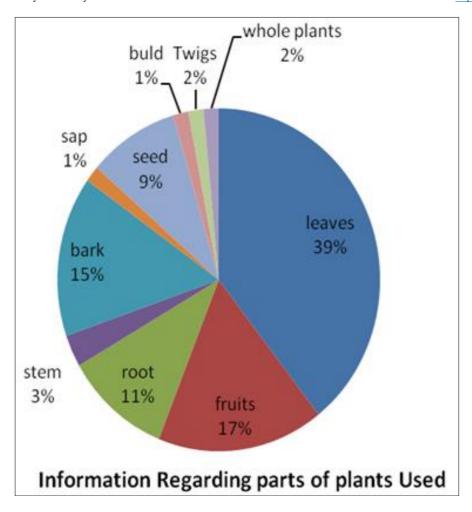
Herbalist	19	7.2
Civil Servant	34	13.2
Farmer	128	50.8
House Wife	69	26.8

Table 2: Distribution of aromatic and medicinal plants by tree, species and family in bade LGA.

Family	Species	Frequencies
Amaranthaceae	1	1
Annonaceae	1	2
Apiaceae	2	2
Apocynaceae	1	4
Arecaceace	2	20
Asteraceae	2	2
Balanophoraceae	1	1
Burseraceae	1	1
Caricaceae	1	1
Combretaceace	2	3
Cucurbitaceae	3	16
Cyperaceae	1	1
Ebenaceae	1	26
Euphorbiaceae	1	1
Fabaceae	8	207
Lamiaceae	3	23
Lauraceae	1	1
Leguminosae	2	2
Liliaceae	2	12
Meliaceae	4	81
Rubiaceae	1	1
Moraceae	1	1
Moringaceace	1	8
Musaceae	1	17
Myristicaceae	1	2
Myrtaceae	2	107
Oleaceae	1	1
Orobanchaceae	1	6
Papayaceae	1	4
Pedaliaceae	1	8
Piperaceae	1	17
Poacceae	1	8
Pontederiaceae	1	9
Ranunculaceae	1	1
Rhamnaceae	1	54
Rutaceae	2	10
Solanaceae	3	12
Zingiberaceae	1	28
Zygaphyllaceae	1	27
Total	63	728

Through the survey, a total of sixty-three (63) species from thirty-nine (39) species was recorded from the survey. Within the family, the greatest number of species eight (8) was discovered. fabaceae. However this was followed by

meliaceae, Cucurbitaceae, and Lamiaceae with three (3) species each while Apiaceae, Arecaceae, Asteraceae, Combretaceace, Myrtaceae, Leguminosae and Liliacceae had two species each. As seen in table 2 above.


Dispersion of medicinal plants used by people of bade L.G.A Yobe State

Botanical Name	Family	Local Title	Part of plants used	Disease Cures	Mode of Application
Balanites aegyptiaca Del.	Zygaphyllaceae	Aduwa	Leaves/Fruits/Seed	Stomach ache and pile	Maceration Oral
Allium cepa	Amaryllidaceae	Albasa	Bulb, leaves	Rashes, GIT Disorders, digestion aid	Oral solution and eating raw
Boswellia dalzielii	Burseraceae	Arrarabi	Bark	Pile	Oral solution
Musa sapientum	Musaceae	Ayaba	Leaves/Fruits/Sap	Stomach upset, diarrhea and dysentery and fever	Oral solution and eating the fruits directly
Ficus syscomorus	Moraceae	Baure	Bark	Liver disease and pain killer	Oral solution
Anacardium occidentale	Anacardiaceae	Cashew	Leaves and Fruits	Use to reduce fever	Oral solution
Sclerocarya birrea (A. Rich.) Hochst.	Anacardiaceae	Daniya	Leaves	Antibiotic	Oral solution
Azadaricta indica	Meliaceae	Darbejiya	Leaves	Fever	Oral solution
Vitex doniana	Lamiaceae	Dinya	Stem	Rheumatic pains, diarrhoea, vomiting, dysentery, and inflammatory illnesses	Oral solution

