

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 www.phytojournal.com

JPP 2025; 14(6): 53-60 Received: 24-08-2025 Accepted: 28-09-2025

Arthanariswaran P

Professor, Department of Pharmacognosy, Nirmala College of Health Science, Chalakudy, Kerala, India

Aby Augustine

Nirmala College of Health Science, Chalakudy, Kerala, India

Sruthi EJ

Nirmala College of Health Science, Chalakudy, Kerala, India

Jittu George

Nirmala College of Health Science, Chalakudy, Kerala, India

Anjaly TS

Nirmala College of Health Science, Chalakudy, Kerala, India

Corresponding Author: Arthanariswaran P

Professor, Department of Pharmacognosy, Nirmala College of Health Science, Chalakudy, Kerala, India

Syzygium travancoricum: A short review

Arthanariswaran P, Aby Augustine, Sruthi EJ, Jittu George and Anjaly TS

DOI: https://doi.org/10.22271/phyto.2025.v14.i6a.15642

Abstract

A comprehensive literature review was conducted to identify and analyse existing studies, reports, and reviews related to the aspects of ethnobotanical, phytochemical and pharmacological reviews of *Syzygium travancoricum*. The following databases were searched: PubMed, Google Scholar, Web of Science, Willey Online Library, Science Direct and Research Gate. The literature search used the terms 'Syzygium' 'Syzygium travancoricum Ethanobotany' 'Syzygium travancoricum morphology', 'Syzygium travancoricum essential oil', 'Bioactivities of Syzygium species' and Phytoconstituents and chemistry of Syzygium species'.

Keywords: Syzygium travancoricum, ethnobotany, phytochemicals, pharmacology, medicinal plants

Introduction

The study of ethnobotanical resources bridges the gap between traditional knowledge and modern scientific exploration, offering insights into the therapeutic, ecological, and cultural significance of plant species. Among these, *Syzygium travancoricum*, a vulnerable tree species native to the Western Ghats of India, occupies a unique place in the biodiversity of the region. This species, belonging to the Myrtaceae family, is not only an essential component of the ecosystem but also holds traditional medicinal value, making it a subject of interest for conservationists and researchers alike.

Endemic to India, *Syzygium travancoricum* thrives in semi-evergreen and mangrove forests, demonstrating adaptability to specific ecological conditions. However, habitat destruction and limited geographical distribution have pushed it to the brink of extinction, earning it a place on the International Union for Conservation of Nature (IUCN) Red List as a vulnerable species ^[1]. The plant's bark, leaves, and other parts have been traditionally used for treating various ailments, reflecting the rich ethnobotanical knowledge of local communities. Yet, scientific documentation and validation of these uses remain scarce.

The genus *Syzygium* is renowned for its diverse phytochemical profile, encompassing essential oils, phenolic compounds, flavonoids, and triterpenoids, many of which exhibit significant pharmacological activities. While closely related species like *Syzygium cumini* and *Syzygium aromaticum* have been extensively studied, S. travancoricum has largely been overlooked in scientific literature. This gap presents an opportunity to explore its chemical composition, pharmacological potential, and ecological significance.'

This review consolidates existing information on the taxonomy, distribution, morphological features, traditional uses, and pharmacological properties of *Syzygium travancoricum*. By highlighting the plant's potential and the pressing need for its conservation, this study aims to foster a better understanding of its role in biodiversity and its prospects in medicinal research. Additionally, it underscores the importance of integrating traditional knowledge with scientific methods to unlock the full potential of this vulnerable species.

