

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 Impact Factor (RJIF): 6.35 www.phytojournal.com JPP 2025; 14(5): 571-573 Received: 02-08-2025 Accepted: 07-09-2025

Samina K Tadavi

Department of Chemistry, C. J. Patel College, Tirora, Maharashtra, India

Shvam W Dafare

Department of Chemistry, J.M. Patel Arts, Commerce and Science College, Bhandara, Maharashtra, India

Jagannath V Gadpayale

Department of Botany, S. N. Mor College of Arts & Commerce & Smt. G. D. Saraf Science College, Tumsar, Maharashtra, India

Biochemical and antifungal screening of *Ficus johannis* Sub sp. *afghanistanica*

Samina K Tadavi, Shyam W Dafare and Jagannath V Gadpayale

DOI: https://www.doi.org/10.22271/phyto.2025.v14.i5g.15621

Abstract

The present research paper deals with reports on Biochemical and Antifungal screening of the crude extract of leaves of *Ficus johannis Boiss*. Sub sp. *afghanistanica* (Warb.) Browicz. This paper also gives the information on preliminary phytochemical presents in the studied specimen.

Keywords: Ficus johannis, preliminary, phytochemicals, antifungal activity

Introduction

Ficus johannis Boiss. Sub sp. afghanistanica (Warb.) Browicz, is the plant specimen of family Moraceae. Number of Ficus plant species used in traditional medicines to cure diseases as Ficus amplissima (Karuppusamy et al. 2013) [5], F. racemosa, F. glomerata, F. glumosa, F. carica, F. religiosa and F. benghalensis (Haq Nawaz et al. 2019) [4] are known from ancient times as herbal medicines to treat various ailments in human beings (Deepa, et al. 2018) [3] and F. heterophylla (Dhakite et al. 2020) [2] also which ensure that these plant specimens shows several biological activities as anticancer, hepatoprotective, hypoglycaemic, antitumor, antioxidant, anthelmintic, analgesic, antimicrobial activity, anti-parasitic, hypolipidemic, anti inflammatory, antibacterial, anti-ulcerogenic, mucoprotective, gastroprotective, antifungal, antiviral, antimalarial, and antiparasitic activities (Abdel-Hameed E-SS et al. 2014, Konyaluoglu et al. 2005 and Haq Nawaz et al. 2019) [1, 6, 4].

The preliminary phytochemical studies of *Ficus johannis* Boiss. Sub sp. *afghanistanica* (Warb.) Browicz, done by Tadavi *et. al.* (2023)^[7] but there is no information on the antifungal screening of this specimen and hence this is done and presented in this present communication.

Materials and Methods

Sample Collection: The leaves of *Ficus johannis* Boiss. Sub sp. *afghanistanica* (Warb.) Browicz., were collected in a separate sterile polythene bags from the Tumsar town (Bhandara district Maharashtra state, India) were examined and identified with the help of regional floras and Taxonomic experts.

Preparation of Solvent Extracts: The plant material was stored in desiccator's setup and used for extraction, soxhlet apparatus using various solvents according to their polarity as a methanol, ethanol and chloroform extract.

Phytochemical Evaluation: The extracts were subjected to find out the preliminary phytoconstituents present in it *viz*. carbohydrates, phenolic compounds and tannins mostly.

Antimicrobial Activity Evaluation Techniques: The following conditions used for the screening of antimicrobial activity:

- 1. There should be intimate contact between the test organisms and substance to be evaluated.
- 2. Required conditions should be provided for the growth of microorganisms.
- 3. Conditions should be same through the study.
- 4. Aseptic / sterile environment should be maintained.

Various methods have been used from time to time by several workers to evaluate the antimicrobial activity. The evaluation can be done by Broth Dilution Method to evaluate the antibacterial activity.

Corresponding Author: Jagannath V Gadpayale

Department of Botany, S. N. Mor College of Arts & Commerce & Smt. G. D. Saraf Science College, Tumsar, Maharashtra, India It is one of the non automated *in vitro* bacterial susceptibility tests. This classic method yields a quantitative result for the amount of antimicrobial agents that is needed to inhibit growth of specific microorganisms. It is carried out in tubes with Macro dilution Method in Tubes and Micro dilution format using plastic trays. Following common standard strains were used for screening of antibacterial and antifungal activities: The strains were procured from Institute of Microbial Technology, Chandigarh.

E. coli	P. aeruginosa	S. aureus	S. pyogenus
MTCC 443	MTCC 1688	MTCC 96	MTCC 442

C. albicans	A. niger	A. clavatus
MTCC 227	MTCC 282	MTCC 1323

Methods Used for Primary and Secondary Screening

Each synthesized drug was diluted obtaining 2000 microgram /ml concentration, as a stock solution.

Primary screen: In primary screening 1000 micro/ml, 500 micro/ml, and 250 micro/ml concentrations of the synthesized drugs were taken. The active synthesized drugs found in this primary screening were further tested in a second set of dilution against all microorganisms.

Secondary screen: The drugs found active in primary screening were similarly diluted to obtain 200 micro/ml 100 micro/ml, 50 micro/ml, 25 micro/ml, 12.5 micro/ml, 6.250 micro/ml, and concentrations.