		1		T	
Acacia nilotica	Fabaceae	Gabaruwa	Root/Bark/Leaves	Coughing, fever, malaria, headaches, chest ailments, weakness, and pneumonia	Leaves extract/ oral solution
Ficus platypoda	Meliaceae	Gamji	Fruit, Root, and Leaves	Gastrointestinal, respiratory, and cardiovascular disorders	Oral solution
Mitragyna inermis	Rubiaceae	Giyayya	Bark	Rhomatism, Fever, Headache and leprosy	Oral solution
Hyphaene thebaica	Arecaceae	Goruba	Fruits	Preventing cancer, weight control, and lowering cholesterols, liver diseases, and diabetes	Oral solution
Psidium guajava L.	Myrtaceae	Guava	Leaves	Gastrointestinal diseases	Oral solution
Carica papaya	Papayaceae	Gwanda	Leaves	Gastrointestinal tract disorders, intestinal parasite infections, and as a sedative and diuretic	Oral solution
Ocimum gratissimum	Lamiaceace	Daidoya	Leaves	Cold medicinal	Ocimum gratissimum
Euculaptus cameldulensis	Myrtaceae	Kafi amarya kanshi	Leaves	cough remedy and expectorant,	Oral solution
Diospyros mespiliformis	Ebenaceae	Kanya	Leaves and fruits	fevers, pneumonia, syphilis, leprosy and yaws	Leaves infusion
Piliostigma recticulatum (DC) Hochst	Leguminosae	Kargo	Roots	Gonorrhoea, hookworm, ascites and dropsy.	Infusions
Adansonia digitata	Bombacaseae	Kuka	Leaves, bark and seeds	malaria, tuberculosis, fever, microbial infections, diarrhoea, anaemia, dysentery, toothache	Oral solution Powder
Citrus sinensis			constipation, cramps, tuberculosis, cough, cold, obesity, menstrual disorder, angina, hypertension, anxiety, depression and stress	Leaves infusions and oral solution	
Swietenia macrophylla	Meliaceae	Madachi	Leaves/bark, seed	natural antioxidant, anti-inflammatory, antibacterial	Oral solution
Pterocarpus erinaceus	Fabaceae	Madobiya	Bark	Digestive and nervous disorders	Decoction, calcination (oral, massage, scarification)
Ziziphus mauritiana	Rhamnaceae	Magarya	Root, Bark, and Seeds	heartburn biliousness, biliousness, astringency, scabies, diuretic, and nausea	Oral decoction and External application on a wound
mangiefera indica	Anacardiaceae	Mangoro	Leaves/bark	antibacterial, anti fungal, anthelmintic, and anti parasitic	Oral solution
Anagessius leiocarpus	Combretaceace	Marke	Leaves	Fever, cough, antibacterial, anti fungal, anthelmintic.	Decoction and taken orally
Bauhinia rufescens Lam	Leguminosae	Matsatsagi	Leaves/bark/fruits	antidote to snake poison	Oral solution
Guiera senegalensis	Combretaceace	Sabara	Leaves	Treat a variety of microbial infections.	Oral decoction
Sida ovate Forssk.	Malvaceae	Sanya	Leaves/roots	Diarrhea	Oral solution
Vernonia amygdalina Delile	Asteraceae	Shuwaka	Leaves	Anti-malarial	Oral solution
Allium sativum L.	Fabaceae	Tafarnuwa	Fruits	Antibiotic and cold	Cook in food and external application of the decoction to the affected area
Tamarindus indica L.	Fabaceae	Tsamiya	leaves/seed	Diarrhea, constipation, fever, and malaria.	Oral solution
Calotropis procera	Apocynaceae	Tumfafiya	Leaves and fruits	Burn injuries, cancer and body pain	Externally
Moringa oleifera Lam	Moringaceae	Zogale	Leaves/root/seeds/ and stem	Blood pressure, antioxidants	Oral solution and direct administration of seeds
Vernonia strumambiguum (Kotschy and Peyr.) H.Rob.	Asteraceae	Tattaba	Twigs	diarrhoea, fungal and bacterial infections, and inflammation	Oral solution
Solanum incanum	Solanaceae	Gauta Garden egg	fruits/leaves/roots	Antibiotic	Externally and orally