Ethnobotanical Review [2]

Plant Profile

Botanical name: Syzygium travancoricum Gamble **Synonym:** Syzygium stocksii [3], Eugenia stocksii Duthie

Family: Myrtaceae Parts used: Bark

Common name: Poriyal, Vatham Kolli Maram, Kulavetti, Vallamanchi

Taxonomical Classification

Kingdom: Plantae Phylum: Tracheophyta Class: Magnoliopsida Order: Myrtales Family: Myrtaceae Genus: Syzygium

Species: Travancoricum Gamble

Distribution

Syzygium travancoricum have been seen in few locations in Kerala and are endemic to India. It is threatened by habitat loss. Endemic distribution has been seen in southern Western Ghats region of India

Kerala: Thrissur district, Ernakulam district, Alappuzha

district, Pathanamthitta district,

Kollam district, Thiruvananthapuram district

Tamil Nadu: Nilgiris district Karnataka: Siddapura taluk

Description of Plant

Syzygium stocksii occupies in the hillocks and low land swamps of evergreen and semi evergreen forest which is under pressure due to the deposition of silt and waste as a result of anthropogenic interventions. Intense soil erosion, habitat fragmentation and changes in land use patterns due to monoculture plantations, industries and urbanisation were considered as the major threats to their population and regeneration. [4]

Habitat: Terrestrial; Semi evergreen and mangrove forest Natural history - Cyclicity: Flowering and fruiting: April-June Habit-Growth cycle: Tree (Fig: 1.1 & 1.2)

Morphological Review [1]

General: Evergreen trees, growing up to 25-30 meters high.

- Bark: Greyish-brown surface, longitudinally fissured.
- Peels off in thin, irregular flakes.
- Inner bark is grey
- Branchlets are tetragonous. (Fig: 1.3)
- Leaves: Simple, opposite, and estipulate.
- 1. **Petiole:** 10-20 mm long, stout, grooved above, glabrous.
- **2.** Lamina: 8-16.5 x 5-8.5 cm, ovate or ovate-oblong.
- 3. Base: narrowed and decurrent on petiole.
- **4. Apex:** acuminate, acumen folded, obtuse.
- 5. Margin: entire, thin, filmy glabrous.
- **6. Lateral nerves:** 10-15 pairs, parallel but very irregular, distant, prominent, and looped near the margin forming an indistinct intramarginal nerve.
- 7. Intercostal reticulation: faint. (Fig: 1.4)
- **Flowers:** Bisexual, white, mostly in axillary lax cymose corymbs.
- 1. **Peduncle:** 4.5-5 cm long, can extend up to 8 cm.
- **2. Petals:** white, calyptrate.
- Stamens: numerous, free, bent inwards at the middle when in bud.
- **4. Ovary:** inferior, 2-celled, many ovules.
- 5. Style: 1
- **6. Stigma:** simple. (Fig: 1.5)
- **Branches:** Long, ascending.
- 1. Calyx tube: short, 1 mm across.
- 2. Calyx lobes: 4, very short.
- 3. No thickened staminal disc.
- **Fruit:** Berry, unilocular oblong-obtuse on both sides, 1 x 0.5 cm.
- 1. Deep violet colour.
- 2. Juicy pericarp.
- 3. **Seed:** one. (Fig: 1.6)

Fig 1.1: Syzygium travancoricum tree

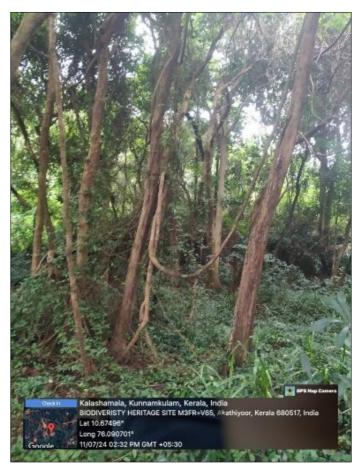


Fig 1.2: S. travancoricum tree

Fig 1.3: S. travancoricum Bark

Fig 1.4: S. travancoricum leaves

Fig 1.5: S. travancoricum flower

Fig 1.6: S. travancoricum fruit

Chemical Constituents

S. travancoricum is a plant species native to the Western Ghats of India. While detailed chemical studies on this specific species are somewhat limited compared to more extensively researched plants, general information on the chemical constituents of the genus Syzygium can provide some insights. Here are some typical chemical constituents found in Syzygium species, which may also be relevant to Syzygium travancoricum:

