

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 Impact Factor (RJIF): 6.35 www.phytojournal.com JPP 2025; 14(5): 25-27

JPP 2025; 14(5): 25-2' Received: 14-06-2025 Accepted: 19-07-2025

Dr. Amol Krushna Pable

PG Scholar, Department of Dravyagun, CSMSS Ayurveda Mahavidyalaya and Rugnalaya, Kanchanwadi,Chhatrapati Sambhajinagar, Maharashtra, India

Dr. Aparna Ghotankar

Guide & HOD CSMSS Ayurveda Mahavidyalaya and Rugnalaya, Kanchanwadi,Chhatrapati Sambhajinagar, Maharashtra, India

Comparative Phytochemical and Physicochemical Study of *Chitrak* (*Plumbago zeylanica* Linn.) as Abhāva-pratinidhi Dravya for Bhallātaka (*Semecarpus anacardium* Linn.)

Amol Krushna Pable and Aparna Ghotankar

DOI: https://doi.org/10.22271/phyto.2025.v14.i5a.15547

Abstract

In Ayurvedic pharmaceutics, the principle of *Abhāva-pratinidhi dravya* (substitute drug in absence of the original) plays a crucial role in ensuring continuous therapeutic availability without compromising efficacy. *Bhallātaka* (*Semecarpus anacardium Linn.*) is widely used in classical formulations for its *Kaphahara*, *Vātahara*, *Lekhana*, and *Deepana* properties. However, due to issues of scarcity, seasonal availability, allergenic potential, and strict processing requirements, substitution with a pharmacologically and phytochemically similar drug is justified. *Chitrak* (*Plumbago zeylanica Linn.*) has been mentioned in Ayurvedic classics as a possible substitute due to its *Deepana*, *Pachana*, and *Lekhana* actions. This article presents a comparative analysis of the phytochemical profile and physicochemical parameters of both drugs to establish *Chitrak* as a potential *Abhāva-pratinidhi dravya* for *Bhallātaka*.

Keywords: Abhāva-pratinidhi, bhallātaka, chitrak, plumbagin, anacardic acids, comparative pharmacognosy, Ayurvedic substitution

Introduction

The Ayurvedic pharmacopeia encourages rational substitution when the original drug is unavailable, provided the substitute matches in *Rasa*, *Guna*, *Veerya*, *Vipaka*, and *Prabhava* as well as therapeutic effect ^[1,2].

Bhallātaka (Semecarpus anacardium Linn.)

- Family: Anacardiaceae
- Used for *Amavata*, *Arsha*, *Kushtha*, *Grahani* [3, 4].
- Contains bhilawanols, anacardic acids, semecarpol [5, 6].
- Requires *Shodhana* due to strong vesicant action.

Chitrak (Plumbago zeylanica Linn.)

- Family: Plumbaginaceae
- Potent Agnideepaka, Lekhana, Medohara [7, 8].
- Contains plumbagin, flavonoids, tannins, phenolics [9, 10].
- More widely available and less allergenic.

Materials and Methods

1. Collection & Authentication

• Both drugs collected from authenticated suppliers; identity confirmed by pharmacognosy experts [11].

2. Physicochemical Analysis (API standards)

• Parameters: Moisture content, Ash values, pH, Alcohol/water soluble extractives [12].

3. Phytochemical Screening

• Standard qualitative chemical tests [13, 14].

4. Chromatographic Analysis

TLC & HPTLC for plumbagin (Chitrak) and anacardic acids (Bhallatak) [15].

Corresponding Author: Dr. Amol Krushna Pable

PG Scholar, Department of Dravyagun, CSMSS Ayurveda Mahavidyalaya and Rugnalaya, Kanchanwadi,Chhatrapati Sambhajinagar, Maharashtra, India

Results

A. Physicochemical Parameters

Parameter	Bhallataka	Chitrak
Loss on drying (%)	~5.2	~6.1
Total ash (%)	~3.4	~4.2
Acid-insoluble ash (%)	~0.6	~0.8
Water-soluble ash (%)	~1.2	~1.5
Alcohol-soluble extractive (%)	~23.5	~21.8
Water-soluble extractive (%)	~18.7	~19.2
pH (10% aqueous)	~5.6	~5.8

B. Phytochemical Profile

Compound Class	Bhallataka	Chitrak
Alkaloids	+	+
Flavonoids	+	+
Tannins	+	+
Saponins	+	+
Phenolics	++	++
Naphthoquinones	_	++
Anacardic acids	++	_

C. Chromatographic Analysis

- Bhallataka: Phenolics & anacardic acids brown spots under UV after derivatization.
- Chitrak: Plumbagin orange fluorescence under UV.

Discussion

Physicochemical parameters are closely comparable, indicating similar solubility and mineral profiles. Both share common phytochemical classes, contributing to overlapping pharmacodynamics. From an Ayurvedic viewpoint, they match in:

Rasa: Katu, TiktaGuna: Laghu, TikshnaVeerva: Ushna

• Vipaka: Katu Both are Kapha-Vata Shamaka and Medohara, supporting substitution. However, Chitrak lacks bhilawanols, making it safer and eliminating the need for elaborate purification.

Phytochemical Similarities and Differences

Shared Constituents: Both contain flavonoids, tannins, phenolic compounds, and saponins — chemical classes known for anti-inflammatory, antioxidant, and antimicrobial effects.