Information on the parts of plants used such as the leaves, Roots, bark, bold, seed, sap, twigs, fruits, stem and whole plants shows that leaves which was widely used has the highest frequency in the identified medicinal and aromatic plants with thirteen nine percent (39%) and was followed by fruits (17%) bark (15%), roots (11%), seed (9%), stem (3%) and others such as the twigs (2%), buld (1%) sap (1%) and the whole plants (2%). The same results were recorded in ethnobotanical study conducted by (Mahishi *et al.*, 2005) [13]

and slam, Md. K, *et al.*, (2013) ^[14]. In their studies, they indicated that several other ethnobotanical survey reports have also documented the widespread use of leaves in ethnomedicinal practise. This is due to the fact that leaves, the portion of the plant with the highest metabolic activity, are the primary site of photosynthesis. As a result, several biogenetic processes occur to generate secondary metabolites that add to its therapeutic value.

Disrtubution of aromatic plants used by people of bade L.G.A Yobe State

	Botanical Name	Family	Local Name	Part of plants Used	Use of plants
1	Balanites aegyptiaca	Zygophyllaceae	Aduwa	Fruits	Spices
2	Allium cepa	Myrtaceae	Albasa	Leaves	Spices
3	Allium fistulosum	Amaryllidaeae	Albasa mai lawashi	Leaves and fruits	Spices
4	Aerva lanata	Amaranthaceae	Alhaji	Whole plants	Flavoring
5	Capsicum annuum	Solanaceae	Attaruhu	Fruits	Spices
6	Musa X paradisiaca	Musaceae	Ayaba	Leaves	Flavoring and fragrance
7	Corchorus oilitorius	Malvaceae	Ayoyo	Leaves	Specie/Vegetable
8	Eichhornia crassipes	Pontederiaceae	Bado	Leaves	Fragrance
9	Acacia nilotica (L.)Delile	Fabaceae	Bagaruwa	Fruist	Fragrance
10	Anacardium occidentale L.	Anacardiaceac	Cashew nut	Leaves	Flavoring and Fragrance
11	Zingiber officinale	Zingiberaceae	Citta	Root	Spices
12	Murraya koenigii	Rutaceae	Curry	Leaves	Flavoring
13	Thymus vulgaris	Lamiaceae	Curry leaf	Leaves	Flavoring
14	Raphanus Sativus	Brassicaceae	Daikon	Root	Flavoring
15	Chrozophora senegalensis	Euphorbiaceae	Damaigi	Root	Astringent
16	Parkia biglobosa	Fabaceae	Daurawa	Leaves	Spices
18	Vitex doniana	Lamiaceace	Dinya	Fruits	Flavoring and Fragrance
19	Ocimum gratissimum	Lamiaceace	Daidoya	leaves	cold Medicinal
20	Parkia biglobosa	Fabaceae	Dorawa	Leaves	Flavoring and Fragrance
21	Eucalyptus cameldolensis	Mytaceae	Eucalyptus	Leaves	Fragrance
22	Lannea acida A. Rich.	Anacardiaceae	Faru	fruits	Flavoring
23	Allium sativum	Amaryllidaeae	Garlic	Fruits	Spices
24	Solanum incanum	Solanaceae	Gauta	Fruits	Spices
25	Cinnamomum verum J.Presl	Lauraceae	Girfa	fruits and leaves	Spices
26	Hyphaene thebaica	Arecaceace	Goruba	Fruits	Beverage
27	Cidium guajava	Myrtaceae	Guava	Fruits	Flavoring and Fragrance
28	Cucumis sativa	Cucurbitaceae	Gurji	Fruits	Aroma and Flavor
29	Bombox costatum	Fabaceae	Gurjiya	Fruits	Spices
30	Carica papaya L.	Caricaceae	Gwanda	Fruits	Flavoring
31	Annona senegalensis	Annonaceae	Gwanda jeji	Leaves	Flavoring and Fragrance
32	Arachis hypogea	Fabaceae	Gyada	Fruits	Spices
33	Monodora myristica	Leguminose	Gyadan miya	Fruits	Spices