- **1. Essential Oils:** Many species of *Syzygium* are known to contain essential oils in their leaves, fruits, or other parts. These oils often contain compounds such as terpenes (like α-pinene, β-pinene), sesquiterpenes, and aromatic compounds ^[5].
- 2. Phenolic Compounds: Syzygium species are rich in phenolic compounds such as flavonoids (quercetin, kaempferol, myricetin derivatives), phenolic acids (Gallic acid, ellagic acid), and tannins. These compounds contribute to antioxidant properties and potential health benefits.
- **3. Triterpenoids:** Some species may contain triterpenoids compounds, which can have various biological activities including anti-inflammatory and antimicrobial effects. [37]
- **4. Volatile Compounds:** Besides from essential oils, volatile compounds like aldehydes, ketones, and alcohols may also be present, contributing to the aroma and flavour of the plant parts ^[5].
- **5. Fatty Acids:** This is especially true concerning the seeds and other lipid-rich parts of *Syzygium* species may contain fatty acids, which are important for their nutritional value.
- **6. Alkaloids:** Although not frequently found, some *Syzygium* species have been reported to contain alkaloids, which can have diverse pharmacological activities.

Traditional Medicinal Uses

Traditional medicinal uses of *Syzygium travancoricum* are not extensively documented in scientific literature compared to more widely studied species within the *Syzygium* genus. However, based on general knowledge and regional ethnobotanical practices, here are some traditional medicinal uses attributed to *Syzygium travancoricum*:

- **1. Digestive Disorders:** In traditional medicine, various parts of *Syzygium* species are used to treat digestive issues such as diarrhoea, dysentery, and stomach-aches. This use likely extends to *Syzygium travancoricum*, given the general application of similar species.
- **2. Anti-inflammatory and Antioxidant:** The bark and leaves of *Syzygium* species are often used for their anti-inflammatory and antioxidant properties. These properties may be utilized in treating inflammatory conditions and promoting overall health. ^[5]
- **3. Wound Healing:** Poultices or extracts from *Syzygium* species are sometimes applied externally to wounds and cuts for their purported wound-healing properties. This use could extend to *Syzygium travancoricum*.
- **4. Antimicrobial Activity:** Many *Syzygium* species are known for their antimicrobial properties. Traditional uses may include treating infections, especially those of the gastrointestinal tract or skin. ^[5]
- **5. Diabetes Management:** Some *Syzygium* species are reputed to have hypoglycaemic effects. While specific to *S. travancoricum* is not well-documented, but used by the local

peoples for curing diabetes. Similar uses may exist based on the genus's reputation in traditional medicine ^[6].

Pharmacological Review

Various parts of *Syzygium* species, including leaves, seeds, fruits, barks, stem barks, and flower buds, are reported to have diverse pharmacological activities due to the presence of secondary metabolites such as terpenoids, chalcones, flavonoids, lignans, alkyl phloroglucinols, hydrolysable tannins, and chromone derivatives (Srivastava *et al.*, 2005; Ayyanar *et al.*, 2013; Cock & Cheesman, 2018) ^[7, 8, 9]. Despite the rich diversity within the genus, only *S. aromaticum* and *S. cumini* have been extensively studied due to their widespread use in traditional medicine systems like Iranian, Ayurveda, and Unani.

Antioxidant Activity

S. cumini: - Eshwarappa et al. (2014) [10] reported higher antioxidant potential in methanolic leaf gall aqueous and methanol extracts compared to reference standard ascorbic acid, utilizing DPPH, nitric oxide-scavenging, hydroxyl scavenging, and FRAP methods.

Ahmed *et al.* (2019) ^[11] evaluated leaves, finding a high average phenolic content (369.75 mg GAE/100g) and significant antioxidant activity (IC50 133.07 μg/ml).