Reading Result

The highest dilution showing at least 99% inhibition zone is taken as MIC. The result of this is much affected by the size of the inoculums. The test mixture should contain 10^8 organism/ ml

Antimicrobial Activity Result

Table 1: Minimal Bactericidal Concentration (µg/mL)

Drug	E. coli	P. aeruginosa	S. aureus	S. pyogenus
Species	MTCC 443	MTCC 1688	MTCC 96	MTCC 442
Dried powder of plant sample	100	62.5	125	50
Gentamycin	0.05	1	0.25	0.5
Ampicillin	100	100	250	100
Chloramphenicol	50	50	50	50
Ciprofloxacin	25	25	50	50
Norfloxacin	10	10	10	10

Table 2: Minimal Fungicidal Concentration (µg/mL)

Drug	C. albicans	A. niger	A. clavatus
Species	MTCC 227	MTCC 282	MTCC 1323
Dried powder of plant sample	250	500	500
Nystatin	100	100	100
Greseofulvin	500	100	100

^{*}Bold values indicate significant activities as compared to standards

Results and Discussion

The powder sample of leaves of *Ficus johannis Subsp. afghanistanica* were evaluated for their in-vitro antibacterial activity against *S. aureus* (MTCC 96), *S. pyogenus* (MTCC 442), *E. coli* (MTCC 443), *P. aeruginosa* (MTCC 1688)

strains, and *in vitro* antifungal activity against *C. albicans* (MTCC 227), *A. niger* (MTCC 282) and *A. clavatus* (MTCC 1323) strains by using micro broth dilution method. The standard strains used for screening of antibacterial and antifungal activities were procured from Microbial Type Culture Collection (MTCC), Institute of Microbial Technology, Chandigarh, Mueller-Hinton broth was used as the nutrient medium to grow and dilute the drug suspension for the test bacteria. The minimum inhibitory concentration (MIC) measurement was determined as $[(Ac-At)/Ac] \times 100$ Where Ac is an average of six replicates of light absorption values of the negative controls, and it was an average of six replicates of light absorption values of the tested compound. The MIC (μ g/mL) values for and standard antibiotics Gentamycin, Ampicillin, Chloramphenicol, Ciprofloxacin,

Norfloxacin, and antifungal agents Nystatin and Griseofulvin

are recorded in Table 1 &2.

The results mentioned in Table 1 Minimal Bactericidal Concentration indicate that the equal antibacterial activity against E. Coli, strain as compared with the positive controls Ampicillin, and showed lower activity towards Chloramphenicol, Ciprofloxacin, Norfloxacin. antibacterial activity of P. aeruginosa strain showed excellent activity as compared with the standards Ampicillin. The antibacterial activity of S. aureus strain showed very good activity as compared with the standards Ampicillin. The antibacterial activity of S. pyogenus strain showed excellent activity as compared with the standards Ampicillin and showed equal activity towards the Chloramphenicol & Ciprofloxacin.

The results mentioned in Table 2 Minimal fungal Concentration indicate very good antifungal activity against *C. Albican* strain as compared with the standard drug Griseofulvin and lower activity against *A. Niger & A. Clavatus* as compared with the standard drugs Nystatin & Griseofulvin.

Conclusion

The dried powder sample of *Ficus johannis Subsp. afghanistanica* were evaluated for their in-vitro antibacterial activity against *S. aureus* (MTCC 96), *S. pyogenus* (MTCC 442), *E. coli* (MTCC 443), *P. aeruginosa* (MTCC 1688) strains, and in-vitro antifungal activity against *C. albicans* (MTCC 227), *A. niger* (MTCC 282) and *A. clavatus* (MTCC 1323) strains by using micro broth dilution method.

The antibacterial activity of *P. aeruginosa*, *S. Aureus & S. pyogenus* strain showed excellent activity as compared with the standards Ampicillin. The antifungal activity against *C. Albican* strain shows good as compared with the standard drug Griseofulvin.

References

- 1. Abdel-Hameed E-SS, *et al.* Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (*Opuntia ficus-indica* Mill.) growing in Taif, KSA. Food Chemistry. 2014;160:31-38.
- 2. Dhakite, *et al.* Phytochemical screening of *Ficus heterophylla* L. f., leaf of Moraceae family. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2020;11(6):13-16.
- 3. Deepa, *et al.* A role of *Ficus* species in the management of diabetes mellitus: A review. Journal of Ethnopharmacology. 2018;215:210-232.
- 4. Haq Nawaz, et al. Phytochemical composition, antioxidant potential, and medicinal significance of

- *Ficus.* Modern Fruit Industry. 2019. DOI: 10.5772/intechopen.
- 5. Karuppusamy, *et al.* A HPTLC method for the identification of potential therapeutic compound of kaempferol from *Ficus amplissima* Smith. International Journal of Pharmaceutical Sciences Review and Research. 2013;22(1):166-171.
- 6. Konyalioğlu, *et al.* α-Tocopherol, flavonoid, and phenol contents and antioxidant activity of *Ficus carica* leaves. Pharmaceutical Biology. 2005;43(8):683-686.
- 7. Tadavi, *et al.* Preliminary phytochemical analysis of *Ficus johannis* subsp. *afghanistanica* from Moraceae family. Journal of Pharmacognosy and Phytochemistry. 2023;12(1):41-43.

DOI: 10.22271/phyto.2023.v12.i1a.14546.