Unique Markers

- Bhallātaka: Anacardic acids, cardol, bhilawanols —
 potent phenolic lipids responsible for strong irritant
 action, anti-microbial, and immunomodulatory effects.
- *Chitrak*: Plumbagin a naphthoquinone with proven antimicrobial, anti-inflammatory, anti-obesity, and cytotoxic effects.

Although their signature phytochemicals differ, both possess lipophilic phenolic compounds with membrane-modifying and enzyme-modulating properties, leading to parallel pharmacological actions.

Physicochemical Correlation

The study's ash values, extractive values, and pH of both drugs were in close range:

- Ash values: Comparable mineral content suggests similarity in inorganic composition.
- Extractive values: Both showed similar alcohol- and water-soluble extractives, indicating comparable amounts of polar and non-polar bioactive compounds.
- **pH:** Both slightly acidic, reflecting organic acid content. This closeness suggests that in formulation, both may contribute similar types of chemical constituents, ensuring therapeutic consistency.

Therapeutic Action Correlation

Modern research validates many classical claims:

Digestive stimulation:

- *Bhallātaka*: Anacardic acids increase digestive secretions and improve lipid metabolism.
- Chitrak: Plumbagin stimulates gastric juice and bile secretion.

Anti-obesity & hypolipidemic:

Both drugs enhance lipid metabolism, reduce fat deposition (Medohara).

Skin disease management (*Kusthaghna*):

Phenolics in *Bhallātaka* and plumbagin in *Chitrak* inhibit microbial growth and modulate inflammatory response.

Immunomodulatory effects:

- Bhallātaka proven to enhance cellular immunity.
- Chitrak shows macrophage activation and lymphocyte proliferation in animal studies.

Safety & Practicality Bhallātaka

- Strong irritant; causes blistering and allergic dermatitis due to bhilawanols.
- Requires elaborate *Shodhana* (purification) before use, which is labor-intensive and costly.

Chitrak

- Less allergenic; root powder can be used after mild processing (e.g., soaking in buttermilk) without extensive detoxification.
- Widely available in most seasons, making it practical for commercial formulations.

Thus, from a safety and supply chain perspective, *Chitrak* offers a more feasible choice when *Bhallātaka* is unavailable.

Limitations and Clinical Need

While laboratory analysis and literature review show strong grounds for substitution, clinical trials are essential to:

- Establish therapeutic equivalence in specific disorders (e.g., Amavata, Kustha, Arsha).
- Determine optimal dosage equivalence.
- Evaluate long-term safety when used as a replacement.

Conclusion

Chitrak shares substantial similarities with Bhallātaka in phytochemistry, physicochemistry, and Ayurvedic properties. It can be recommended as an Abhāva-pratinidhi dravya in cases where Bhallātaka is unavailable or contraindicated, though clinical validation is warranted

References

- Sharma PV. Dravyaguna Vijnana. Vol II. 2nd ed. Varanasi: Chaukhambha Bharati Academy; 2005. p. 237-240
- 2. Ayurvedic Formulary of India. Part I. 2nd ed. New Delhi: Government of India, Ministry of Health & Family Welfare, Department of ISM&H; 2003.
- Bhavamishra. Bhavaprakasha Nighantu (Guduchyadi Varga). 1st ed. Varanasi: Chaukhambha Bharati Academy; 2010. p. 116-118.
- Sharma PV, editor. Kaiyadeva Nighantu (Oushadhi Varga). Varanasi: Chaukhambha Orientalia; 1979. p. 237.
- Chopra RN, Nayar SL, Chopra IC. Glossary of Indian Medicinal Plants. New Delhi: CSIR; 2002. p. 229.
- Kirtikar KR, Basu BD. Indian Medicinal Plants. Vol I. 2nd ed. Dehradun: International Book Distributors; 1998. p. 667-670.
- 7. Pandey GS. Dravyaguna Vijnana. Vol II. Varanasi: Chaukhambha Krishnadas Academy; 2012. p. 243-246.
- 8. Raj Nighantu with Hindi commentary by Indradev Tripathi. 1st ed. Varanasi: Chaukhambha Krishnadas Academy; 2010. p. 189.
- Gupta SS, Verma SC, Garg NK. Chemical constituents of Plumbago zeylanica and their pharmacological activities. Indian Journal of Medical Research. 1972;60(2):260-264.
- 10. Akinmoladun FO, Komolafe TR, Farombi EO. Plumbagin and its diverse pharmacological activities. Phytotherapy Research. 2020;34(1):8-25.
- 11. Trease GE, Evans WC. Pharmacognosy. 16th ed. London: Elsevier; 2009. p. 567-578.
- 12. Ayurvedic Pharmacopoeia of India. Part I. Vol I. New Delhi: Government of India; 2001. p. 5-6.
- 13. Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. 54th ed. Pune: Nirali Prakashan; 2019. p. 593-595.
- 14. Harborne JB. Phytochemical Methods. 3rd ed. London: Chapman & Hall; 1998. p. 17-21.
- 15. Wagner H, Bladt S. Plant Drug Analysis: A Thin Layer Chromatography Atlas. 2nd ed. Berlin: Springer; 1996. p. 43-47.