S. samarangense: - Banadka et al. (2022) [12] reported antioxidant activity of fruit extract using ABTS, DPPH, and FRAP methods. The IC50 values for DPPH and ABTS scavenging activity were 175 μ g/ml and 250 μ g/ml, respectively when compared to the standard L-ascorbic acid which having the IC50 value 140 μ g/ml.

Antimicrobial Activity

S. cumini and S. travancoricum: Shafi et al. (2002) [13] reported antibacterial activity of essential oils from leaves against Bacillus sphaericus, B. subtilis, S. aureus, E. coli, P. aeruginosa, and Salmonella typhimurium, with significant activity against S. typhimurium.

S. cumini: Amin *et al* (2012) [14] demonstrated antifungal activity of methanolic leaf extracts against *Alternaria alternata* that was isolated from the die-back trees of *E. globulus* and *E. citriodora*. The varying concentration of methanolic extract shown reduction with the range of 82-88% in the fungal biomass.

Gupta & Bhadauria (2015) [15] was founded that aqueous fruit and bark extracts inhibited the growth of *F. oxysporum and Alternaria alternata* respectively.

Kumar and Singh (2021) [16] found antimicrobial activity of various leaf extracts such as aqueous, methanolic, hexane and ethyl acetate against dental caries-causing strains like *S. viridans, S. mutans, E. coli, P. aeruginosa, S. aureus, and B. subtilis.*

Anti-inflammatory Activity

S. jambos: Sharma *et al.* (2013) ^[17] found ethanol leaf extract reduced release of inflammatory cytokine IL-8 and TNF- α by 74-99%, indicating anti-acne effects.

S. cumini: Machado *et al.* (2013) ^[18] detected anti-inflammatory and apoptotic activity of essential oil in mice models, reducing granulomatous area and altering granuloma patterns that were formed in the hepatic parenchyma.

Siani *et al.* (2013) ^[19] found that essential oil from leaves and terpene-enriched fractions that were obtained by vacuum

distillation inhibited eosinophil migration by 63-67%, correlating with presence of α -pinene and β -caryophyllene. Latief *et al.* (2015) [20] investigated anti-inflammatory effect in carrageenan-induced hind paw oedema and antioxidant effects in CLP-induced sepsis in mice using trimeric myricetin rhamnoside (TMR), also flavonoid glucoside from the leaves of *S. cumini* concludes it had potential anti-inflammatory benefits.

Anticancer Activity

S. travancoricum: Smitha P.S (2023) ^[5] finds anticancer potential of Syzygium travancoricum essential oil has been explored through various *in vitro* studies. Using the MTT assay, the essential oil demonstrated significant antiproliferative activity against the B16 melanoma cell line. Further investigations into the underlying mechanisms revealed its ability to induce cell apoptosis and alter reactive oxygen species (ROS) activity. Additionally, the essential oil was found to disrupt mitochondrial membrane potential, influence the cell cycle, and affect DNA content, collectively contributing to its anticancer efficacy.

essential oil can helps to relieve pain and promote healing. The *In-vitro* studies finds that cytotoxic properties of oil and eugenol toward human fibroblasts and endothelial cells. Dwivedi *et al.* (2011) ^[22] found essential oil inhibited proliferation of HeLa, MCF-7, MDA-MB-231, DU-145 cell lines and Te-13 cell lines, with apoptosis as the primary mechanism. Natural essential oil and extracts were not significantly toxic to normal human peripheral blood lymphocytes.