34	Nigella sativa	Ranunculaceae	Habba	Fruits	Fruits
35	Eucalyptus cameldolensis	Myrtaceae	Kafi amarya kanshi	leaves	Flavoring and Fragrance
36	Cyperus articulates L	Cyperaceae	Kajiji	Roots	Spicy Fragrance
37	Parkia biglobosa	Fabaceae	Kalwa	Fruits	Spices
38	Syzygium aromaticum	Myrtaceae	Kaninfari	Fruits	Flavoring and spices
39	Citrullus lanatus	Cucurbitaceae	Kankana	Leaves	Flavoring and Fragrance
40	Diospyros mespliformis	Ebenaceae	Kanya	Fruits	Repellants
41	Xylopia aethiopica	Annonaceae	Kimba	Fruits	Spices
42	Striga hermothica	Orobanchaceae	Kuduji	Leaves	Repellants
43	Adansonia digitata	Malvaceae	Kuka	Fruits	Spices
44	Thonningia sanguinea Vahl.	Balanophoraceae	Kulla	Fruits and Leaves	Rhizome
45	Coriandrum sativum	Apiaceae	Kusbara	Seed	Culinary spice
46	Corchorus olitorius	Malvaceae	Lalo	Leaves	Species
47	Cymbopogon citratus	Poacceae	lemon grass	Leaves	Beverage
49	Citrus sinesis	Rutaceae	Lemon tsami	Fruits	Flavoring and Fragrance
50	Lillium	Liliaccae	Lily	Leaves	Beverage
51	Ziziphus mauritiana	Rhamnaceae	Magarya	Fruits	Flavoring and fragrance
52	Cassia occidentalis L.	Fabaceae	Majamfari	Roots	Flavoring
53	Mangifera indica	Amaryllidaeae	Mangoro	Fruits	Flavoring and Fragrance
54	Lens culinaris	Fabaceae	Masoro	Seed	Culinary
55	Myristica fragans	Myristicaceae	Masoro	Fruits	Spices
56	Mentha piperita L.	Lamiaceae	Na a naa	Leaves	Flavoring and Fragrance
57	Parkia biglobosa	Fabaceae	Parkia biglobosa	Fruits	Spices
58	Sesamum alatum Thonn.	Pedaliaceae	Ridi Barewa	Fruits	Flavoring and Fragrance
59	Cucumis melo L	Cucurbitaceae	Sweet milon	Fruits	Flavoring
60	Allium sativum	Amaryllidaeae	Tafarnuwa	Fruits	Spices
61	Artemesia annua	Arteraceae	Tagargade	Leaves	Spices
62	Piper nigrum	Piperaceae	Tattasai	Fruits	Spices
63	Detarium microcarpum Guill. And Perr.	Fabaceae	Taura	Fruits	Spices
64	Thymus vulgaris	Lamiaceace	Thyme	Leaves	Spices
65	Tamarindus indica	Fabaceae	Tsamiya	Fruits	Spices
66	Tamarindus indica	Poaceae	Tsamiya	Fruits	Flavoring and Fragrance
67	Lycopersicon lycopersicum	Solanaceae	Tumatur	Fruits	Spices
68	Eucalyptus camaldulensis Dehnh	Myrtaceae	Turare	Leaves	Fragrance
69	Hibiscus sabdariffa	Malvaceae	Yakuwa	Leaves	Aroma and fragrance
70	Pimpinella anisum	Apiaceae	Yansun	Seed	Flavor and aroma
71	Olea europaea	Oleaceae	Zaitun	Fruits	Fragrance
72	Hibiscus sabdariffa	Malvaceae	Zobo	Leaves	Aroma and fragrance
73	Moringa oleifera	Moringaceace	Zogale	Leaves	Spices

Conclusion

The study indicated that most of the commutes used for this study are in remote areas that are far away from urban areas and have no access to means of transportation hence limited access to healthcare facilities. Their daily medical treatment heavily depends on ethnomedicinal practice. Although in this centaury, the knowledge of ethnomedicinal is in increasing because of its natural component and scientifically to have no side effects, unlike the conventional medicinal.