S. aromaticum: Prashar et al. (2006) [21] reported that the

Antidiabetic Activity

S. travancoricum: Smitha P. S. (2023) [5] conducted a study on the antidiabetic activity of Syzygium travancoricum, focusing on the effects of water and ethanol leaf extracts on various digestive enzymes. The research revealed that these extracts effectively suppressed the activity of lipases, α amylase, and α -glucosidase in a dose-dependent manner. Among the different extracts tested, the leaf essential oil of S. travancoricum demonstrated moderate inhibitory properties against lipase (26.8%), α -amylase (63.22%), and α glucosidase (53.55%). The moderate antidiabetic effects of S. travancoricum essential oil were attributed to the presence of oxygenated terpenoids, specifically monoterpenes and sesquiterpenes. These terpenoids are believed to bind to the amino and sulfhydryl groups of enzymes, inducing a conformational change that results in the loss of enzyme activity. This binding mechanism suggests that the moderate antidiabetic effects observed are due to the inhibition of these enzymes by the volatile components of the essential oil.

S. samarangense: Shen et al. (2012) [23] found fruit extract inhibited inflammatory response and reduced insulin resistance in TNF- α treated FL83B cells.

Huang *et al.* (2016) ^[24] found vescalagin reduced insulin resistance in hyperglycemic rats by a high-fructose diet.

S. cumini: Sanches *et al.* (2016) ^[25] found hydroethanolic leaf extract reduced hyperinsulinemia and insulin resistance in obese rat models that was induced by MSG by modifying beta-cell insulin release.

Other species: Zulcafli *et al.* (2020) ^[26] reviewed anti-diabetic potential of eight Syzygium species, highlighting inhibition of carbohydrate metabolism enzymes as the most researched mechanism

Mahmoud *et al.* (2021) [27] reported *S. aqueum* leaf extract decreased glucose levels and increased insulin secretion in STZ-induced diabetic rats.

Konda *et al.* (2021) ^[28] found *S. paniculatum* fruit extract improved insulin receptor function and reduced hepatic insulin resistance in HFD-induced diabetic rats.

The Syzygium genus exhibits significant pharmacological potential, particularly in antioxidant, antimicrobial, anti-inflammatory, anticancer, and antidiabetic activities. While S. aromaticum and S. cumini are well-studied, there is a need for further research on other species to explore their potential benefits and applications in medicine.

Phytochemical Review

The family Myrtaceae is characterized by an abundance of tannins and flavonols, with myricetin derivatives being frequently reported as significant chemical constituents (Amaral *et al.*, 2001^[29] Various studies on the genus *Syzygium* have identified numerous compounds, including triterpenes (Djoukeng *et al.*, 2005; Kuiate *et al.*, 2007) ^[30, 31], tannins, flavonoids (Kuo *et al.*, 2004) ^[32], chromone derivatives (Tanaka *et al.*, 1993) ^[33], phenylpropanoids (Miyazawa & Hisama, 2003; Tanaka *et al.*, 1993) ^[34, 35], and phloroglucinols derivatives (Zou *et al.*, 2006) ^[32].

A notable compound identified in *Syzygium grijsii* is a monolignan, which demonstrated chemotaxonomic significance (Miyazawa & Hisama, 2003) [34]. Additionally, phenylpropanoids isolated from *S. aromaticum* were found to be precursors to those isolated from *S. grijsii*, indicating a close relationship between the two species.

Previous chemical investigations have further confirmed the presence of triterpenes, hydrolysable tannins, anthocyanin's, flavonoids, chromone derivatives, phenylpropanoids, and phloroglucinol derivatives within the genus *Syzygium* (Reynerston *et al.*, 2008; Ayyanar & Subash-Babu, 2012) [36, 37]

Yao *et al.* (2013) ^[38] identified various tetralin-type lignans, 8, 40-oxyneolignane, and monolignans in *S. grijsii*, proposing that these compounds could serve as taxonomic markers.

Recent studies have continued to uncover new compounds in *Syzygium* species.

Hu *et al.* (2020) ^[39] isolated two new oleanane triterpenoids and one known analogue from the leaves of *S. samarangense* collected in Xishuang Banna Prefecture, Yunnan Province, China. This discovery not only highlighted the chemical diversity of *Syzygium* plants but also suggested potential chemotaxonomic markers for the species.

Moreover, Zhang *et al.* (2020) [40] isolated a new monocyclic diterpenoid along with three known diterpenoids and five sesquiterpenoids from the twigs and leaves of *S. fluviatile*, proposing these compounds as chemotaxonomic markers for *S. fluviatile*.

Smitha P S (2023) ^[5], an analysis of the leaf water extracts of *Syzygium travancoricum* revealed a higher concentration of phenolic compounds and flavonoids compared to ethanol extracts. Furthermore, the leaf extracts exhibited a diverse range of phytochemical constituents, including tannins, terpenoids, steroids, alkaloids, carbohydrates, reducing sugars, and proteins. In addition to the findings on leaf extracts, it was noted that the fruits of *S. travancoricum*, at various stages of maturity, possess high nutritional value.

These fruits are rich in vitamins, minerals, and dietary fibre's, highlighting their potential as a significant nutritional resource.

References

- Amitha Bachan KH, Devika MA. Syzygium stocksii. The IUCN Red List of Threatened Species. 2024:e.T253632034A115932401. https://dx.doi.org/10.2305/IUCN.UK.2024-1.RLTS.T253632034A115932401.en
- Sasidharan S, et al. Syzygium travancoricum Gamble. India Biodiversity Portal. https://indiabiodiversity.org/species/show/228413
- 3. Byng JW, Wilson PG, Snow N. Typifications and nomenclatural notes on Indian Myrtaceae. Phytotaxa. 2015;217(2):101-116.
- IUCN. The IUCN Red List of Threatened Species. Version 2024-1. 2024. https://www.iucnredlist.org/resources/classification-schemes
- Smitha PS. Anatomical and histochemical characterization of Syzygium travancoricum Gamble (Myrtaceae). Microscopy Research and Technique. 2023;86(6):659-668. https://doi.org/10.1002/jemt.24321
- 6. MSSBG. *Syzygium travancoricum* Gamble MSSBG. 2021 Jul 18. https://mssbg.mssrf.org/syzygium-travancoricum-gamble/
- 7. Srivastava AK, Srivastava SK, Syamsundar KV. Bud and leaf essential oil composition of *Syzygium aromaticum* from India and Madagascar. Flavour Fragrance Journal. 2005;20:51-53. https://doi.org/10.1002/ffj.1364
- Ayyanar M, Subash-Babu P. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pacific Journal of Tropical Biomedicine. 2012;2(3):240-246. https://doi.org/10.1016/S2221-1691(12)60050-1
- 9. Cock IE, Chessman M. Plants of the genus *Syzygium* (Myrtaceae): A review on ethnobotany, medicinal properties and phytochemistry. 2018.
- 10. Eshwarappa RS, Iyer RS, Subbaramaiah SR, Richard SA, Dhananjaya BL. Antioxidant activity of *Syzygium cumini* leaf gall extracts. Bioimpacts. 2014;4(2):101-107. https://doi.org/10.5681/bi.2014.018
- 11. Ahmad N, Nawab M, Kazmi M. Medicinal potential of jamun (*Syzygium cumini* Linn): A review. Journal of Drug Delivery and Therapeutics. 2019;9:175-180. https://doi.org/10.22270/jddt.v9i5.3568
- 12. Banadka A, Wudali S, Al-Khayri J, Nagella P. The role of *Syzygium samarangense* in nutrition and economy: An overview. South African Journal of Botany. 2022;145. https://doi.org/10.1016/j.sajb.2022.03.014
- 13. Shafi PM, Rosamma MK, Jamil K, Reddy PS. Antibacterial activity of *Syzygium cumini* and *Syzygium travancoricum* leaf essential oils. Fitoterapia. 2002;73(5):414-416. https://doi.org/10.1016/S0367-326X(02)00131-4
- 14. Amin M, Javaid A. Biochemical control of chickpea blight pathogen by methanolic fruit extract of *Syzygium cumini*. Pakistan Journal of Phytopathology. 2013;25(2).
- Gupta M, Sharma S, Bhadauria R. Fungi toxic activity of fruit extracts of *Syzygium cumini* (L.) Skeels against *Alternaria alternata* and *Fusarium oxysporum*. Archives of Phytopathology and Plant Protection. 2014;48(4):354-364. https://doi.org/10.1080/03235408.2014.888875