The present survey gives an overview of aromatic and medicinal plants used by bade community in gashua yobe state. Different aromatic and medicinal plants were identified with their parts used and their mode of application for flavouring and treatment of certain ailments. The present survey was able to identified sixty-three (63) species from thirty-nine (39) species with the ailment treated by every identified plant.

While this survey will help in preserving aromatic and medicinal plants, it is pertinent to note that taking a stronger step for propagating these species especially those that vulnerable or even endangered. It is important that the policy makers should as a matter urgent creates more awareness on the need to preserve these species. Government also encouraging the validation and patronization of ethno medicinal to complement inadequate access to modern medical faculties.

Acknowledgement

The authors wish to thank the Vice Chancellor and the administration of the Federal University of Gashua, Nigeria, for hosting. Special appreciation goes to my project student and the entire people of Gashua for sharing their traditional knowledge, which facilitates the research. Special gratitude is due to the Tertiary Education Trust Fund Nigeria (TETFund) for sponsoring the whole work. We would also like to specially acknowledge the Department of Forestry and Wildlife Management at the Federal University of Gashua.

References

- El-Assri ELM, Barnossi AEI, Chebaibi M, Hmamou A, Hicham El Asmi, Bouia A, Eloutassi N. Ethnobotanical survey of medicinal plants in Taounate, Pre-Rif of Morocco. J Plants People Appl Res; c2021. http://dx.doi.org/10.32859/era.22.36.1-23.
- 2. Fakeye TO, Adisa R, Musa IE. Attitude and use of herbal medicines among pregnant women in Nigeria. BMC Complement Altern Med. 2009;9:53.
- 3. Mudansiru A, Zaharaddeen U, Haidara AM, Ibrahim S. Ethnomedicinal survey of some plants used for the treatment of various ailments in Gumel Town, Jigawa State, Nigeria. J Biol Agric Healthc. 2016;6(7).
- 4. Getahun A. Some common medicinal and poisonous plants used in Ethiopian folk medicine. Addis Ababa: Addis Ababa University; c1976.

- Cotton CM. Ethnobotany: Principles and Application. New York: John Wiley & Sons; c1996.
- Abebe D, Ayehu A. Medicinal plants and enigmatic health practices of Northern Ethiopia. Addis Ababa: BSPE; c1993.
- 7. Asfaw Z, Tadesse M. Prospects for sustainable use and development of wild food plants in Ethiopia. Econ Bot. 2001;55(1):47-62.
- Della A, Hadjichambi PD, Hadjichambis AC. An ethnobotanical survey of wild edible plants of Paphos and Larnaca countryside of Cyprus. J Ethnobiol Ethnomed.
- 9. Food and Agriculture Organization (FAO). Building on Gender, Agrobiodiversity and LK: A Training Manual. Rome: Publishing Management Service; c2005.
- 10. Kia JF, Lorigooini Z, Khoei AH. Medicinal plants: past history and future perspective. J Herb Med Pharmacol. 2018;7(1):1-7.
- 11. Tariq S, Wani S, Rasool V, et al. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog. 2019;134:103580. PMID: 31195112. http://dx.doi.org/10.1016/j.micpath.2019.103580
- 12. Giannenas I, Sidiropoulou E, Bonos E, Christaki E, Paneri FP. The history of herbs, medicinal and aromatic plants, and their extracts: past, current situation and future perspectives. In: Florou-Paneri P, Christaki E, Giannenas I, editors. Feed additives. London: Academic Press; c2020. p. 1-18.
 - http://dx.doi.org/10.1016/B978-0-12-814700-9.00001-7.
- 13. Mahishi P, Srinivasa BH, Shivanna MB. Medicinal plant wealth of local communities in some villages in Shimoga District of Karnataka, India. J Ethnopharmacol. 2005;98:307-312.
- 14. Islam MK, Saha S, Mahmud I, Mohamad K, Awang K, Uddin SJ, et al. An ethnobotanical study of medicinal plants used by tribal and native people of Madhupur forest area, Bangladesh. J Ethnopharmacol; c2013. http://dx.doi.org/10.1016/j.jep.2013.11.056.