- Kumar S, Singh B. Antimicrobial activity of Syzygium cumini. 2021.
- 17. Sharma R, Kishore N, Hussein A, Lall N. Antibacterial and anti-inflammatory effects of *Syzygium jambos* L. (Alston) and isolated compounds on acne vulgaris. BMC Complementary and Alternative Medicine. 2013;13:292. https://doi.org/10.1186/1472-6882-13-292
- 18. Machado RRP, Jardim DF, Souza AR, Scio E, Fabri RL, Carpanez AG, *et al*. The effect of essential oil of *Syzygium cumini* on the development of granulomatous inflammation in mice. Revista Brasileira de Farmacognosia. 2013;23(3):488-496. https://doi.org/10.1590/S0102-695X2013005000030
- 19. Siani AC, Souza MC, Henriques MGMO, Ramos MFS. Anti-inflammatory activity of essential oils from *Syzygium cumini* and *Psidium guajava*. Pharmaceutical Biology. 2013;51(7):881-887. https://doi.org/10.3109/13880209.2013.768675
- 20. Latief N, Anand S, Lingaraju MC, Balaganur V, Pathak NN, Kalra J, *et al.* Effect of trimeric myricetin rhamnoside in carrageenan-induced inflammation and caecal ligation and puncture-induced lung oxidative stress in mice. Phytotherapy Research. 2015;29:1798-1805. https://doi.org/10.1002/ptr.5446
- 21. Prashar A, Locke IC, Evans CS. Cytotoxicity of clove (*Syzygium aromaticum*) oil and its major components to human skin cells. Cell Proliferation. 2006;39:241-248. https://doi.org/10.1111/j.1365-2184.2006.00384.
- 22. Dwivedi V, Shrivastava R, Hussain S, Ganguly C, Bharadwaj M. Comparative anticancer potential of clove (*Syzygium aromaticum*) against cancer cell lines of various anatomical origin. Asian Pacific Journal of Cancer Prevention. 2011;12(8):1989-1993. PMID: 22292639.
- 23. Shen SC, Chang WC, Chang CL. Fraction from wax apple [*Syzygium samarangense* (Blume) Merrill and Perry] fruit extract ameliorates insulin resistance via modulating insulin signalling and inflammation pathway in TNF-α-treated FL83B mouse hepatocytes. International Journal of Molecular Sciences. 2012;13:8562-8577. https://doi.org/10.3390/ijms13078562
- 24. Huang DW, Chang WC, Wu JSB, Shih RW, Shen SC. Antioxidant activities of *Syzygium* extracts. Journal of Agricultural and Food Chemistry. 2016;64(5):1122-1129. https://doi.org/10.1021/acs.jafc.5b05558
- 25. Sanches JR, França LM, Chagas VT, Gaspar RS, Dos Santos KA, Gonçalves LM, *et al.* Polyphenol-rich extract of *Syzygium cumini* leaf dually improves peripheral insulin sensitivity and pancreatic islet function in obese rats. Frontiers in Pharmacology. 2016;7:48. https://doi.org/10.3389/fphar.2016.00048
- 26. Zulcafli AS, Lim C, Ling AP, Chye S, Koh R. Antidiabetic potential of *Syzygium* sp.: An overview. Yale Journal of Biology and Medicine. 2020;93(2):307-325. PMID: 32607091.
- 27. Mahmoud MF, Abdelaal S, Mohammed HO, El-Shazly AM, Daoud R, Abdelfattah MAO, *et al. Syzygium aqueum* (Burm.f.) Alston prevents streptozotocin-induced pancreatic β-cell damage via the TLR-4 signalling pathway. Frontiers in Pharmacology. 2021;12:769244. https://doi.org/10.3389/fphar.2021.769244
- 28. Konda PY, Chennupati V, Dasari S, Sharma N, Muthulingam M, Ramakrishna R, *et al.* Ethnopharmacological insulin signalling induction of

- aqueous extract of *Syzygium paniculatum* fruits in highfat diet-induced hepatic insulin resistance. Journal of Ethnopharmacology. 2021;268:113576. https://doi.org/10.1016/j.jep.2020.113576
- 29. Amaral A, Kuster RM, Bessa W, Barnes R, Kaplan M, Wessjohann L. Flavonoids and other phenolics from leaves of two *Marlierea* species (Myrtaceae). Biochemical Systematics and Ecology. 2001;29:653-654. https://doi.org/10.1016/S0305-1978(00)00089-2
- 30. Djoukeng JD, Abou-Mansour E, Tabacchi R, Tapondjou AL, Bouda H, Lontsi D. Antibacterial triterpenes from *Syzygium guineense* (Myrtaceae). Journal of Ethnopharmacology. 2005;101(1-3):283-286. https://doi.org/10.1016/j.jep.2005.05.008
- 31. Kuiate JR, Mouokeu S, Wabo HK, Tane P. Antidermatophytic triterpenoids from *Syzygium jambos* (L.) Alston (Myrtaceae). Phytotherapy Research. 2007;21:149-152. https://doi.org/10.1002/ptr.2039
- 32. Kuo YC, Yang LM, Lin LC. Isolation and immunomodulatory effect of flavonoids from *Syzygium samarangense*. Planta Medica. 2005;70:1237-1239. https://doi.org/10.1055/s-2004-835859
- 33. Tanaka N, Jia Y, Niwa K, Imabayashi K, Tatano Y, Yagi H, *et al.* Phloroglucinol derivatives and a chromone glucoside from the leaves of *Myrtus communis*. Tetrahedron. 2018;74(1):117-123. https://doi.org/10.1016/j.tet.2017.11.044
- 34. Miyazawa M, Hisama M. Antimutagenic activity of phenylpropanoids from cloves (*Syzygium aromaticum*). Journal of Agricultural and Food Chemistry. 2003;51(22):6413-6422. https://doi.org/10.1021/jf030247q
- 35. Zou J, Mi Y, Chen W, Liu Q, Wang J, Lou L, Zhao W. Alkyl phloroglucinol derivatives from *Syzygium levinei* and their differentiation-inducing activity. Planta Medica. 2006;72(6):533-538. https://doi.org/10.1055/s-2006-931559
- 36. Reynertson KA, Yang H, Jiang B, Basile MJ, Kennelly EJ. Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chemistry. 2008;109(4):883-890. https://doi.org/10.1016/j.foodchem.2008.01.021
- Ayyanar M, Subash-Babu P. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pacific Journal of Tropical Biomedicine. 2012;2(3):240-246. https://doi.org/10.1016/S2221-1691(12)60050-1
- 38. Yao N, Yao W, Lei J, Wang KW. Lignans from *Syzygium grijsii* and their chemotaxonomic significance. Biochemical Systematics and Ecology. 2013;46:79-82. https://doi.org/10.1016/j.bse.2012.09.009
- 39. Hu YK, Wang L, Zhao Y, Liu JP, Wang JH, Zhao Y. Two new oleanane triterpenoids from *Syzygium samarangense*. Chemistry of Natural Compounds. 2020;56. https://doi.org/10.1007/s10600-020-03121-z
- 40. Zhang D, Hu Y, Wang L, Huang S, Zhao Y, Li M, Zhao Y. Diterpenoids and sesquiterpenoids from *Syzygium fluviatile*. Records of Natural Products. 2020;14(3):213-218.